organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-(4-Chlorophenyl)-4-nitrobenzamide

Ghulam Waris,^a Humaira Masood Siddigi,^a* Ulrich Flörke,^b M.Saeed Butt^a and Rizwan Hussain^c

^aDepartment of Chemistry, Quaid - I- Azam University, Islamabad 45320, Pakistan, ^bUniversität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany, and ^cNESCOM, PO Box 2216, Islamabad, Pakistan Correspondence e-mail: Humaira_siddiqi@yahoo.com

Received 14 August 2012; accepted 16 August 2012

Key indicators: single-crystal X-ray study; T = 130 K; mean σ (C–C) = 0.002 Å; R factor = 0.042; wR factor = 0.116; data-to-parameter ratio = 16.3.

The title compound, $C_{13}H_9ClN_2O_3$, is almost planar, showing a dihedral angle of $4.63 (6)^{\circ}$ between the aromatic ring planes. The nitro group also lies in the plane, the C-C-N-Otorsion angle being 6.7 (2)°. There is an intamolecular C-H...O hydrogen bond. The crystal structure features N- $H \cdots O(nitro)$ hydrogen bonds that link the molecules into zigzag chains extending along [010].

Related literature

For background information on aromatic polyimides, see: Yang et al. (1999); More et al. (2010); Litvinov et al., (2010); Sheng et al. (2009); Choi et al. (1992); Hsiao & Lin (2004); Li et al. (2007); Liaw et al. (2005). For related structures, see Saeed et al. (2011); Wardell et al. (2006).

Experimental

Crystal data

C13H9ClN2O3 $M_r = 276.67$ Monoclinic, $P2_1/n$ a = 9.6019 (7) Å b = 13.0688 (10) Å c = 9.6412 (7) Å $\beta = 103.853 \ (1)^{\circ}$

 $V = 1174.64 (15) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.33 \text{ mm}^{-1}$ T = 130 K $0.49 \times 0.20 \times 0.18 \ \text{mm}$

Data collection

Bruker SMART APEX

diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{\rm min} = 0.855, T_{\rm max} = 0.943$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	172 parameters
$wR(F^2) = 0.116$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.76 \ {\rm e} \ {\rm \AA}^{-3}$
2808 reflections	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

10822 measured reflections

 $R_{\rm int} = 0.019$

2808 independent reflections

2557 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond	geometry	(A, °)
---------------	----------	-------	---

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C13-H13A\cdotsO1$ N1-H1A\cdotsO3 ⁱ	0.95 0.88	2.26 2.29	2.859 (2) 3.1312 (17)	120 159
	1 1	3		

Symmetry code: (i) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

The authors acknowledge financial assistance for this project from the Higher Education Commission of Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6822).

References

- Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Choi, K.-Y., Yi, M. H. & Choi, S.-K. (1992). J. Polym. Sci. Part A Polym. Chem. 30 1583-1588
- Hsiao, S.-H. & Lin, K.-H. (2004). Polymer, 45, 7877-7885.
- Li, W., Li, S., Zhang, Q. & Zhang, S. (2007). Macromolecules, 40, 8205-8211.
- Liaw, D. J., Chang, F. C., Leung, M., Chou, M. Y. & Muellen, K. (2005). Macromolecules, 38, 4024-4029
- Litvinov, V. M., Persyn, O., Miri, V. & Lefebvre, J. M. (2010). Macromolecules, 43, 7668–7679.
- More, A. S., Pasale, S. K. & Wadgaonkar, P. P. (2010). Eur. Polym. J. 46, 557-567.
- Saeed, S., Jasinski, J. P. & Butcher, R. J. (2011). Acta Cryst. E67, 0279.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheng, S.-R., Pei, X.-L., Huang, Z.-Z., Liu, X.-L. & Song, C.-S. (2009). Eur. Polym. J. 45, 230-236.
- Wardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2006). Acta Cryst. B62, 931-943.
- Yang, G., Jikei, M. & Kakimoto, M.-A. (1999). Macromolecules, 32, 2215-2220.

