

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Pb₆Co₉(TeO₆)₅

Christine Artner and Matthias Weil*

Institute for Chemical Technologies and Analytics, Division of Structural Chemistry, Vienna University of Technology, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria Correspondence e-mail: mweil@mail.zserv.tuwien.ac.at

Received 21 August 2012; accepted 27 August 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (Co–O) = 0.007 Å; R factor = 0.025; wR factor = 0.056; data-to-parameter ratio = 27.9.

Pb₆Co₉(TeO₆)₅, hexalead(II) nonacobalt(II) pentatellurate(VI), is isotypic with its nickel(II) analogue. The asymmetric unit contains two Pb atoms (site symmetries .2., ..2), four Co atoms (..2, ..2, 3.., 3.2) two Te atoms (..2, 3..) and six O atoms (all in general positions), with the Te and Co sites in octahedral coordination environments. The crystal structure can be subdivided into two types of layers parallel to (001). The first layer at $z \simeq 0.25$ is made up of edge-sharing [CoO₆] and $[TeO_6]$ octahedra, with 1/6 of the octahedral holes not occupied. The second layer, situated at $z \simeq 0$, consist of an alternating arrangement of PbII atoms and of double octahedra that are made up from face-sharing $[CoO_6]$ and $[TeO_6]$ octahedra. The two types of layers are linked together through corner-sharing of [CoO₆] and [TeO₆] octahedra. The Pb^{II} atoms are situated in the cavities of the framework and are stereochemically active with one-sided [4]- and [6]-coordinations, respectively.

Related literature

For the isotypic nickel analogue, see: Wedel *et al.* (1998). Reviews on the crystal chemistry of oxotellurates(VI) and of the geometry of $[Co^{II}O_6]$ polyhedra are given by Levason (1997) and Wildner (1992), respectively. For Pb₅TeO₈, see: Artner & Weil (2012). For the bond-valence method, see: Brown (2002).

Experimental

Crystal data $Pb_6Co_9(TeO_6)_5$ $M_r = 2891.51$ Hexagonal, $P6_322$ a = 10.3915 (1) Å

c = 13.6273 (2) Å	
V = 1274.37 (3) Å ³	
Z = 2	
Mo $K\alpha$ radiation	

0.07 \times 0.06 \times 0.05 mm

45686 measured reflections

 $R_{\rm int} = 0.068$

2262 independent reflections

1908 reflections with $I > 2\sigma(I)$

 $\mu = 50.89 \text{ mm}^{-1}$ T = 293 K

Data collection

Bruker APEXII CCD diffractometer Absorption correction: numerical (HABITUS; Herrendorf, 1997) $T_{min} = 0.123, T_{max} = 0.200$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.025$	$\Delta \rho_{\rm max} = 2.96 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.056$	$\Delta \rho_{\rm min} = -2.59 \text{ e} \text{ Å}^{-3}$
S = 1.09	Absolute structure: Flack (1983)
2262 reflections	882 Friedel pairs
81 parameters	Flack parameter: 0.134 (10)

Table 1Selected bond lengths (Å).

Co1-O6	2.262 (5)	$Co4-O5^{v}$	2.116 (7)
Co1–O5 ⁱⁱ	2.004 (6)	Co4-O1 ^{iv}	2.071 (4)
Te2-O1 ⁱ	1.939 (5)	Co4-O2	2.067 (7)
Te2-O3	1.937 (7)	Co3-O3	2.107 (4)
Te2-O5	1.917 (6)	Co2-O1	2.108 (6)
Te1-O6	1.991 (4)	Co2-O3 ⁱⁱⁱ	2.090 (8)
Te1-O2	1.906 (5)	Co2-O2	2.090 (6)

Symmetry codes: (i) $x - y, x, z + \frac{1}{2}$, (ii) $-x + y, y, -z + \frac{1}{2}$, (iii) y, x, -z; (iv) -x + y, -x + 1, z; (v) x - y, -y + 1, -z.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ATOMS for Windows* (Dowty, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The X-ray centre of the Vienna University of Technology is acknowledged for providing access to the single-crystal diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2208).

