Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Diaquabis(1H-imidazole- κN^{3})bis(4-nitro-benzoato-к O^{1})cadmium

Yan-Li Mao, Xiao-Ke Yu and Jian-Li Lin*

Center of Applied Solid State Chemistry Research, Ningbo University, Ningbo Zhejiang 315211, People's Republic of China

Correspondence e-mail: linjianli@nbu.edu.cn

Received 8 July 2012; accepted 27 July 2012

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \mathrm{~A}$; R factor $=0.026 ; w R$ factor $=0.076$; data-to-parameter ratio $=15.0$.

In the centrosymmetric title compound, $\left[\mathrm{Cd}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}\right)_{2^{-}}\right.$ $\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$], the $\mathrm{Cd}^{\mathrm{II}}$ atom, located on an inversion center, is coordinated by two N atoms and four O atoms in an octahedral geometry. The internal cohesion of the molecule is enhanced by an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and $\pi-\pi$ contacts [centroid-centroid distance $=3.6549(2) \AA$] define two-dimensional networks parallel to (001), which are further connected by weaker $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions into a weakly connected three-dimensional supramolecular framework.

Related literature

For general background to aromatic carboxyl acid complexes, see: Kuang et al. (2007); Hsu et al. (2011). For related structures, see: Zheng et al. (2008).

Experimental

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{NO}_{4}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$	$a=5.8017(12) \AA$
$M_{r}=614.80$	$b=8.0253(16) \AA$
Triclinic, $P \overline{1}$	$c=12.879(3) \AA$

$$
\begin{aligned}
& \alpha=77.99(3)^{\circ} \\
& \beta=88.42(3)^{\circ} \\
& \gamma=85.16(3)^{\circ} \\
& V=584.4(2) \AA^{3} \\
& Z=1
\end{aligned}
$$

Data collection

Rigaku R-AXIS RAPID diffractometer
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\text {min }}=0.989, T_{\text {max }}=0.989$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.076$
$S=1.24$
2627 reflections
175 parameters
3 restraints

H atoms treated by a mixture of
Mo $K \alpha$ radiation
$\mu=1.00 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.33 \times 0.14 \times 0.09 \mathrm{~mm}$

5719 measured reflections 2627 independent reflections 2511 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.031$
indenent and constrained independent and constrained refinement
$\Delta \rho_{\text {max }}=0.54 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\min }=-0.80 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O5-H5A \cdots O2	$0.84(1)$	$1.88(1)$	$2.679(1)$	159
O5-H5B \cdots O1	$0.84(1)$	$1.97(1)$	$2.785(1)$	164
C2-H2A $\cdots 5^{\mathrm{ii}}$	0.93	2.58	$3.244(1)$	129
C3-H3A $\cdots 5^{\text {iii }}$	0.93	2.43	$3.344(1)$	169
C10-H10A \cdots O2	0.93	2.42	$2.751(4)$	101

Symmetry codes: (i) $x-1, y, z$; (ii) $x, y-1, z$; (iii) $-x,-y+2,-z$.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

This project was supported by the Scientific Research Fund of Ningbo University (grant No. XKL069). Sincere thanks are also extended to the K. C. Wong Magna Fund in Ningbo University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2473).

References

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Hsu, S.-C., Lo, S.-H., Kao, C.-C. \& Lin, C.-H. (2011). Acta Cryst. E67, m65.
Kuang, Y.-F., Li, C.-H., Li, W. \& Yang, Y.-Q. (2007). Chin. J. Struct. Chem. 26, 749-752.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Zheng, Y.-Q., Cheng, D.-Y., Lin, J.-L., Li, Z.-F. \& Wang, X.-W. (2008). Eur. J. Inorg. Chem. pp. 4453-4461.

supporting information

Acta Cryst. (2012). E68, m1149 [doi:10.1107/S1600536812033739]

Diaquabis(1 H -imidazole- $\kappa \mathrm{N}^{3}$)bis(4-nitrobenzoato- $\kappa \mathrm{O}^{1}$)cadmium

Yan-Li Mao, Xiao-Ke Yu and Jian-Li Lin

S1. Comment

Aromatic carboxyl acid complexes have been paid great attention these years for their potential applications in gas storage, separation, catalysis, magnetism, luminescence, and drug delivery (Kuang et al., 2007). As a N-containing aromatic carboxyl acid, nitrobenzoic acid has been widely used in dye intermediate, organic synthesis, sensitization material, functional pigment (Hsu et al., 2011). So far, to our knowledge, cadmium complexes constructed from 4-nitrobenzoato and imidazole have not been reported. In order to get new $\mathrm{Cd}^{\text {II }}$ complexes with novel functions and discover their structure-property relationship, a new complex $\left[\mathrm{Cd}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}\right)\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ was synthesized.

