

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# (Z)-4-[(3-Aminonaphthalen-2-ylamino)-(phenyl)methylidene]-3-methyl-1-phenyl-1*H*-pyrazol-5(4*H*)-one

# Zhao Zhang,<sup>a</sup> Xingqiang Lü,<sup>a</sup> Shunsheng Zhao<sup>b</sup> and Xiangrong Liu<sup>b</sup>\*

<sup>a</sup>College of Chemical Engineering, Northwest University, Xi'an 710069, Shannxi, People's Republic of China, and <sup>b</sup>College of Chemistry and Chemical Engineering, Xian University of Science and Technology, Xi'an 710054, Shannxi, People's Republic of China

Correspondence e-mail: lvxq@nwu.edu.cn

Received 1 August 2012; accepted 6 August 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.042; wR factor = 0.123; data-to-parameter ratio = 13.4.

The molecule of the title compound,  $C_{27}H_{22}N_4O$ , assumes a non-planar conformation in which the pyrazolone ring forms dihedral angles of 12.73 (11), 65.17 (6) and 49.82 (6)°, respectively, with the two benzene rings and the naphthalene ring system. In the crystal, pairs of molecules are linked by intermolecular N-H···N hydrogen bonds, forming dimers. The secondary amino group is involved in an intramolecular N-H···O hydrogen bond.

### **Related literature**

For a related structure, see: Lu *et al.* (2011). For bond-length data, see: Allen *et al.* (1987). For the synthesis, see: Hennig & Mann (1988).



### Experimental

Crystal data C<sub>27</sub>H<sub>22</sub>N<sub>4</sub>O

 $M_r=418.49$ 

Monoclinic,  $P2_1/n$  a = 9.8052 (14) Å b = 18.041 (3) Åc = 13.2193 (18) Å

#### Data collection

 $\beta = 110.797 (2)^{\circ}$ 

V = 2186.0 (5) Å<sup>3</sup>

| Bruker SMART 1K CCD area-              | 10878 measured reflections             |
|----------------------------------------|----------------------------------------|
| detector diffractometer                | 3886 independent reflections           |
| Absorption correction: multi-scan      | 2629 reflections with $I > 2\sigma(I)$ |
| (SADABS; Sheldrick, 2004)              | $R_{\rm int} = 0.027$                  |
| $T_{\min} = 0.976, \ T_{\max} = 0.981$ |                                        |

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.042$ | H atoms treated by a mixture of                           |
|---------------------------------|-----------------------------------------------------------|
| $vR(F^2) = 0.123$               | independent and constrained                               |
| S = 1.07                        | refinement                                                |
| 3886 reflections                | $\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$ |
| 290 parameters                  | $\Delta \rho_{\rm min} = -0.13 \text{ e} \text{ Å}^{-3}$  |

### Table 1

Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$  $D\cdots A$  $D-H\cdots A$ N3-H3A\cdots O10.862.062.7196 (19)133N4-H4A\cdots N2^i0.92 (2)2.21 (2)3.121 (2)169.8 (18)

Symmetry code: (i) -x + 1, -y + 2, -z + 1.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The project was supported by the National Natural Science Foundation of China (program Nos. 21103135, 21073139), the Natural Science Basic Research Plan in Shaanxi Province of China (program No. 2011JQ2011) and the Scientific Research Program Funded by Shaanxi Provincial Education Department (program No.12 J K0622).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2079).

#### References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Hennig, L. & Mann, G. (1988). Z. Chem. 28, 364-365.

Lu, R., Xia, H., Lü, X. & Zhao, S. (2011). Acta Cryst. E67, o2701.