References

- Artner, C. & Weil, M. (2012). Z. Kristallogr. Suppl. 32, 99.
- Brown, I. D. (2002). In *The Chemical Bond in Inorganic Chemistry: The Bond Valence Model*. Oxford University Press.
- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Herrendorf, W. (1997). HABITUS. University of Giessen, Germany.

- Levason, W. (1997). Coord. Chem. Rev. 161, 33-79.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wedel, B., Sugiyama, K. & Müller-Buschbaum, H. K. (1998). Z. Naturforsch. Teil B, 53, 527–531.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wildner, M. (1992). Z. Kristallogr. 202, 51-70.

supporting information

Acta Cryst. (2012). E68, i71 [doi:10.1107/S1600536812037038]

$Pb_6Co_9(TeO_6)_5$

Christine Artner and Matthias Weil

S1. Comment

Single crystals of the title compound, $Pb_6Co_9(TeO_6)_5$, were serendipitously obtained as a minority phase during phase formation studies in the system $Pb^{II}/Co^{II}/Te^{VI}/O$ intended on crystal growth of cubic Pb_2CoTeO_6 .

The crystal structure of Pb₆Co₉(TeO₆)₅ is isotypic with its nickel analogue (Wedel *et al.*, 1998). The two Te(VI) and the four Co(II) atoms are in slightly distorted octahedral coordination environments with mean bond lengths of \overline{d} (Te—O) = 1.940 Å and \overline{d} (Co—O) = 2.105 Å, both in good agreement with literature data for oxotellurates (Levason, 1997) and for [CoO₆] octahedra (Wildner, 1992). The two lead(II) atoms exhibit coordination numbers of four and six. The crresponding Pb—O, Te—O and *M*—O (*M* = Co, Ni) bond lengths are very similar in the two isotypic structures.

The crystal structure of Pb₆Co₉(TeO₆)₅ can be described in terms of (001) layers *A* at $z \approx 0.25$ and *B* at $z \approx 0$ that stack alternately along [100] (Fig. 1). In layer *A* [TeO₆] and [CoO₆] octahedra share edges with 1/6 of the octahedral holes at the 2*c* and 2*d* positions, both with site symmetry 3.2, not occupied. The corresponding vacancies, denominated as *X*1 at the 2*d* position and as *X*2 at the 2*c* position, have different sizes. *X*1 has a diagonal diameter of 4.1076 (8) Å whereas *X*2 is somewhat larger with a diagonal diameter of 4.3258 (8) Å. This difference might be correlated with the size of the surrounding octahedra. Whereas the smaller *X*1 vacancy is encircled by a ring of six [CoO₆] octahedra, the larger *X*2 is encircled by a ring of three [CoO₆] and three slightly smaller [TeO₆] octahedra (Fig. 2). Layer *B* consists of double octahedra that are made up from face-sharing [CoO₆] and [TeO₆] octahedra, and by surrounding lead(II) atoms (Fig. 3). Adjacent *A* and *B* layers are linked together above and below the *X*1 and *X*2 vacancies through corner-sharing of [CoO₆] and [TeO₆] octahedra.

The resulting $[Co_9Te_5O_{30}]^{12}$ framework anion leaves space for the stereochemically active lead(II) cations. The oxygen coordination of the two Pb²⁺ cations is one-sided, with a [4]-coordination for Pb1 and a [6]-coordination for Pb2, if only Pb—O distances less than 2.75 Å are taken into account. The two cations share a common edge (O6—O6') with the lone pair electrons *E* pointing towards opposite directions. However, a bond valence calculation (Brown, 2002) shows a significant contribution of the four additional Pb—O distances for each of the two Pb atoms if interactions up to 3.5 Å are considered. Inclusion of these bonds increases the bond valence sum at Pb1 from 1.61 valence units (vu) to 1.83 vu and at Pb2 from 1.64 to 1.96 vu. The bond valence sum at O3 is also raised from 1.60 to 1.80 vu. Therefore the overall coordination of Pb1 might be described as [4 + 4] and that of Pb2 as [6 + 4] (Fig. 4).