The asymmetric unit of $\left[\mathrm{Cd}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}\right)\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ consists of a Cd^{2+} ion lying on an inversion centre, a 4-NBA- ion (4-HNBA $=4$-nitrobenzoic acid), one imidazole ligand and one lattice water as illustrated in Fig. 1. The Cd^{2+} cation is octahedrally coordinated by two N atoms of imidazole ligands, two O atoms from two 4-NBA- ions and two O atoms from two lattice water molecules; it takes a $(4+2)$ octahedral geometry, with the oxygen atoms located in the equatorial plane $(\mathrm{Cd}-\mathrm{O} 1=2.364(2) \AA, \mathrm{Cd}-\mathrm{O} 5=2.367(2) \AA$, and the two nitrogen atoms occupying the axial position (Cd-N1 $=2.255(2) \AA$). Table 1 presents the $\backslash \mathrm{p} \cdots \backslash \mathrm{p}$ contact information involving the $\mathrm{C}_{3} \mathrm{~N}_{2}$ ring (centroid, Cg 1) and Table 2, the more meaningful H -bonds in the structure; the most important ones are those involving water H's. The one described in the first entry in Table 2 is intramolecular; the seocnd one, instead defines chains along a (Figure 2, vertical arrays). The weak one involving $\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$ (Table 2, third entry) and the $\pi-\pi$ contact (Table 1) link chains into a two-dimensional supramolecular network parallel to (001) as illustrated in Figure 2. Finaly, the remaining weak H-bonds link these 2D structures into a 3D supramolecular architecture (Figure 3).

S2. Experimental

Dropwise addition of $1.0 \mathrm{ml}(1 \mathrm{M})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$ to a stirred aqueous solution of $\mathrm{Cd}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} .2 \mathrm{H}_{2} \mathrm{O}(0.266 \mathrm{~g}, 1.0 \mathrm{mmol})$ in 10.0 ml of $\mathrm{H}_{2} \mathrm{O}$ yielded a fine white precipitate, which was separated by centrifugation and washed with water until no $\mathrm{CH}_{3} \mathrm{COO}^{-}$anions were detectable in the supernatant. The fresh precipitate was then added to a stirred aqueous solution of 4-nitrobenzoic acid $(0.167 \mathrm{~g}, 1.0 \mathrm{mmol})$ in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}(1: 1,20.0 \mathrm{ml})$, producing a white suspension, to which imidazole ($0.137 \mathrm{~g}, 2.0 \mathrm{mmol}$) was added. The mixture was further stirred vigorously for about 0.5 h . After filtration, the white filtrate $(\mathrm{pH}=6.59)$ was maintained at room temperature and colorless crystals were grown.

S3. Refinement

H atoms bonded to C atoms were palced in geometrically calculated positions and were refined using a riding model. H atoms attached to O atoms were found in a difference Fourier synthesis and were refined with restrained $\mathrm{O}-\mathrm{H}=$ $0.84(1) \AA$. In all cases, $U_{\text {iso }}(\mathrm{H})$ values were set at $1.2 U \mathrm{eq}(\mathrm{host})$.

Figure 1
ORTEP view of the title compound, The dispalcement ellipsoidsare drawn at 45% probability dispalcement ellipsoids. Symmetry code: (v)1-x, 2-y, -z.

Figure 2
The two-dimensional supramolecular networks parallel to (001). In order to observe how the complex moleculars form two-dimensional layers clearly, nitrobenzene on 4-nitrobenzoato molecules which are not engaged in link the components into a two-dimensional layers were omitted.

Figure 3
The three-dimensional framework of title complex.