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

 $0.31 \times 0.25 \times 0.24$  mm

Z = 4Mo *K* $\alpha$  radiation

 $\mu = 0.08 \text{ mm}^{-1}$ 

T = 296 K

# supporting information

Acta Cryst. (2012). E68, o2777 [doi:10.1107/S1600536812034770]

# (*Z*)-4-[(3-Aminonaphthalen-2-ylamino)(phenyl)methylidene]-3-methyl-1phenyl-1*H*-pyrazol-5(4*H*)-one

# Zhao Zhang, Xingqiang Lü, Shunsheng Zhao and Xiangrong Liu

# S1. Comment

Asymmetric Schiff bases attract the interest of researchers because they can form complexes with most of transition metal ions. These Schiff base complexes show excellent catalytic activity and selectivity in various reactions. Here we report the crystal structure of a novel asymmetrical Schiff base ligand (I) (Fig. 1). Bond lengths are in the range of normal values (Allen *et al.*, 1987) and are comparable to those observed in similar compounds (Lu *et al.*, 2011). The molecules of the title compound are linked by N—H···N hydrogen to form molecular pairs (Fig. 2). An intramolecular N3—H3a···O1 hydrogen bond forms an S6 ring motif.

## S2. Experimental

The title compound was obtained according to the synthetic procedure of Hennig & Mann (1988) with some modification. 2,3-diaminonaphthalene and 4-benzoyl-3-methyl-1-phenyl-1*H*-pyrazol-5(4*H*)-one were refluxed for 2 h in a molar ratio of 1:1 in absolute ethanol to give the product. The single-crystal of suitable for X-ray diffraction was obtained by slow evaporation of its ethanolic solution of the title compound.

## S3. Refinement

H atoms bonded to N4 were located in a difference map and refined freely. Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.99 Å and N—H = 0.87 (2) Å, and with  $U_{iso}(H) = 1.2$  (1.5 for methyl groups) times  $U_{eq}(C/N)$ .



### Figure 1

The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.



### Figure 2

The packing of (I), showing molecules connected by N—H…N hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding have been omitted.

### (Z)-4-[(3-Aminonaphthalen-2-ylamino)(phenyl)methylidene]- 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one

| <i>c</i> = 13.2193 (18) Å                   |
|---------------------------------------------|
| $\beta = 110.797 \ (2)^{\circ}$             |
| $V = 2186.0 (5) \text{ Å}^3$                |
| Z = 4                                       |
| F(000) = 880                                |
| $D_{\rm x} = 1.272 {\rm ~Mg} {\rm ~m}^{-3}$ |
|                                             |

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å Cell parameters from 4488 reflections  $\theta = 1.9 - 25.1^{\circ}$  $\mu = 0.08 \text{ mm}^{-1}$ 

Data collection

Bruker SMART 1K CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator thin–slice  $\omega$  scans Absorption correction: multi-scan (SADABS; Sheldrick, 2004)  $T_{\rm min} = 0.976, T_{\rm max} = 0.981$ 

Refinement Refinement on  $F^2$ Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites  $R[F^2 > 2\sigma(F^2)] = 0.042$ H atoms treated by a mixture of independent  $wR(F^2) = 0.123$ and constrained refinement S = 1.07 $w = 1/[\sigma^2(F_o^2) + (0.0572P)^2 + 0.1136P]$ where  $P = (F_o^2 + 2F_c^2)/3$ 3886 reflections 290 parameters  $(\Delta/\sigma)_{\rm max} = 0.001$ 0 restraints  $\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$ Primary atom site location: structure-invariant  $\Delta \rho_{\rm min} = -0.13 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: SHELXL97 (Sheldrick, direct methods Secondary atom site location: difference Fourier 2008),  $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0046 (10) map