S2. Experimental

1.281 (5.7 mmol) PbO, 0.216 g (2.9 mmol) CoO and 0.914 g (5.7 mmol) TeO₂ were mixed and thoroughly ground and heated in an alumina crucible under atmospheric conditions during 6 h to 1023 K and held at that temperature for 48 h. Then the furnace was shut-off. Several crystal phases could be identified from the cooled reaction mixture by single-crystal diffraction: Dark blue isometric crystals of Pb₂CoTeO₆, dark-red (nearly black) block-like crystals of Pb₅TeO₈ (Artner & Weil, 2012), colourless crystals of α -Al₂O₃ and dark red crystals of Pb₆Co₉(TeO₆)₅ with a block-like shape.

S3. Refinement

The highest remaining electron density was found 1.49 Å from atom Pb1 and the lowest remaining electron density 0.52 Å from atom Pb2. The refined Flack parameter indicates racemic twinning with an approximate ratio of 1:6 for the twin components.

Figure 1

The crystal structure of $Pb_6Co_9(TeO_6)_5$ in a projection along [010]. Displacement ellipsoids are drawn at the 90% probability level. Letters *A* and *B* indicate the two types of layers present in the structure.

Figure 2

Layer A (situated approximately at $z \approx 1/4$) in the crystal structure of Pb₆Co₉(TeO₆)₅. Colour code and probability of the displacement parameters as in Fig. 1.

Figure 3

Layer *B* (situated approximately at $z \approx 0$) in the crystal structure of Pb₆Co₉(TeO₆)₅. Colour code and probability of the displacement parameters as in Fig. 1.

Figure 4

The coordination spheres around the two lead atoms, considering bond lengths up to 3.5 Å; short Pb—O distances < 2.75 Å are given in black, emphasizing the one-sided [4]-coordination for Pb1 and [6]-coordination for Pb2. Longer bonds augmenting the coordination spheres are given in yellow. Probability of the displacement parameters as in Fig. 1.

hexalead(II) nonacobalt(II) pentatellurate(VI)

Crystal data Pb₆Co₉(TeO₆)₅ $M_r = 2891.51$ Hexagonal, P6₃22 Hall symbol: P 6c 2c a = 10.3915 (1) Å c = 13.6273 (2) Å V = 1274.37 (3) Å³ Z = 2F(000) = 2470

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans Absorption correction: numerical (*HABITUS*; Herrendorf, 1997) $T_{\min} = 0.123, T_{\max} = 0.200$ $D_x = 7.535 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6739 reflections $\theta = 2.8-36.8^{\circ}$ $\mu = 50.89 \text{ mm}^{-1}$ T = 293 KParallelepiped, dark red $0.07 \times 0.06 \times 0.05 \text{ mm}$

45686 measured reflections 2262 independent reflections 1908 reflections with $I > 2\sigma(I)$ $R_{int} = 0.068$ $\theta_{max} = 37.6^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -16 \rightarrow 17$ $k = -17 \rightarrow 17$ $l = -22 \rightarrow 23$ Refinement

