organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-[(2S)-2-Chloropropanoyl]glycine

Hong-shun Sun,^a* Yi Tang,^b Yu-long Li,^a Ning Xu^a and Hong Xu^a

^aChemical Engineering Department, Nanjing College of Chemical Technology, Geguan Road No. 265 Nanjing, Nanjing 210048, People's Republic of China, and ^bAnhui University of Architecture, Ziyun Road No. 292, Economic Development Zone, Hefei City, Hefei 210048, People's Republic of China Correspondence e-mail: njutshs@126.com

Received 18 August 2012; accepted 24 August 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.035; wR factor = 0.100; data-to-parameter ratio = 15.5.

The title compound, $C_5H_8CINO_3$, was prepared by the nucleophilic substitution reaction of (2*S*)-2-chloropropanoyl chloride with glycine. The acetate group forms a dihedral angle of 84.6 (1)° with the mean plane of the C-NH-C=O fragment. In the crystal, the molecules are linked by N-H···O and O-H···O hydrogen bonds, generating a three-dimensional network, which consolidates the crystal packing.

Related literature

The title compound is an intermediate of Tiopronin [systematic name: *N*-(2-sulfanylpropanoyl)glycine], a prescription thiol drug used to control the rate of cystine precipitation and excretion in the disease cystinuria, see: Wang *et al.* (1993). For a related structure, see: Lv *et al.* (2007).

Experimental

Crystal data $C_5H_8CINO_3$ $M_r = 165.57$

Orthorhombic, $P2_12_12_1$ a = 5.5170 (11) Å b = 11.622 (2) Å c = 11.964 (2) Å V = 767.1 (3) Å³ Z = 4

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.878, T_{\max} = 0.957$ 1630 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.100$ S = 1.001413 reflections 91 parameters H-atom parameters constrained $0.30 \times 0.20 \times 0.10$ mm 1413 independent reflections

Mo $K\alpha$ radiation

 $\mu = 0.45 \text{ mm}^{-1}$

T = 293 K

1283 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ 3 standard reflections every 200 reflections intensity decay: 1%

 $\begin{array}{l} \Delta \rho_{max} = 0.22 \ e \ \mathring{A}^{-3} \\ \Delta \rho_{min} = -0.21 \ e \ \mathring{A}^{-3} \\ Absolute \ structure: \ Flack \ (1983), \\ 545 \ Friedel \ pairs \\ Flack \ parameter: \ 0.19 \ (9) \end{array}$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1\cdotsO2^{i}$ $O3-H3A\cdotsO1^{ii}$	0.86 0.85	2.09 1.79	2.920 (3) 2.629 (3)	161 172
Symmetry codes: (i) x	$-\frac{1}{2} - y + \frac{1}{2} - z$	x + 1: (ii) $-x + 2$	$2, y + \frac{1}{2}, -z + \frac{3}{2}$	

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo,1995); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5331).

References

- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Lv, Z.-F., Gao, X.-S., Wu, W.-Y., Gao, X.-F. & Wang, J.-T. (2007). Acta Cryst. E63, 0485–0486.
 North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–
- North, A. C. 1., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, D.-Y., Zhang, C.-Z., Liu, J. & Shi, W.-H. (1993). Zhongguo Yiyao Gongye Zazhi, 24, 243.

supporting information

Acta Cryst. (2012). E68, o2814 [doi:10.1107/S1600536812036720]

N-[(2S)-2-Chloropropanoyl]glycine

Hong-shun Sun, Yi Tang, Yu-long Li, Ning Xu and Hong Xu

S1. Comment

The title compound, (I), is an important intermediate in the synthesis of Tiopronin (Wang *et al.*, 1993), which is a prescription thiol drug used to control the rate of cystine precipitation and excretion in the disease cystinuria. Herewith we report the synthesis and the crystal structure of (I).

In the molecule of (I) (Fig. 1), the bond lengths and angles are within normal ranges and correspond to those observed in the related compound (Lv *et al.*, 2007). Atoms C2, C3, O1, N and C4 are nearly coplanar, with a dihedral angle of 0.7 (3)° between the C2/C3/O1 and O1/C3/N/C4 planes, the acetate group forms a dihedral angle of 84.6 (1)° with the mean plane of C4—N1(H1)—C3=O1 fragment. The quiral atom C2 shows an S absolute configuration. Intermolecular N— H···O and O—H···O hydrogen bonds (Table 1) link the molecules into a three-dimensional network, which consolidate the crystal packing.