T = 296 K

Block, red

 $R_{\rm int} = 0.027$ 

 $h = -11 \rightarrow 11$ 

 $k = -21 \rightarrow 15$ 

 $l = -15 \rightarrow 14$ 

 $0.31 \times 0.25 \times 0.24$  mm

 $\theta_{\rm max} = 25.1^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$ 

10878 measured reflections

3886 independent reflections 2629 reflections with  $I > 2\sigma(I)$ 

### Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

|      | x            | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|--------------|--------------|--------------|-----------------------------|--|
| 01   | 0.27552 (14) | 1.00646 (7)  | 0.55789 (10) | 0.0609 (4)                  |  |
| N2   | 0.43043 (16) | 0.85291 (8)  | 0.47774 (12) | 0.0549 (4)                  |  |
| N1   | 0.31277 (16) | 0.89991 (8)  | 0.46993 (11) | 0.0516 (4)                  |  |
| N3   | 0.51820 (16) | 1.03547 (8)  | 0.73333 (11) | 0.0540 (4)                  |  |
| H3A  | 0.4486       | 1.0534       | 0.6789       | 0.065*                      |  |
| C18  | 0.55379 (19) | 1.07787 (9)  | 0.82950 (14) | 0.0490 (4)                  |  |
| C26  | 0.5429 (2)   | 1.19826 (10) | 0.90501 (15) | 0.0556 (5)                  |  |
| H26A | 0.5190       | 1.2483       | 0.8961       | 0.067*                      |  |
| C27  | 0.52031 (19) | 1.15528 (10) | 0.81475 (14) | 0.0500 (4)                  |  |
| C25  | 0.60116 (19) | 1.16913 (10) | 1.01105 (15) | 0.0523 (5)                  |  |
| C12  | 0.71102 (19) | 0.94103 (9)  | 0.79235 (13) | 0.0476 (4)                  |  |
|      |              |              |              |                             |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

| C11  | 0.57512 (19) | 0.97179 (9)  | 0.71287 (14) | 0.0482 (4) |
|------|--------------|--------------|--------------|------------|
| C8   | 0.50078 (19) | 0.93546 (9)  | 0.61583 (13) | 0.0481 (4) |
| C5   | 0.1637 (2)   | 0.83859 (9)  | 0.30338 (14) | 0.0541 (5) |
| H5A  | 0.2457       | 0.8137       | 0.3014       | 0.065*     |
| C6   | 0.1758 (2)   | 0.88711 (9)  | 0.38791 (14) | 0.0488 (4) |
| C7   | 0.3538 (2)   | 0.95422 (10) | 0.54880 (13) | 0.0495 (4) |
| N4   | 0.4582 (2)   | 1.18265 (11) | 0.71068 (14) | 0.0656 (5) |
| C19  | 0.60730 (19) | 1.04834 (10) | 0.93090 (14) | 0.0532 (5) |
| H19A | 0.6266       | 0.9978       | 0.9389       | 0.064*     |