•	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0244P)^2]$
Least-squares matrix: full	where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.025$	$(\Delta/\sigma)_{\rm max} < 0.001$
$wR(F^2) = 0.056$	$\Delta \rho_{\rm max} = 2.96 \text{ e } \text{\AA}^{-3}$
S = 1.09	$\Delta \rho_{\rm min} = -2.59 \text{ e} \text{ Å}^{-3}$
2262 reflections	Extinction correction: SHELXL97 (Sheldrick,
81 parameters	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
0 restraints	Extinction coefficient: 0.00019 (3)
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 882 Friedel pairs
Secondary atom site location: difference Fourier map	Absolute structure parameter: 0.134 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Pb1	0.26736 (3)	0.26736 (3)	0.0000	0.01216 (6)	
Pb2	0.38848 (3)	1.0000	0.0000	0.01881 (8)	
Te1	0.3333	0.6667	-0.09611 (4)	0.00407 (10)	
Te2	0.16730 (4)	0.33460 (9)	0.2500	0.00433 (8)	
Col	0.3333	0.6667	0.11832 (9)	0.0066 (2)	
Co2	0.16885 (10)	0.3377 (2)	-0.2500	0.00664 (18)	
Co3	0.0000	0.0000	0.2500	0.0087 (3)	
Co4	0.00992 (19)	0.50496 (10)	-0.2500	0.00566 (18)	
01	0.3366 (5)	0.3241 (5)	-0.1717 (3)	0.0077 (8)	
02	0.1726 (7)	0.5050 (6)	-0.1628 (3)	0.0083 (10)	
03	0.1702 (7)	0.1801 (6)	0.3277 (3)	0.0105 (9)	
05	0.3239 (8)	0.4818 (6)	0.3295 (3)	0.0076 (10)	
06	0.3481 (4)	0.5265 (4)	-0.0034 (4)	0.0069 (6)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
Pb1	0.01117 (9)	0.01117 (9)	0.01243 (12)	0.00429 (9)	0.00014 (9)	-0.00014 (9)	
Pb2	0.01104 (9)	0.01201 (13)	0.03372 (18)	0.00601 (7)	-0.00268 (13)	-0.0054 (3)	
Te1	0.00414 (14)	0.00414 (14)	0.0039 (2)	0.00207 (7)	0.000	0.000	
Te2	0.00362 (13)	0.00380 (19)	0.00564 (18)	0.00190 (10)	0.0002 (4)	0.000	
Col	0.0066 (3)	0.0066 (3)	0.0066 (5)	0.00332 (16)	0.000	0.000	
Co2	0.0057 (3)	0.0069 (5)	0.0077 (4)	0.0035 (2)	0.0006 (10)	0.000	

supporting information

Co3	0.0061 (4)	0.0061 (4)	0.0140 (7)	0.00305 (19)	0.000	0.000
Co4	0.0031 (5)	0.0045 (3)	0.0089 (4)	0.0015 (2)	0.000	-0.0002 (3)
01	0.011 (2)	0.008 (2)	0.0048 (15)	0.0055 (14)	0.0003 (13)	-0.0022 (13)
O2	0.007 (2)	0.006 (2)	0.012 (2)	0.0022 (17)	-0.0001 (16)	-0.0034 (15)
O3	0.011 (2)	0.012 (2)	0.0077 (16)	0.0059 (15)	0.0000 (15)	0.0011 (15)
05	0.004 (2)	0.006 (2)	0.0072 (18)	-0.0011 (18)	-0.0005 (18)	0.0009 (15)
O6	0.0058 (14)	0.0070 (14)	0.0075 (15)	0.0029 (11)	-0.001 (2)	0.002 (2)

Geometric parameters (Å, °)