supporting information

Acta Cryst. (2012). E68, o2768 [doi:10.1107/S1600536812036082]

N-(4-Chlorophenyl)-4-nitrobenzamide

Ghulam Waris, Humaira Masood Siddiqi, Ulrich Flörke, M.Saeed Butt and Rizwan Hussain

S1. Comment

Aromatic polyimides are distinguished as high performance polymers owing to excellent thermal, mechanical, and chemical properties (Yang et al., 1999, More et al., 2010). They are not only used as beneficial substitutes for metals or ceramics in presently used goods but also as new materials in novel technological applications (Litvinov et al., 2010). Nevertheless, infusibility and insolubility are some of the shortcomings due to the highly regular and rigid polymer backbones and the formation of intermolecular hydrogen bonding, causing deterioration in processability and applications (Sheng et al., 2009, Choi et al., 1992). In order to improve upon these drawbacks, recent research has aimed at improving their processability and solubility without an intense loss in the chemical, thermal, and mechanical properties. For this, improvement of solubility is targeted through diminishing the cohesive energy by lowering the interchain interactions. To achieve this, designing and synthesizing new diamines or dicarboxylic acids is proposed to produce a great variety of soluble and processable polyimides (Hsiao et al., 2004). Incorporating substituted pendant groups which reduce dense chain packing and interchain interactions increases the solubility of resulting polyimides (Liaw et al., 2005, Li et al., 2007). As part of our enduring interest in solubility of aromatic polyimides by structural modification, we are reporting a chloro substituted pendant group having inbuilt amide functionality, which enhances the solubility of polyimides without worsening the inherent properties of polyimides. The molecular structure of the title compound (Figure 1) is closely related to that of the bromo- (Saeed et al., 2011) and iodo-compound (Wardell et al., 2006). The two aromatic rings are almost coplanar with a dihedral angle of 4.63 (6)°, and the nitro group is also coplanar, the associated C4-C5-N2-O2 torsion angle is 6.7 (2)°. The molecular conformation is stabilized by a rather strong intramolecular C13–H···O1 bond. Crystal packing shows a strong intermolecular N1–H···O3(-x + 0.5, y - 0.5, -z + 1.5) hydrogen interaction with H···O3 2.29 Å and N–H···O 159.1° that links molecules into endless zigzag chains extended along the b axis (Figure 2).

S2. Experimental

All the chemicals were of analytical grade and no further purification was carried out before their usage. 1.275 g (0.01 mole) of 4-chloroaniline, 25 ml dichloromethane and 1.39 ml of triethylamine were charged in 100 ml, three-necked, round-bottomed flask fitted with a condenser, a nitrogen inlet tube, a thermometer and a magnetic stirrer. The mixture was stirred at 273-278K for 30 minutes. A solution of 1.85 g (0.01mole) of 4-nitrobenzoyl chloride in 25 ml dichloromethane was added dropwise and stirring was continued for further 45 minutes under same conditions. The temperature was then raised to room temperature along with stirring for further 30 minutes. Product was precipitated by pouring the flask content into water. The product was filtered, washed with 5% NaOH solution, further washing with hot water was carried out and solid product was dried overnight under vacuum at 343K. The product was recrystallized from an ethanol-tetrahydrofuran(1:1)

S3. Refinement

Hydrogen atoms were clearly derived from difference Fourier maps and then refined at idealized positions riding on the carbon or nitrogen atoms with isotropic displacement parameters $U_{iso}(H) = 1.2U(C/N_{eq})$ and N—H 0.88 / C—H 0.95 Å.

Figure 1

Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Crystal packing viewed along [100] with hydrogen bonding pattern indicated as dashed lines. H-atoms not involved are omitted.