Diaquabis($\mathbf{1 H}$-imidazole- $\kappa \mathrm{N}^{3}$)bis(4-nitrobenzoato- $\kappa \mathrm{O}^{1}$)cadmium

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=614.80$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=5.8017$ (12) \AA
$b=8.0253$ (16) \AA
$c=12.879$ (3) \AA
$\alpha=77.99(3)^{\circ}$
$\beta=88.42(3)^{\circ}$
$\gamma=85.16(3)^{\circ}$
$V=584.4$ (2) \AA^{3}

Data collection

Rigaku R-AXIS RAPID
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.989, T_{\text {max }}=0.989$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.076$
$S=1.24$
2627 reflections
175 parameters
3 restraints
$Z=1$
$F(000)=308$
$D_{\mathrm{x}}=1.747 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5719 reflections
$\theta=3.2-27.5^{\circ}$
$\mu=1.00 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Plate, colorless
$0.33 \times 0.14 \times 0.09 \mathrm{~mm}$

5719 measured reflections
2627 independent reflections
2511 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=3.2^{\circ}$
$h=-6 \rightarrow 7$
$k=-10 \rightarrow 10$
$l=-16 \rightarrow 16$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

```
w=1/[\mp@subsup{\sigma}{}{2}(\mp@subsup{F}{\textrm{o}}{2})+(0.0208P\mp@subsup{)}{}{2}+0.3927P]
    where }P=(\mp@subsup{F}{\textrm{o}}{2}+2\mp@subsup{F}{\textrm{c}}{2})/
(\Delta/\sigma) max < 0.001
```

$$
\begin{aligned}
& \Delta \rho_{\max }=0.54 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.80 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\hat{A}^{2}\right)$

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Cd	0.5000	1.0000	0.0000	$0.03040(10)$
N 1	$0.4161(4)$	$0.7310(3)$	$0.07261(18)$	$0.0351(5)$
C1	$0.5412(6)$	$0.6131(4)$	$0.1376(3)$	$0.0497(8)$
H1A	0.6844	0.6290	0.1632	0.060^{*}
C2	$0.2360(6)$	$0.4946(4)$	$0.1116(3)$	$0.0518(8)$
H2A	0.1261	0.4160	0.1136	0.062^{*}
N2	$0.4388(5)$	$0.4676(3)$	$0.1627(2)$	$0.0500(7)$
C3	$0.2227(6)$	$0.6573(4)$	$0.0569(3)$	$0.0510(8)$
H3A	0.0992	0.7108	0.0147	0.061^{*}
O1	$0.7532(3)$	$0.9739(3)$	$0.14420(15)$	$0.0384(5)$
O2	$0.4950(4)$	$1.0755(3)$	$0.25118(18)$	$0.0553(6)$
C4	$0.6746(5)$	$0.9881(4)$	$0.2347(2)$	$0.0336(6)$
C5	$0.8110(5)$	$0.8918(4)$	$0.3301(2)$	$0.0343(6)$
C6	$1.0191(5)$	$0.7974(4)$	$0.3212(2)$	$0.0398(7)$
H6A	1.0781	0.7893	0.2544	0.048^{*}
C7	$1.1397(5)$	$0.7150(4)$	$0.4110(2)$	$0.0451(7)$
H7A	1.2798	0.6518	0.4054	0.054^{*}
C8	$1.0480(5)$	$0.7285(4)$	$0.5088(2)$	$0.0421(7)$
C9	$0.8406(6)$	$0.8178(5)$	$0.5205(3)$	$0.0581(10)$
H9A	0.7807	0.8235	0.5875	0.070^{*}
C10	$0.7234(6)$	$0.8990(5)$	$0.4301(3)$	$0.0568(9)$
H10A	0.5821	0.9601	0.4365	0.068^{*}
N3	$1.1799(5)$	$0.6471(4)$	$0.6046(2)$	$0.0548(7)$
O3	$1.3619(6)$	$0.5690(5)$	$0.5945(3)$	$0.1018(13)$
O4	$1.1007(6)$	$0.6639(5)$	$0.6907(2)$	$0.0890(10)$
O5	$0.1847(3)$	$1.1006(3)$	$0.09734(16)$	$0.0385(5)$
H5A	$0.252(5)$	$1.088(4)$	$0.1559(14)$	0.046^{*}
H5B	$0.069(4)$	$1.043(4)$	$0.112(2)$	0.046^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd	$0.03111(16)$	$0.02902(15)$	$0.02818(15)$	$-0.00363(11)$	$-0.00305(10)$	$0.00151(10)$
N1	$0.0371(12)$	$0.0309(11)$	$0.0343(12)$	$-0.0032(10)$	$-0.0033(10)$	$0.0009(9)$
C1	$0.0417(17)$	$0.0403(16)$	$0.060(2)$	$-0.0052(14)$	$-0.0155(15)$	$0.0081(14)$
C2	$0.057(2)$	$0.0329(15)$	$0.063(2)$	$-0.0156(15)$	$-0.0132(17)$	$0.0023(14)$