Pb1—O6 ⁱ	2.387 (4)	Te2—O3 ⁱⁱⁱ	1.937 (7)
Pb1—O6	2.387 (4)	Te2—O3	1.937 (7)
Pb1—O1 ⁱ	2.432 (4)	Te2—O1 ^{xii}	1.939 (5)
Pb1—O1	2.432 (4)	Te2—O1 ⁱ	1.939 (5)
Pb1—O3 ⁱⁱ	3.327 (7)	Col—O5 ^x	2.004 (6)
Pb1—O3 ⁱⁱⁱ	3.327 (7)	Co1—O5 ⁱⁱⁱ	2.004 (6)
Pb1—O3 ^{iv}	3.453 (7)	Co1—O5 ^{xiii}	2.004 (6)
Pb1—O3 ^v	3.453 (7)	Co1—O6 ^{vi}	2.262 (5)
Pb1—Pb2 ^{vi}	3.5764 (4)	Co1—O6 ^{vii}	2.262 (5)
Pb1—Pb2 ^{vii}	3.5777 (2)	Co1—O6	2.262 (5)
Pb2—O6 ^{viii}	2.420 (3)	Co2—O2 ^{xiv}	2.090 (6)
Pb2—O6 ^{vii}	2.420 (3)	Co2—O2	2.090 (6)
Pb2—O2 ^{ix}	2.726 (5)	Co2—O3 ⁱ	2.090 (8)
Pb2—O2 ^{vi}	2.726 (5)	Co2—O3 ^{iv}	2.090 (8)
Pb2—O5 ^x	2.727 (5)	Co2—O1	2.108 (6)
Pb2—O5 ^{xi}	2.727 (5)	Co2—O1 ^{xiv}	2.108 (6)
Pb2—O6 ^{vi}	3.155 (3)	Co3—O3 ^{xv}	2.107 (4)
Pb2—O6 ^{ix}	3.155 (3)	Co3—O3	2.107 (4)
Pb2—O3 ^{xi}	3.230 (4)	Co3—O3 ^{xvi}	2.107 (4)
Pb2—O3 ^x	3.230 (4)	Co3—O3 ^{xvii}	2.107 (4)
Te1—O2 ^{vi}	1.906 (5)	Co3—O3 ⁱⁱⁱ	2.107 (4)
Te1—O2	1.906 (5)	Со3—О3 ^v	2.107 (4)
Te1—O2 ^{vii}	1.906 (5)	Co4—O2	2.067 (7)
Te1—O6 ^{vi}	1.991 (4)	Co4—O2 ^{xviii}	2.067 (7)
Te1—O6 ^{vii}	1.991 (4)	Co4—O1 ^{vi}	2.071 (4)
Te1—O6	1.991 (4)	Co4—O1 ^{xiv}	2.071 (4)
Te2—O5	1.917 (6)	Co4—O5 ^{xix}	2.116 (7)
Te2—O5 ⁱⁱⁱ	1.917 (6)	Co4—O5 ^{iv}	2.116 (7)
O6 ⁱ —Pb1—O6	84.58 (16)	O5 ⁱⁱⁱ —Te2—O1 ^{xii}	85.9 (2)
$O6^{i}$ —Pb1—O1 ⁱ	79.26 (18)	O3 ⁱⁱⁱ —Te2—O1 ^{xii}	87.0 (2)
O6—Pb1—O1 ⁱ	77.79 (18)	O3—Te2—O1 ^{xii}	93.7 (2)
O6 ⁱ —Pb1—O1	77.79 (18)	$O5$ —Te2— $O1^{i}$	85.9 (2)
O6—Pb1—O1	79.26 (18)	$O5^{iii}$ —Te2—O1 ⁱ	93.3 (2)
O1 ⁱ —Pb1—O1	148.79 (19)	$O3^{iii}$ —Te2— $O1^{i}$	93.7 (2)
$O6^{i}$ —Pb1—O3 ⁱⁱ	95.87 (13)	O3—Te2—O1 ⁱ	87.0 (2)
O6—Pb1—O3 ⁱⁱ	133.98 (17)	$O1^{xii}$ —Te2— $O1^{i}$	179.0 (3)
O1 ⁱ —Pb1—O3 ⁱⁱ	147.68 (15)	O5 ^x —Co1—O5 ⁱⁱⁱ	108.14 (14)