| C20  | 0.63419 (19) | 1.09256 (10) | 1.02421 (14) | 0.0504 (5) |
| C21  | 0.6924 (2)   | 1.06300 (11) | 1.12955 (15) | 0.0616 (5) |
| H21A | 0.7117       | 1.0125       | 1.1385       | 0.074*     |
| C3   | -0.0920 (2)  | 0.86374 (11) | 0.22376 (17) | 0.0646 (5) |
| H3B  | -0.1812      | 0.8567       | 0.1681       | 0.078*     |
| С9   | 0.5400(2)    | 0.87347 (9)  | 0.56375 (14) | 0.0507 (5) |
| C13  | 0.7088 (2)   | 0.87261 (10) | 0.83947 (15) | 0.0612 (5) |
| H13A | 0.6213       | 0.8469       | 0.8229       | 0.073*     |
| C1   | 0.0515 (2)   | 0.92247 (10) | 0.38980 (15) | 0.0606 (5) |
| H1A  | 0.0572       | 0.9545       | 0.4463       | 0.073*     |
| C23  | 0.6896 (2)   | 1.18263 (13) | 1.20526 (17) | 0.0721 (6) |
| H23A | 0.7097       | 1.2127       | 1.2659       | 0.087*     |
| C4   | 0.0309 (2)   | 0.82743 (10) | 0.22284 (15) | 0.0610 (5) |
| H4C  | 0.0239       | 0.7948       | 0.1668       | 0.073*     |
| C24  | 0.6299 (2)   | 1.21312 (11) | 1.10469 (16) | 0.0646 (5) |
| H24A | 0.6079       | 1.2634       | 1.0977       | 0.077*     |
| C17  | 0.8418 (2)   | 0.97844 (11) | 0.81943 (16) | 0.0638 (5) |
| H17A | 0.8446       | 1.0250       | 0.7900       | 0.077*     |
| C10  | 0.6841 (2)   | 0.83662 (11) | 0.58793 (16) | 0.0651 (6) |
| H10A | 0.6744       | 0.7966       | 0.5379       | 0.098*     |
| H10B | 0.7172       | 0.8175       | 0.6604       | 0.098*     |
| H10C | 0.7535       | 0.8720       | 0.5810       | 0.098*     |
| C22  | 0.7211 (2)   | 1.10693 (12) | 1.21862 (16) | 0.0671 (6) |
| H22A | 0.7613       | 1.0867       | 1.2876       | 0.081*     |
| C2   | -0.0809(2)   | 0.91046 (11) | 0.30816 (17) | 0.0660 (6) |
| H2B  | -0.1638      | 0.9344       | 0.3104       | 0.079*     |
| C14  | 0.8356 (3)   | 0.84252 (11) | 0.91075 (16) | 0.0726 (6) |
| H14A | 0.8332       | 0.7969       | 0.9430       | 0.087*     |
| C16  | 0.9680 (2)   | 0.94749 (14) | 0.88954 (18) | 0.0805 (6) |
| H16A | 1.0559       | 0.9729       | 0.9067       | 0.097*     |
| C15  | 0.9647 (3)   | 0.87940 (14) | 0.93425 (18) | 0.0787 (6) |
| H15A | 1.0506       | 0.8582       | 0.9807       | 0.094*     |
| H4A  | 0.497 (2)    | 1.1671 (11)  | 0.6603 (17)  | 0.083 (7)* |
| H4B  | 0.436 (3)    | 1.2320 (14)  | 0.7045 (17)  | 0.098 (8)* |
|      |              |              |              |            |