N2	$0.0605(17)$	$0.0342(13)$	$0.0488(16)$	$-0.0008(13)$	$-0.0064(13)$	$0.0059(11)$
C3	$0.0523(19)$	$0.0360(15)$	$0.061(2)$	$-0.0116(15)$	$-0.0226(16)$	$0.0051(14)$
O1	$0.0343(10)$	$0.0508(12)$	$0.0283(10)$	$-0.0078(9)$	$-0.0042(8)$	$-0.0022(8)$
O2	$0.0432(12)$	$0.0741(16)$	$0.0449(13)$	$0.0183(12)$	$-0.0127(10)$	$-0.0115(11)$
C4	$0.0287(13)$	$0.0375(14)$	$0.0339(14)$	$-0.0045(12)$	$-0.0064(11)$	$-0.0045(11)$
C5	$0.0330(14)$	$0.0394(14)$	$0.0291(14)$	$-0.0040(12)$	$-0.0038(11)$	$-0.0031(11)$
C6	$0.0398(15)$	$0.0456(16)$	$0.0306(14)$	$0.0047(13)$	$-0.0003(12)$	$-0.0034(12)$
C7	$0.0398(16)$	$0.0488(17)$	$0.0413(17)$	$0.0117(14)$	$-0.0032(13)$	$-0.0023(13)$
C8	$0.0430(16)$	$0.0457(16)$	$0.0331(15)$	$-0.0038(14)$	$-0.0107(12)$	$0.0036(12)$
C9	$0.052(2)$	$0.090(3)$	$0.0283(16)$	$0.0104(19)$	$0.0000(14)$	$-0.0078(16)$
C10	$0.0446(18)$	$0.087(3)$	$0.0346(17)$	$0.0216(18)$	$-0.0033(14)$	$-0.0120(16)$
N3	$0.0543(18)$	$0.0620(18)$	$0.0407(16)$	$-0.0015(15)$	$-0.0138(13)$	$0.0067(13)$
O3	$0.079(2)$	$0.147(3)$	$0.0583(19)$	$0.052(2)$	$-0.0207(16)$	$0.0044(19)$
O4	$0.090(2)$	$0.131(3)$	$0.0339(15)$	$0.017(2)$	$-0.0135(14)$	$0.0035(16)$
O5	$0.0283(10)$	$0.0424(11)$	$0.0415(12)$	$-0.0039(9)$	$-0.0024(8)$	$-0.0005(9)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Cd}-\mathrm{N} 1^{\mathrm{i}}$	2.254 (2)	C4-C5	1.513 (4)
$\mathrm{Cd}-\mathrm{N} 1$	2.254 (2)	C5-C10	1.383 (4)
$\mathrm{Cd}-\mathrm{O} 1^{\text {i }}$	2.364 (2)	C5-C6	1.385 (4)
$\mathrm{Cd}-\mathrm{O} 1$	2.364 (2)	C6-C7	1.383 (4)
$\mathrm{Cd}-\mathrm{O} 5^{\text {i }}$	2.370 (2)	C6-H6A	0.9300
$\mathrm{Cd}-\mathrm{O} 5$	2.370 (2)	C7-C8	1.375 (4)
N1-C1	1.308 (4)	C7-H7A	0.9300
N1-C3	1.351 (4)	C8-C9	1.369 (5)
$\mathrm{C} 1-\mathrm{N} 2$	1.330 (4)	C8-N3	1.471 (4)
C1-H1A	0.9300	C9-C10	1.377 (5)
$\mathrm{C} 2-\mathrm{N} 2$	1.343 (4)	C9-H9A	0.9300
$\mathrm{C} 2-\mathrm{C} 3$	1.345 (4)	C10-H10A	0.9300
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9300	N3-O3	1.199 (4)
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9300	N3-O4	1.218 (4)
O1-C4	1.263 (3)	O5-H5A	0.842 (10)
$\mathrm{O} 2-\mathrm{C} 4$	1.245 (4)	O5-H5B	0.842 (10)
$\mathrm{Cg} 1 \cdots \mathrm{Cg} 1^{1 i}$	3.6549 (2)		
N1 ${ }^{\text {i }}-\mathrm{Cd}-\mathrm{N} 1$	180.0	$\mathrm{C} 4-\mathrm{O} 1-\mathrm{Cd}$	120.39 (17)
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Cd}-\mathrm{O} 1^{\mathrm{i}}$	86.19 (8)	$\mathrm{O} 2-\mathrm{C} 4-\mathrm{O} 1$	125.1 (3)
$\mathrm{N} 1-\mathrm{Cd}-\mathrm{Ol}^{\text {i }}$	93.81 (8)	$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 5$	117.7 (3)
$\mathrm{N} 1{ }^{\text {i }}-\mathrm{Cd}-\mathrm{O} 1$	93.81 (8)	O1-C4-C5	117.2 (2)
$\mathrm{N} 1-\mathrm{Cd}-\mathrm{O} 1$	86.19 (8)	C10-C5-C6	118.9 (3)
$\mathrm{O} 1-\mathrm{Cd}-\mathrm{O} 1$	180.0	C10-C5-C4	118.3 (3)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Cd}-\mathrm{O} 5^{\text {i }}$	88.39 (8)	C6-C5-C4	122.8 (3)
$\mathrm{N} 1-\mathrm{Cd}-\mathrm{O}^{\text {i }}$	91.61 (8)	C7-C6-C5	120.5 (3)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cd}-\mathrm{O} 5^{\text {i }}$	91.85 (7)	C7-C6-H6A	119.8
$\mathrm{O} 1-\mathrm{Cd}-\mathrm{O} 5^{\mathrm{i}}$	88.15 (7)	C5-C6-H6A	119.8
N1 ${ }^{\text {i }}$ - $\mathrm{Cd}-\mathrm{O} 5$	91.61 (8)	C8-C7-C6	118.5 (3)