O1—Pb1—O3 ⁱⁱ	56.26 (15)	O5 ^x —Co1—O5 ^{xiii}	108.14 (14)
O6 ⁱ —Pb1—O3 ⁱⁱⁱ	133.98 (17)	O5 ⁱⁱⁱ —Co1—O5 ^{xiii}	108.14 (14)
O6—Pb1—O3 ⁱⁱⁱ	95.87 (13)	O5 ^x Co1O6 ^{vi}	87.99 (18)
O1 ⁱ —Pb1—O3 ⁱⁱⁱ	56.26 (15)	O5 ⁱⁱⁱ —Co1—O6 ^{vi}	85.39 (19)
O1—Pb1—O3 ⁱⁱⁱ	147.68 (15)	O5 ^{xiii} —Co1—O6 ^{vi}	153.55 (18)
O3 ⁱⁱ —Pb1—O3 ⁱⁱⁱ	114.8 (2)	O5 ^x —Co1—O6 ^{vii}	85.39 (19)
O6 ⁱ —Pb1—O3 ^{iv}	138.20 (17)	O5 ⁱⁱⁱ —Co1—O6 ^{vii}	153.55 (18)
O6—Pb1—O3 ^{iv}	95.05 (13)	O5 ^{xiii} —Co1—O6 ^{vii}	87.99 (18)
O1 ⁱ —Pb1—O3 ^{iv}	141.63 (15)	O6 ^{vi} —Co1—O6 ^{vii}	72.17 (17)
O1—Pb1—O3 ^{iv}	61.26 (14)	O5 ^x —Co1—O6	153.55 (18)
O3 ⁱⁱ —Pb1—O3 ^{iv}	55.44 (13)	O5 ⁱⁱⁱ —Co1—O6	87.99 (18)
O3 ⁱⁱⁱ —Pb1—O3 ^{iv}	87.73 (10)	O5 ^{xiii} —Co1—O6	85.39 (18)
$O6^{i}$ —Pb1— $O3^{v}$	95.05 (13)	06^{vi} —Co1—O6	72.17 (17)
$O6-Pb1-O3^{v}$	138.20 (17)	$O6^{vii}$ —Co1—O6	72.17 (17)
$O1^{i}$ Pb1 $O3^{v}$	61.26 (14)	Ω^{2xiv} — C_0^2 — Ω^2	87.8 (3)
01 —Pb1— 03^{v}	141.63(15)	O^{2xiv} Co^2 O^{3i}	92.52(17)
$O3^{ii}$ Pb1 $O3^{v}$	87 73 (10)	$02 - C_0 2 - O_3^{i}$	1744(3)
$O3^{iii}$ Pb1 $O3^{v}$	55 44 (13)	$\Omega^{2^{xiv}}$ $\Omega^{2^{xiv}}$ $\Omega^{3^{iv}}$	1744(3)
$O3^{iv}$ Pb1 $O3^{v}$	111 4 (2)	$02 - 002 - 03^{iv}$	92 52 (17)
$O6^{\text{viii}}$ Pb2 $O6^{\text{vii}}$	83 17 (17)	$O_{2}^{i} = C_{0}^{2} = O_{3}^{iv}$	877(2)
$O6^{\text{viii}}$ Pb2 $O2^{\text{ix}}$	61 34 (16)	02^{xiv} Co2 01	893(2)
$O6^{\text{vii}}$ Pb2 $O2^{\text{ix}}$	107 91 (19)	$02 - C_0 2 - 01$	95.5 (2)
$O6^{\text{viii}}$ Pb2 $O2^{\text{vi}}$	107.91(19) 107.91(19)	$O_2^{i} = C_0^2 = O_1^{i}$	78.9 (2)
$O6^{vii}$ _Pb2_O2 ^{vi}	61.34(16)	03^{iv} 02^{-01}	96.2(2)
$\frac{102}{102} = 02$	166.8 (3)	$02^{xiv} - C_0 2 - 01^{xiv}$	95.5(2)