S2. Experimental

An aqueous solution of 120 g (1.6 mole) of glycine and 84.8 g (0.8 mole) of sodium carbonate is placed in a 1*L* fournecked flask fitted with a mechanical stirrer and two dropping funnels. The flask is cooled in an ice bath, and 203.2 g (1.6 mol) of (2*S*)-2-chloropropanoyl chloride and 400 ml of 4 N sodium carbonate are added simultaneously to the vigorously stirred solution over a period of 20–25 minutes. The mixture is stirred for an additional 3 h. The aqueous solution is cooled in an ice bath and acidified to Congo red with concentrated hydrochloric acid. The title compound was extracted from the reaction mixture using ethyl acetate and subsequently crystallized from the same solvent (yield 212 g, 80%; m.p. 377-378 K).

S3. Refinement

H atoms were positioned geometrically, with O—H = 0.85 Å, N— H = 0.86 Å and C—H = 0.96, 0.97 and 0.98 Å for methyl, methylene and methine H, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xUeq(C,N,O)$, where x = 1.5 for OH and methyl H, and x = 1.2 for all other H atoms.

Figure 1

The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level.

N-[(2S)-2-Chloropropanoyl]glycine

Crystal data

C₅H₈ClNO₃ $M_r = 165.57$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 5.5170 (11) Å b = 11.622 (2) Å c = 11.964 (2) Å $V = 767.1 (3) \text{ Å}^3$ Z = 4

Data collection

Enraf–Nonius CAD-4	14
diffractometer	12
Radiation source: fine-focus sealed tube	$R_{\rm i}$
Graphite monochromator	θ_{n}
$\omega/2\theta$ scans	h
Absorption correction: ψ scan	k
(North <i>et al.</i> , 1968)	1 =
$T_{\min} = 0.878, \ T_{\max} = 0.957$	3
1630 measured reflections	in

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.100$ S = 1.001413 reflections 91 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 344 $D_x = 1.434 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 9-13^{\circ}$ $\mu = 0.45 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.30 \times 0.20 \times 0.10 \text{ mm}$

1413 independent reflections 1283 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 25.4^{\circ}, \ \theta_{min} = 2.4^{\circ}$ $h = 0 \rightarrow 6$ $k = 0 \rightarrow 14$ $I = -14 \rightarrow 14$ 3 standard reflections every 200 reflections intensity decay: 1%

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0769P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.22$ e Å⁻³ $\Delta\rho_{min} = -0.21$ e Å⁻³ Absolute structure: Flack (1983), 545 Friedel pairs