supporting information

$\mathrm{N} 1-\mathrm{Cd}-\mathrm{O} 5$	$88.39(8)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	120.7
$\mathrm{O} 1-\mathrm{Cd}-\mathrm{O} 5$	$88.15(7)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	120.7
$\mathrm{O} 1-\mathrm{Cd}-\mathrm{O} 5$	$91.85(7)$	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$	$122.5(3)$
$\mathrm{O} 5-\mathrm{Cd}-\mathrm{O} 5$	180.0	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{N} 3$	$118.7(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3$	$105.2(2)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 3$	$118.8(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cd}$	$128.3(2)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$118.0(3)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{Cd}$	$126.52(19)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	121.0
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{N} 2$	$111.8(3)$	$\mathrm{C} 10-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	121.0
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	124.1	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 5$	$121.5(3)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	124.1	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	119.2
$\mathrm{~N} 2-\mathrm{C} 2-\mathrm{C} 3$	$106.7(3)$	$\mathrm{C} 5-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	119.2
$\mathrm{~N} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	126.6	$\mathrm{O} 3-\mathrm{N} 3-\mathrm{O} 4$	$122.8(3)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	126.6	$\mathrm{O} 3-\mathrm{N} 3-\mathrm{C} 8$	$118.8(3)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2$	$106.7(3)$	$\mathrm{O} 4-\mathrm{N} 3-\mathrm{C} 8$	$118.4(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1$	$109.6(3)$	$\mathrm{Cd}-\mathrm{O} 5-\mathrm{H} 5 \mathrm{~A}$	$98(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	125.2	$\mathrm{Cd}-\mathrm{O} 5-\mathrm{H} 5 \mathrm{~B}$	$120(2)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	125.2	$\mathrm{H} 5 \mathrm{~A}-\mathrm{O} 5-\mathrm{H} 5 \mathrm{~B}$	$104(2)$

Symmetry codes: (i) $-x+1,-y+2,-z$; (ii) $-x+1,-y+1,-z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5 — \mathrm{H} 5 A \cdots \mathrm{O} 2$	$0.84(1)$	$1.88(1)$	$2.679(1)$	159
$\mathrm{O} 5 — \mathrm{H} 5 B \cdots \mathrm{O} 1^{\mathrm{iii}}$	$0.84(1)$	$1.97(1)$	$2.785(1)$	164
$\mathrm{C} 2 — \mathrm{H} 2 A \cdots \mathrm{O} 5^{\text {iv }}$	0.93	2.58	$3.244(1)$	129
$\mathrm{C} 3 — \mathrm{H} 3 A \cdots 5^{\mathrm{v}}$	0.93	2.43	$3.344(1)$	169
$\mathrm{C} 10 — \mathrm{H} 10 A \cdots \mathrm{O} 2$	0.93	2.42	$2.751(4)$	101

Symmetry codes: (iii) $x-1, y, z$; (iv) $x, y-1, z$; (v) $-x,-y+2,-z$.