O_{2}^{viii} Pb2 O_{2}^{viii}	106.77(19)	$02 - C_02 - 01^{xiv}$	99.3 (2) 89.3 (2)
$O6^{vii}$ _Pb2_O5 ^x	68 25 (16)	02 - 02 - 01	96.2(2)
O^{ix} Pb2 O^{5x}	66.27(12)	O_3^{iv} C_0^2 O_1^{xiv}	78.9(2)
O_2^{vi} Pb2 O_5^{x}	$112 \ 94 \ (12)$	$01 C_{02} - 01^{xiv}$	1733(2)
$O_2 - O_3$	68 25 (16)	$O_1 = C_0 = O_1$	175.3(5)
$O6^{\text{vii}}$ Pb2 $O5^{\text{vii}}$	106.23(10)	$O_{3}^{2} = CO_{3}^{2} = O_{3}^{2} $	173.2(3)
O_{1}^{ix} Pb2 O_{2}^{ix}	100.77(19) 112.04(13)	$O_{3}^{2} = C_{03}^{2} = O_{3}^{2} v_{1}^{2}$	79.3(4)
$O_2 - O_2 O_3$	112.34(13)	O_{3}^{xy} C_{2}^{2} O_{3}^{xyii}	90.90 (14) 86 8 (4)
$O_2 = FO_2 = O_3$	00.27(12)	$O_{3} = C_{03} = O_{3}$	00.0(4)
$O_{5}^{} P_{0}^{} O_{5}^{}$	1/3.7(3) 128.20(2)	O_{3}	96.96(14)
$O6^{\text{vii}}$ Pb2 $O6^{\text{vi}}$	130.39(2) 55.22(15)	O_{2}^{XY} C_{0}^{2} O_{2}^{XII}	96.96(14)
$O_0 = P_0 = O_0$	33.25(13)	03 - 03 - 03	90.90 (14) 70 5 (4)
$O2^{xi}$ PD2 $O0^{xi}$	120.23(13)	03 - 03 - 03	79.3 (4)
02° P02 00°	55.07(17)	$03^{**} - 03 - 03^{**}$	80.8 (4)
$O5^{-1}$ Pb2-O6 ⁺¹	60.10(16)	$03^{xy} - 03^{2} - 03^{y}$	1/5.2(5)
05^{A} $-Pb2$ -06^{A}	120.76 (15)	$03^{-1} - 03^{-1} - 03^{-1}$	96.96 (14)
06^{vm} Pb2 06^{vm}	55.23 (15)		86.8 (4)
$O6^{vii}$ $Pb2 O6^{ix}$	138.39 (2)	O_3^{xvi} — C_0^3 — O_3^{v}	175.2 (5)
$O2^{ix}$ $Pb2$ Ob^{ix}	55.67 (17)	03^{AVII} 03^{O} 03^{V}	/9.5 (4)
$O2^{\text{vi}}$ Pb2—O6 ^{ix}	126.25 (15)	$03^{m} - 003 - 03^{v}$	96.96 (14)
05^{A} Pb2 06^{IX}	120.76 (15)	$O2-Co4-O2^{\text{xvin}}$	89.8 (3)
$O5^{xi}$ Pb2 $O6^{ix}$	60.10 (16)	$02-Co4-O1^{v_1}$	96.9 (2)
$O6^{v_1}$ Pb2 $O6^{v_1}$	166.38 (13)	$O2^{xviii}$ —Co4—O1 ^{vi}	91.0 (2)
$O6^{vm}$ —Pb2—O3 ^{xi}	120.59 (18)	$O2$ — $Co4$ — $O1^{xiv}$	91.0 (2)