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$   | $U^{13}$   | U <sup>23</sup> |
|----|------------|------------|------------|------------|------------|-----------------|
| 01 | 0.0635 (9) | 0.0555 (8) | 0.0600 (8) | 0.0159 (6) | 0.0173 (7) | -0.0065 (6)     |

| N2  | 0.0542 (10) | 0.0522 (9)  | 0.0562 (10) | 0.0090 (7)   | 0.0168 (8)  | -0.0072 (7)  |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| N1  | 0.0522 (10) | 0.0506 (9)  | 0.0494 (9)  | 0.0094 (7)   | 0.0147 (8)  | -0.0073 (7)  |
| N3  | 0.0600 (10) | 0.0483 (9)  | 0.0482 (9)  | 0.0088 (7)   | 0.0124 (8)  | -0.0048 (7)  |
| C18 | 0.0474 (11) | 0.0483 (10) | 0.0510 (11) | -0.0011 (8)  | 0.0171 (9)  | -0.0080 (8)  |
| C26 | 0.0581 (12) | 0.0463 (10) | 0.0633 (12) | 0.0025 (8)   | 0.0227 (10) | -0.0054 (9)  |
| C27 | 0.0468 (11) | 0.0509 (11) | 0.0529 (11) | 0.0013 (8)   | 0.0183 (9)  | -0.0017 (9)  |
| C25 | 0.0474 (11) | 0.0527 (11) | 0.0585 (12) | -0.0064 (8)  | 0.0211 (9)  | -0.0085 (9)  |
| C12 | 0.0521 (11) | 0.0445 (10) | 0.0469 (10) | 0.0020 (8)   | 0.0183 (9)  | -0.0022 (8)  |
| C11 | 0.0522 (11) | 0.0445 (10) | 0.0504 (11) | 0.0006 (8)   | 0.0213 (9)  | 0.0009 (8)   |
| C8  | 0.0530 (11) | 0.0444 (10) | 0.0453 (10) | 0.0053 (8)   | 0.0156 (9)  | -0.0016 (8)  |
| C5  | 0.0588 (13) | 0.0497 (11) | 0.0527 (11) | 0.0026 (9)   | 0.0183 (10) | -0.0022 (9)  |
| C6  | 0.0525 (11) | 0.0461 (10) | 0.0467 (10) | 0.0015 (8)   | 0.0160 (9)  | 0.0030 (8)   |
| C7  | 0.0591 (12) | 0.0476 (10) | 0.0438 (10) | 0.0048 (9)   | 0.0208 (9)  | -0.0003 (8)  |
| N4  | 0.0803 (13) | 0.0607 (12) | 0.0561 (11) | 0.0229 (9)   | 0.0246 (10) | 0.0045 (9)   |
| C19 | 0.0566 (12) | 0.0461 (10) | 0.0570 (12) | 0.0013 (8)   | 0.0205 (10) | -0.0016 (9)  |
| C20 | 0.0452 (11) | 0.0538 (11) | 0.0527 (11) | -0.0046 (8)  | 0.0180 (9)  | -0.0050 (9)  |
| C21 | 0.0644 (13) | 0.0646 (13) | 0.0579 (12) | -0.0017 (10) | 0.0245 (10) | -0.0017 (10) |
| C3  | 0.0579 (13) | 0.0642 (13) | 0.0609 (13) | -0.0016 (10) | 0.0078 (10) | 0.0031 (10)  |
| C9  | 0.0551 (12) | 0.0476 (10) | 0.0488 (11) | 0.0056 (8)   | 0.0175 (10) | 0.0000 (8)   |
| C13 | 0.0642 (13) | 0.0487 (11) | 0.0619 (13) | -0.0055 (9)  | 0.0115 (10) | 0.0026 (10)  |
| C1  | 0.0603 (13) | 0.0642 (12) | 0.0562 (12) | 0.0064 (10)  | 0.0192 (11) | -0.0059 (10) |
| C23 | 0.0765 (16) | 0.0817 (16) | 0.0611 (14) | -0.0114 (12) | 0.0280 (12) | -0.0202 (12) |
| C4  | 0.0683 (14) | 0.0551 (12) | 0.0541 (12) | -0.0011 (10) | 0.0150 (11) | -0.0044 (9)  |
| C24 | 0.0716 (14) | 0.0604 (12) | 0.0640 (14) | -0.0069 (10) | 0.0269 (11) | -0.0162 (10) |
| C17 | 0.0571 (13) | 0.0641 (12) | 0.0697 (14) | -0.0029 (10) | 0.0219 (11) | 0.0122 (10)  |
| C10 | 0.0588 (13) | 0.0683 (13) | 0.0659 (13) | 0.0173 (10)  | 0.0191 (11) | -0.0072 (10) |
| C22 | 0.0686 (14) | 0.0826 (16) | 0.0513 (12) | -0.0031 (11) | 0.0226 (11) | -0.0023 (11) |
| C2  | 0.0564 (13) | 0.0692 (13) | 0.0690 (14) | 0.0094 (10)  | 0.0183 (11) | 0.0023 (11)  |
| C14 | 0.0867 (18) | 0.0538 (12) | 0.0636 (14) | 0.0054 (11)  | 0.0098 (12) | 0.0096 (10)  |
| C16 | 0.0520 (14) | 0.0979 (18) | 0.0852 (16) | -0.0040 (12) | 0.0167 (12) | 0.0146 (14)  |
| C15 | 0.0643 (15) | 0.0876 (17) | 0.0703 (15) | 0.0164 (12)  | 0.0065 (12) | 0.0072 (13)  |
|     |             |             |             |              |             |              |