N-(4-Chlorophenyl)-4-nitrobenzamide

Crystal data	
$C_{13}H_9ClN_2O_3$	$V = 1174.64 (15) \text{ Å}^3$
$M_r = 276.67$	Z = 4
Monoclinic, $P2_1/n$	F(000) = 568
Hall symbol: -P 2yn	$D_{\rm x} = 1.564 {\rm ~Mg} {\rm ~m}^{-3}$
a = 9.6019 (7) Å	Melting point: 141 K
b = 13.0688 (10) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 9.6412 (7) Å	Cell parameters from 5166 reflections
$\beta = 103.853 \ (1)^{\circ}$	$\theta = 2.7 - 28.3^{\circ}$

 $\mu = 0.33 \text{ mm}^{-1}$ T = 130 K

Data collection

Bruker SMART APEX	10822 measured reflections
diffractometer	2808 independent reflections
Radiation source: sealed tube	2557 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.019$
φ and ω scans	$\theta_{\rm max} = 27.9^{\circ}, \ \theta_{\rm min} = 2.7^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 12$
(SADABS; Sheldrick, 2004)	$k = -16 \rightarrow 17$
$T_{\min} = 0.855, \ T_{\max} = 0.943$	$l = -12 \rightarrow 12$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier

Prism, yellow

 $0.49 \times 0.20 \times 0.18 \text{ mm}$

Refinement on F^2	Secondary atom site location: difference Fourie
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.116$	H-atom parameters constrained
S = 1.08	$w = 1/[\sigma^2(F_o^2) + (0.0652P)^2 + 0.6505P]$
2808 reflections	where $P = (F_o^2 + 2F_c^2)/3$
172 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
0 restraints	$\Delta ho_{ m max} = 0.76 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta ho_{ m min} = -0.26 \ { m e} \ { m \AA}^{-3}$
direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.86234 (4)	0.07922 (3)	0.98180 (4)	0.02702 (14)	
01	0.81457 (12)	0.60046 (9)	0.92017 (14)	0.0290 (3)	
O2	0.38514 (13)	1.02953 (9)	0.81384 (14)	0.0317 (3)	
03	0.20735 (12)	0.93858 (9)	0.69700 (13)	0.0268 (3)	
N1	0.61843 (14)	0.49653 (10)	0.87249 (14)	0.0212 (3)	
H1A	0.5241	0.4972	0.8458	0.025*	
N2	0.33274 (14)	0.94804 (11)	0.76579 (15)	0.0216 (3)	
C1	0.68462 (17)	0.58903 (12)	0.88325 (17)	0.0208 (3)	
C2	0.58628 (16)	0.68089 (12)	0.84829 (16)	0.0193 (3)	
C3	0.64838 (16)	0.77663 (12)	0.88474 (17)	0.0210 (3)	
H3A	0.7479	0.7812	0.9287	0.025*	
C4	0.56698 (17)	0.86526 (12)	0.85776 (17)	0.0215 (3)	
H4A	0.6090	0.9305	0.8833	0.026*	
C5	0.42207 (16)	0.85577 (11)	0.79222 (16)	0.0193 (3)	

C6	0.35741 (16)	0.76187 (13)	0.75241 (17)	0.0217 (3)
H6A	0.2584	0.7578	0.7064	0.026*
C7	0.44026 (17)	0.67427 (12)	0.78121 (17)	0.0224 (3)
H7A	0.3977	0.6092	0.7553	0.027*
C8	0.68397 (16)	0.39913 (12)	0.89933 (16)	0.0198 (3)
С9	0.59677 (17)	0.31396 (12)	0.85279 (17)	0.0220 (3)
H9A	0.4996	0.3238	0.8032	0.026*
C10	0.65021 (17)	0.21567 (13)	0.87802 (17)	0.0225 (3)
H10A	0.5907	0.1580	0.8466	0.027*
C11	0.79284 (17)	0.20303 (12)	0.95039 (17)	0.0203 (3)
C12	0.88114 (16)	0.28597 (13)	0.99628 (17)	0.0213 (3)
H12A	0.9784	0.2756	1.0452	0.026*
C13	0.82716 (17)	0.38472 (13)	0.97057 (17)	0.0215 (3)
H13A	0.8875	0.4420	1.0014	0.026*