O6 ^{vii} —Pb2—O3 ^{xi}	121.18 (18)	O2 ^{xviii} —Co4—O1 ^{xiv}	96.9 (2)
$O2^{ix}$ —Pb2—O3 ^{xi}	130.9 (2)	O1 ^{vi} —Co4—O1 ^{xiv}	168.8 (4)
$O2^{vi}$ —Pb2—O3 ^{xi}	60.21 (13)	O2—Co4—O5 ^{xix}	174.7 (3)
$O5^{x}$ —Pb2— $O3^{xi}$	132.1 (2)	O2 ^{xviii} —Co4—O5 ^{xix}	90.92 (16)
O5 ^{xi} —Pb2—O3 ^{xi}	53.44 (14)	O1 ^{vi} —Co4—O5 ^{xix}	77.8 (2)
O6 ^{vi} —Pb2—O3 ^{xi}	86.29 (19)	O1 ^{xiv} —Co4—O5 ^{xix}	94.2 (2)
O6 ^{ix} —Pb2—O3 ^{xi}	84.37 (18)	O2—Co4—O5 ^{iv}	90.92 (16)
O6 ^{viii} —Pb2—O3 ^x	121.18 (18)	$O2^{xviii}$ —Co4—O5 ^{iv}	174.7 (3)
O6 ^{vii} —Pb2—O3 ^x	120.59 (18)	O1 ^{vi} —Co4—O5 ^{iv}	94.2 (2)
$O2^{ix}$ —Pb2—O3 ^x	60.21 (13)	$O1^{xiv}$ —Co4—O5 ^{iv}	77.8 (2)
$O2^{vi}$ —Pb2—O3 ^x	130.9 (2)	$O5^{xix}$ —Co4— $O5^{iv}$	88.9 (3)
$O5^{x}$ —Pb2— $O3^{x}$	53.44 (14)	Te2 ⁱⁱ —O1—Co4 ^{vii}	98.54 (19)
$O5^{xi}$ —Pb2—O3 ^x	132.1 (2)	Te2 ⁱⁱ —O1—Co2	96.67 (17)
O6 ^{vi} —Pb2—O3 ^x	84.37 (18)	Co4 ^{vii} —O1—Co2	89.3 (2)
$O6^{ix}$ —Pb2—O3 ^x	86.29 (19)	Te2 ⁱⁱ —O1—Pb1	116.6 (2)
$O3^{xi}$ —Pb2— $O3^{x}$	93.32 (14)	Co4 ^{vii} —O1—Pb1	136.07 (18)
O2 ^{vi} —Te1—O2	99.15 (18)	Co2—O1—Pb1	110.4 (2)
O2 ^{vi} —Te1—O2 ^{vii}	99.15 (18)	Te1-O2-Co4	129.1 (3)
O2—Te1—O2 ^{vii}	99.15 (18)	Te1-O2-Co2	130.4 (4)
$O2^{vi}$ —Te1—O6 ^{vi}	90.7 (2)	Co4—O2—Co2	89.87 (19)
O2—Te1—O6 ^{vi}	85.2 (2)	Te1—O2—Pb2 ^{vii}	95.48 (17)
$O2^{vii}$ —Te1—O6 ^{vi}	168.4 (2)	Co4—O2—Pb2 ^{vii}	96.4 (2)
O2 ^{vi} —Te1—O6 ^{vii}	85.2 (2)	Co2—O2—Pb2 ^{vii}	111.0 (2)
O2—Te1—O6 ^{vii}	168.4 (2)	Te2—O3—Co2 ^{xx}	97.34 (17)
O2 ^{vii} —Te1—O6 ^{vii}	90.7 (2)	Te2—O3—Co3	96.2 (2)
O6 ^{vi} —Te1—O6 ^{vii}	84.0 (2)	Co2 ^{xx} —O3—Co3	92.8 (3)
O2 ^{vi} —Te1—O6	168.4 (2)	Te2—O5—Co1 ^{xiii}	125.5 (4)
O2—Te1—O6	90.7 (2)	Te2—O5—Co4 ^{xx}	97.7 (2)
O2 ^{vii} —Te1—O6	85.2 (2)	Co1 ^{xiii} —O5—Co4 ^{xx}	120.3 (3)
O6 ^{vi} —Te1—O6	84.0 (2)	Te2—O5—Pb2 ^{xxi}	117.3 (2)
O6 ^{vii} —Te1—O6	84.0 (2)	Co1 ^{xiii} —O5—Pb2 ^{xxi}	97.82 (18)
O5—Te2—O5 ⁱⁱⁱ	92.5 (3)	Co4 ^{xx} —O5—Pb2 ^{xxi}	95.2 (2)
O5—Te2—O3 ⁱⁱⁱ	177.8 (2)	Te1—O6—Co1	86.54 (14)
O5 ⁱⁱⁱ —Te2—O3 ⁱⁱⁱ	89.6 (2)	Te1—O6—Pb1	136.5 (2)
O5—Te2—O3	89.6 (2)	Co1—O6—Pb1	127.8 (2)
O5 ⁱⁱⁱ —Te2—O3	177.8 (2)	Te1—O6—Pb2 ^{vi}	103.41 (16)
O3 ⁱⁱⁱ —Te2—O3	88.2 (2)	Co1—O6—Pb2 ^{vi}	100.34 (16)
O5—Te2—O1 ^{xii}	93.3 (2)	Pb1—O6—Pb2 ^{vi}	96.12 (13)

Symmetry codes: (i) y, x, -z; (ii) y, -x+y, z-1/2; (iii) -x+y, y, -z+1/2; (iv) x-y, x, z-1/2; (v) x, x-y, -z+1/2; (vi) -x+y, -x+1, z; (vii) -y+1, x-y+1, z; (viii) -x+1, -x+y+1, -z; (ix) y, x+1, -z+1/2; (iii) x-y, x, z+1/2; (iii) -y+1, -x+1, -z+1/2; (iv) -x+y, y, -z-1/2; (iv) -y, -x, -z+1/2; (iv) -y, -x, -z+1/2; (iv) -x+y, -x+1/2; (iv) -x+y, -x+1