Geometric parameters (Å, °)

| 01       | 1.2480 (19) | C19—H19A | 0.9300    |
|----------|-------------|----------|-----------|
| N2—C9    | 1.310 (2)   | C20—C21  | 1.409 (2) |
| N2—N1    | 1.4056 (19) | C21—C22  | 1.363 (3) |
| N1—C7    | 1.382 (2)   | C21—H21A | 0.9300    |
| N1—C6    | 1.414 (2)   | C3—C2    | 1.371 (3) |
| N3—C11   | 1.346 (2)   | C3—C4    | 1.376 (3) |
| N3—C18   | 1.417 (2)   | С3—Н3В   | 0.9300    |
| N3—H3A   | 0.8600      | C9—C10   | 1.490 (2) |
| C18—C19  | 1.362 (2)   | C13—C14  | 1.377 (3) |
| C18—C27  | 1.432 (2)   | C13—H13A | 0.9300    |
| C26—C27  | 1.373 (2)   | C1—C2    | 1.379 (3) |
| C26—C25  | 1.414 (2)   | C1—H1A   | 0.9300    |
| C26—H26A | 0.9300      | C23—C24  | 1.364 (3) |
| C27—N4   | 1.383 (2)   | C23—C22  | 1.398 (3) |
|          |             |          |           |

| C25—C24      | 1.412 (2)   | С23—Н23А      | 0.9300      |
|--------------|-------------|---------------|-------------|
| C25—C20      | 1.415 (2)   | C4—H4C        | 0.9300      |
| C12—C17      | 1.379 (3)   | C24—H24A      | 0.9300      |
| C12—C13      | 1.386 (2)   | C17—C16       | 1.374 (3)   |
| C12—C11      | 1.481 (2)   | С17—Н17А      | 0.9300      |
| C11—C8       | 1.394 (2)   | C10—H10A      | 0.9600      |
| C8—C9        | 1.436 (2)   | C10—H10B      | 0.9600      |
| C8—C7        | 1.439 (2)   | C10—H10C      | 0.9600      |
| C5—C4        | 1.373 (3)   | C22—H22A      | 0.9300      |
| C5—C6        | 1.391 (2)   | C2—H2B        | 0.9300      |
| C5—H5A       | 0.9300      | C14—C15       | 1.365 (3)   |
| C6—C1        | 1.384 (2)   | C14—H14A      | 0.9300      |
| N4—H4A       | 0.92 (2)    | C16—C15       | 1.368 (3)   |
| N4—H4B       | 0.91 (2)    | С16—Н16А      | 0.9300      |
| C19—C20      | 1.413 (2)   | С15—Н15А      | 0.9300      |
|              | (-)         |               |             |
| C9—N2—N1     | 106.96 (14) | C22—C21—H21A  | 119.3       |
| C7—N1—N2     | 111.14 (15) | C20—C21—H21A  | 119.3       |
| C7—N1—C6     | 129.56 (14) | C2—C3—C4      | 118.88 (19) |
| N2—N1—C6     | 119.30 (14) | С2—С3—Н3В     | 120.6       |
| C11—N3—C18   | 130.80 (15) | С4—С3—Н3В     | 120.6       |
| C11—N3—H3A   | 114.6       | N2—C9—C8      | 111.09 (16) |
| C18—N3—H3A   | 114.6       | N2-C9-C10     | 118.87 (16) |
| C19—C18—N3   | 123.89 (15) | C8—C9—C10     | 129.78 (17) |
| C19—C18—C27  | 120.33 (16) | C14—C13—C12   | 120.25 (19) |
| N3—C18—C27   | 115.64 (15) | C14—C13—H13A  | 119.9       |
| C27—C26—C25  | 122.37 (16) | C12—C13—H13A  | 119.9       |
| C27—C26—H26A | 118.8       | C2—C1—C6      | 120.25 (18) |
| C25—C26—H26A | 118.8       | C2—C1—H1A     | 119.9       |
| C26—C27—N4   | 122.76 (17) | C6—C1—H1A     | 119.9       |
| C26—C27—C18  | 118.27 (16) | C24—C23—C22   | 121.09 (19) |
| N4—C27—C18   | 118.84 (16) | C24—C23—H23A  | 119.5       |
| C24—C25—C26  | 123.02 (17) | С22—С23—Н23А  | 119.5       |
| C24—C25—C20  | 118.36 (17) | C5—C4—C3      | 121.06 (18) |
| C26—C25—C20  | 118.61 (16) | C5—C4—H4C     | 119.5       |
| C17—C12—C13  | 118.74 (18) | C3—C4—H4C     | 119.5       |
| C17—C12—C11  | 121.35 (16) | C23—C24—C25   | 120.72 (19) |
| C13—C12—C11  | 119.90 (16) | C23—C24—H24A  | 119.6       |
| N3—C11—C8    | 117.88 (16) | C25—C24—H24A  | 119.6       |
| N3—C11—C12   | 120.67 (15) | C16—C17—C12   | 120.53 (19) |
| C8—C11—C12   | 121.44 (15) | C16—C17—H17A  | 119.7       |
| C11—C8—C9    | 131.77 (17) | С12—С17—Н17А  | 119.7       |
| C11—C8—C7    | 122.58 (15) | C9-C10-H10A   | 109.5       |
| C9—C8—C7     | 105.55 (15) | C9-C10-H10B   | 109.5       |
| C4—C5—C6     | 120.14 (17) | H10A—C10—H10B | 109.5       |
| C4—C5—H5A    | 119.9       | C9—C10—H10C   | 109.5       |
| С6—С5—Н5А    | 119.9       | H10A—C10—H10C | 109.5       |
| C1—C6—C5     | 118.70 (18) | H10B—C10—H10C | 109.5       |
|              |             |               |             |