Atomic displacement parameters (A^2)

		T 72	- - 722	T 10	- 1 2	T 72
	U^{II}	U^{22}	U^{33}	U^{12}	U^{15}	U^{23}
Cl1	0.0277 (2)	0.0195 (2)	0.0341 (2)	0.00400 (14)	0.00786 (16)	0.00411 (15)
01	0.0156 (5)	0.0224 (6)	0.0469 (7)	-0.0015 (4)	0.0033 (5)	0.0064 (5)
O2	0.0278 (6)	0.0180 (6)	0.0468 (8)	-0.0001 (5)	0.0041 (5)	-0.0024 (5)
O3	0.0182 (5)	0.0259 (6)	0.0344 (6)	0.0029 (4)	0.0029 (5)	-0.0003 (5)
N1	0.0142 (6)	0.0192 (6)	0.0288 (7)	0.0001 (5)	0.0023 (5)	0.0008 (5)
N2	0.0194 (6)	0.0216 (7)	0.0248 (6)	0.0008 (5)	0.0069 (5)	0.0004 (5)
C1	0.0177 (7)	0.0216 (8)	0.0232 (7)	-0.0007 (6)	0.0051 (6)	0.0026 (6)
C2	0.0177 (7)	0.0203 (7)	0.0202 (7)	-0.0005 (5)	0.0053 (5)	0.0019 (5)
C3	0.0153 (6)	0.0227 (8)	0.0238 (7)	-0.0022 (6)	0.0024 (6)	0.0009 (6)
C4	0.0199 (7)	0.0195 (7)	0.0247 (7)	-0.0033 (6)	0.0046 (6)	-0.0005 (6)
C5	0.0183 (7)	0.0195 (7)	0.0208 (7)	0.0021 (6)	0.0063 (5)	0.0006 (5)
C6	0.0146 (6)	0.0243 (8)	0.0248 (8)	-0.0014 (6)	0.0023 (5)	-0.0006 (6)
C7	0.0188 (7)	0.0187 (7)	0.0286 (8)	-0.0029 (6)	0.0033 (6)	-0.0014 (6)
C8	0.0191 (7)	0.0194 (7)	0.0218 (7)	0.0014 (6)	0.0067 (6)	0.0012 (6)
C9	0.0158 (7)	0.0249 (8)	0.0242 (7)	0.0002 (6)	0.0026 (6)	-0.0010 (6)
C10	0.0195 (7)	0.0218 (8)	0.0267 (8)	-0.0037 (6)	0.0063 (6)	-0.0026 (6)
C11	0.0203 (7)	0.0183 (7)	0.0237 (7)	0.0027 (6)	0.0083 (6)	0.0027 (6)
C12	0.0159 (7)	0.0239 (8)	0.0239 (7)	0.0012 (6)	0.0042 (6)	0.0024 (6)
C13	0.0181 (7)	0.0215 (7)	0.0247 (7)	-0.0009 (6)	0.0048 (6)	0.0001 (6)

Geometric parameters (Å, °)

Cl1—Cl1	1.7488 (16)	C5—C6	1.387 (2)	
01—C1	1.222 (2)	C6—C7	1.384 (2)	
O2—N2	1.2207 (19)	C6—H6A	0.9500	
O3—N2	1.2339 (17)	C7—H7A	0.9500	
N1-C1	1.358 (2)	C8—C13	1.395 (2)	
N1—C8	1.4161 (19)	C8—C9	1.400 (2)	
N1—H1A	0.8800	C9—C10	1.383 (2)	
N2—C5	1.466 (2)	С9—Н9А	0.9500	