Absolute structure parameter: 0.19 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl	1.07098 (13)	-0.02109 (7)	0.44996 (6)	0.0614 (3)
N1	0.6201 (3)	0.14605 (16)	0.59648 (15)	0.0380 (4)
H1	0.5455	0.1604	0.5349	0.046*
01	0.8581 (4)	0.02471 (16)	0.69152 (14)	0.0539 (5)
C1	0.6872 (4)	-0.1485 (2)	0.5215 (2)	0.0428 (5)
H1A	0.5231	-0.1506	0.5481	0.064*
H1B	0.7926	-0.1819	0.5765	0.064*
H1C	0.6990	-0.1914	0.4531	0.064*
O2	0.9834 (3)	0.30550 (15)	0.63454 (14)	0.0454 (4)
C2	0.7635 (4)	-0.02114 (18)	0.49985 (19)	0.0400 (5)
H2A	0.6573	0.0126	0.4429	0.048*
03	0.7988 (3)	0.36913 (16)	0.78778 (13)	0.0510 (5)
H3A	0.9157	0.4167	0.7885	0.077*
C3	0.7545 (4)	0.05143 (17)	0.60461 (17)	0.0358 (5)
C4	0.5972 (4)	0.22508 (19)	0.68892 (17)	0.0348 (5)
H4A	0.5776	0.1818	0.7577	0.042*
H4B	0.4532	0.2718	0.6785	0.042*
C5	0.8171 (4)	0.30310 (18)	0.69913 (16)	0.0319 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	<i>U</i> ¹³	U^{23}
Cl	0.0554 (4)	0.0715 (5)	0.0574 (4)	-0.0122 (3)	0.0123 (3)	0.0006 (3)
N1	0.0455 (11)	0.0322 (9)	0.0364 (9)	0.0033 (8)	-0.0140 (8)	-0.0019 (8)
01	0.0702 (12)	0.0506 (9)	0.0408 (9)	0.0207 (8)	-0.0128 (8)	0.0012 (8)
C1	0.0344 (11)	0.0356 (11)	0.0584 (14)	-0.0128 (10)	0.0106 (11)	-0.0106 (11)
O2	0.0451 (9)	0.0525 (10)	0.0386 (8)	-0.0076 (8)	0.0090 (7)	-0.0003 (7)
C2	0.0417 (11)	0.0370 (11)	0.0412 (12)	0.0026 (10)	-0.0048 (10)	-0.0003 (9)
03	0.0569 (10)	0.0583 (10)	0.0379 (8)	-0.0186 (9)	0.0058 (8)	-0.0159 (8)
C3	0.0391 (11)	0.0322 (10)	0.0361 (11)	0.0026 (9)	-0.0079 (10)	0.0003 (8)
C4	0.0354 (11)	0.0333 (10)	0.0358 (11)	0.0008 (9)	0.0013 (9)	-0.0033 (9)
C5	0.0359 (10)	0.0357 (10)	0.0240 (9)	-0.0009 (9)	0.0000 (9)	0.0036 (8)

Geometric parameters (Å, °)

Cl—C2	1.798 (2)	O2—C5	1.200 (3)
N1—C3	1.330 (3)	C2—C3	1.512 (3)
N1—C4	1.443 (3)	C2—H2A	0.9800
N1—H1	0.8600	O3—C5	1.313 (3)
O1—C3	1.227 (3)	O3—H3A	0.8500
C1—C2	1.561 (3)	C4—C5	1.520 (3)
C1—H1A	0.9600	C4—H4A	0.9700
C1—H1B	0.9600	C4—H4B	0.9700
C1—H1C	0.9600		
C3—N1—C4	121.28 (18)	Cl—C2—H2A	109.5
C3—N1—H1	119.4	С5—О3—НЗА	109.3
C4—N1—H1	119.4	O1—C3—N1	122.1 (2)
C2—C1—H1A	109.5	O1—C3—C2	123.12 (18)
C2—C1—H1B	109.5	N1—C3—C2	114.78 (18)
H1A—C1—H1B	109.5	N1—C4—C5	111.79 (18)
C2—C1—H1C	109.5	N1—C4—H4A	109.3
H1A—C1—H1C	109.5	C5—C4—H4A	109.3
H1B—C1—H1C	109.5	N1—C4—H4B	109.3
C3—C2—C1	112.52 (19)	C5—C4—H4B	109.3
C3—C2—Cl	107.82 (15)	H4A—C4—H4B	107.9
C1—C2—Cl	108.03 (15)	O2—C5—O3	124.4 (2)
С3—С2—Н2А	109.5	O2—C5—C4	124.94 (19)
C1—C2—H2A	109.5	O3—C5—C4	110.62 (17)
C4—N1—C3—O1	2.5 (3)	Cl—C2—C3—N1	115.56 (18)
C4—N1—C3—C2	-178.9 (2)	C3—N1—C4—C5	79.1 (3)
C1—C2—C3—O1	53.1 (3)	N1-C4-C5-O2	4.9 (3)
Cl-C2-C3-01	-65.9 (3)	N1—C4—C5—O3	-176.05 (18)
C1—C2—C3—N1	-125.4 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N1—H1···O2 ⁱ	0.86	2.09	2.920 (3)	161
O3—H3 <i>A</i> …O1 ⁱⁱ	0.85	1.79	2.629 (3)	172

Symmetry codes: (i) x-1/2, -y+1/2, -z+1; (ii) -x+2, y+1/2, -z+3/2.