| C1—C6—N1     | 120.94 (16) | C21—C22—C23  | 119.4 (2)   |
|--------------|-------------|--------------|-------------|
| C5—C6—N1     | 120.37 (15) | C21—C22—H22A | 120.3       |
| O1—C7—N1     | 125.71 (17) | C23—C22—H22A | 120.3       |
| O1—C7—C8     | 129.36 (16) | C3—C2—C1     | 120.95 (19) |
| N1—C7—C8     | 104.92 (14) | C3—C2—H2B    | 119.5       |
| C27—N4—H4A   | 117.6 (13)  | C1—C2—H2B    | 119.5       |
| C27—N4—H4B   | 116.4 (14)  | C15—C14—C13  | 120.2 (2)   |
| H4A—N4—H4B   | 112.3 (19)  | C15—C14—H14A | 119.9       |
| C18—C19—C20  | 121.69 (16) | C13—C14—H14A | 119.9       |
| C18—C19—H19A | 119.2       | C15—C16—C17  | 120.2 (2)   |
| С20—С19—Н19А | 119.2       | C15—C16—H16A | 119.9       |
| C21—C20—C19  | 122.25 (17) | C17—C16—H16A | 119.9       |
| C21—C20—C25  | 119.06 (16) | C14—C15—C16  | 120.1 (2)   |
| C19—C20—C25  | 118.69 (16) | C14—C15—H15A | 120.0       |
| C22—C21—C20  | 121.36 (19) | C16—C15—H15A | 120.0       |
|              |             |              |             |

# Hydrogen-bond geometry (Å, °)

| D—H···A                   | D—H      | H···A    | D····A      | <i>D</i> —H··· <i>A</i> |
|---------------------------|----------|----------|-------------|-------------------------|
| N3—H3A…O1                 | 0.86     | 2.06     | 2.7196 (19) | 133                     |
| N4—H4A····N2 <sup>i</sup> | 0.92 (2) | 2.21 (2) | 3.121 (2)   | 169.8 (18)              |

Symmetry code: (i) -x+1, -y+2, -z+1.