C1—C2	1.515 (2)	C10—C11	1.390 (2)
С2—С3	1.394 (2)	C10—H10A	0.9500
C2—C7	1.399 (2)	C11—C12	1.382 (2)
C3—C4	1.387 (2)	C12—C13	1.391 (2)
С3—НЗА	0.9500	C12—H12A	0.9500
C4—C5	1.389 (2)	C13—H13A	0.9500
C4—H4A	0.9500		
C1—N1—C8	127.36 (13)	С5—С6—Н6А	120.7
C1—N1—H1A	116.3	C6—C7—C2	120.39 (14)
C8—N1—H1A	116.3	С6—С7—Н7А	119.8
O2—N2—O3	123.50 (14)	С2—С7—Н7А	119.8
O2—N2—C5	118.73 (13)	C13—C8—C9	119.58 (14)
O3—N2—C5	117.76 (13)	C13—C8—N1	123.64 (14)
01—C1—N1	123.89 (14)	C9—C8—N1	116.77 (13)
O1—C1—C2	120.44 (14)	C10—C9—C8	120.91 (14)
N1—C1—C2	115.67 (13)	С10—С9—Н9А	119.5
C3—C2—C7	119.53 (14)	С8—С9—Н9А	119.5
C3—C2—C1	116.68 (13)	C9—C10—C11	118.56 (14)
C7—C2—C1	123.79 (14)	C9—C10—H10A	120.7
C4—C3—C2	120.96 (14)	C11—C10—H10A	120.7
С4—С3—НЗА	119.5	C12—C11—C10	121.51 (14)
С2—С3—НЗА	119.5	C12—C11—C11	119.40 (12)
C3—C4—C5	117.96 (14)	C10-C11-C11	119.09 (12)
C3—C4—H4A	121.0	C11—C12—C13	119.80 (14)
C5—C4—H4A	121.0	C11—C12—H12A	120.1
C6—C5—C4	122.55 (14)	C13—C12—H12A	120.1
C6—C5—N2	118.36 (13)	C12—C13—C8	119.63 (14)
C4—C5—N2	119.09 (14)	С12—С13—Н13А	120.2
C7—C6—C5	118.60 (14)	C8—C13—H13A	120.2
С7—С6—Н6А	120.7		
C8—N1—C1—O1	-0.7 (3)	N2-C5-C6-C7	-177.98 (14)
C8—N1—C1—C2	-179.73 (14)	C5—C6—C7—C2	-0.4 (2)
O1—C1—C2—C3	-11.2 (2)	C3—C2—C7—C6	-0.7 (2)
N1—C1—C2—C3	167.93 (14)	C1—C2—C7—C6	-179.81 (15)
O1—C1—C2—C7	167.99 (16)	C1—N1—C8—C13	14.2 (3)
N1—C1—C2—C7	-12.9 (2)	C1—N1—C8—C9	-167.02 (15)
C7—C2—C3—C4	1.2 (2)	C13—C8—C9—C10	0.8 (2)
C1—C2—C3—C4	-179.64 (14)	N1-C8-C9-C10	-178.06 (14)
C2—C3—C4—C5	-0.6 (2)	C8—C9—C10—C11	-0.2 (2)
C3—C4—C5—C6	-0.5 (2)	C9—C10—C11—C12	-0.3 (2)
C3—C4—C5—N2	178.45 (14)	C9—C10—C11—Cl1	-179.48 (12)
O2—N2—C5—C6	172.37 (15)	C10—C11—C12—C13	0.2 (2)
O3—N2—C5—C6	-6.8 (2)	Cl1—C11—C12—C13	179.39 (12)
O2—N2—C5—C4	-6.7 (2)	C11—C12—C13—C8	0.4 (2)
O3—N2—C5—C4	174.13 (14)	C9—C8—C13—C12	-0.9 (2)
C4—C5—C6—C7	1.0 (2)	N1-C8-C13-C12	177.89 (14)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
С13—Н13А…О1	0.95	2.26	2.859 (2)	120
N1—H1A····O3 ⁱ	0.88	2.29	3.1312 (17)	159

Symmetry code: (i) -x+1/2, y-1/2, -z+3/2.