

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(1*E*,2*E*)-1,2-Bis(2,3-dihydro-1*H*-inden-1vlidene)hydrazine

Wolfgang Imhof^a* and Joachim Wunderle^b

^aInstitute of Integrated Natural Sciences, Universitatsstr. 1, 56070 Koblenz, Germany, and ^bInstitute of Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena, Humboldtstr. 8, 07743 Jena, Germany Correspondence e-mail: Imhof@uni-koblenz.de

Received 28 June 2012; accepted 13 August 2012

Key indicators: single-crystal X-ray study; T = 183 K; mean σ (C–C) = 0.002 Å; R factor = 0.048; wR factor = 0.114; data-to-parameter ratio = 16.6.

In the title compound, C₁₈H₁₆N₂, there are two independent half-molecules (A and B) in the asymmetric unit, each molecule being completed by an inversion center situated in the mid-point of the central N-N bond. The molecules themselves therefore are essentially planar with r.m.s. deviations of 0.015 (1) and 0.020 (1) Å, respectively. In the crystal, molecules are connected via $C-H \cdot \cdot \pi$ interactions in which only type B molecules are donors, while both A and Bmolecules act as acceptors. As a result, type B molecules are linked into infinite chains along b, which are interconnected by molecules of type A.

Related literature

For structural and physical properties of indanone-derived azines, see: Choytun et al. (2004). For the reactivity of azines towards Fe₂(CO)₉, see: Dönnecke et al. (2004a,b); Wu et al. (2006).

Experimental

Crystal data C18H16N2

 $M_{\rm r} = 260.33$

Triclinic, $P\overline{1}$	V = 667.1 (2) Å ³
a = 5.1161 (10) Å	Z = 2
b = 11.877 (2) Å	Mo $K\alpha$ radiation
c = 12.245 (2) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\alpha = 109.59 \ (3)^{\circ}$	$T = 183 { m K}$
$\beta = 99.93 \ (3)^{\circ}$	$0.6 \times 0.1 \times 0.1$ mm
$\gamma = 100.47 \ (3)^{\circ}$	

Data collection

(1)

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	181 parameters
$vR(F^2) = 0.114$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
2999 reflections	$\Delta \rho_{\rm min} = -0.20 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1-C6 and C10-C15 rings, respectively.

C17-H17 $B \cdots Cg1$ 0.99 2.76 3.687 (3) 157 C16 H16 $B \cdots Cc^{2^{i}}$ 0.99 2.70 3.649 (2) 146	$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C_{10} = 1110D \cdot \cdot \cdot C_{g2} = 0.33 = 2.73 = 3.043 (2) = 140$	C17 $-$ H17 B ···Cg1	0.99	2.76	3.687 (3)	157
	C16 $-$ H16 B ···Cg2 ⁱ	0.99	2.79	3.649 (2)	146

Symmetry code: (i) x - 1, y, z.

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Financial support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2471).

References

- Choytun, D. D., Langlois, L. D., Johansson, T. P., Macdonald, C. L. B., Leach, G. W., Weinberg, N. & Clyburne, J. A. C. (2004). Chem. Commun. pp. 1842-1843
- Dönnecke, D., Halbauer, K. & Imhof, W. (2004b). J. Organomet. Chem. 689, 2707-2719
- Dönnecke, D., Wunderle, J. & Imhof, W. (2004a). J. Organomet. Chem. 689, 585-594

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.

- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wu, C.-Y., Chen, Y., Jing, S.-Y., Lee, C.-S., Dinda, J. & Hwang, W. S. (2006). Polyhedron, 25, 3053-3065.

supporting information

Acta Cryst. (2012). E68, o2741 [doi:10.1107/S160053681203560X]

(1E,2E)-1,2-Bis(2,3-dihydro-1H-inden-1-ylidene)hydrazine

Wolfgang Imhof and Joachim Wunderle

S1. Comment

In the course of a study concerning the reactivity of azines towards $Fe_2(CO)_9$ we became interested in the structual properties of several substituted aromatic azine derivatives (Dönnecke *et al.*, 2004*a*, 2004*b*). Azines derived from indanone derivatives have been investigated concerning their structural and physical properties due to the fact that some of them exhibit NLO properties (Choytun *et al.*, 2004).

In the asymmetric unit of the crystal structure two independent halves of the molecules of the title compound, $C_{18}H_{16}N_2$, are observed (fIG. 1). Each fragment is expanded to a complete molecule by crystallographic inversion centers that are situated in the middle of the central N—N bonds of both molecules. The molecules themselves therefore are essentially planar with Rms deviations of 0.015 (1) (molecule A: N1, C1 to C9) and 0.020 (1) (molecule B: N2, C10 to C18) Å, respectively. The central N—N bonds are 1.412 (2) (N1—N1ⁱ) and 1.415 (3) (N2—N2ⁱⁱ) Å (i = -x, 1-y, 2-z; ii = -x, -y, 1-z). The planes of the two molecules form an angle of 5.77 (7)° with respect to each other. In the crystal structure molecules are connected *via* C—H… π interactions (Cg…Cg distances: 2.76 and 2.79 Å). Molecules B are linked by mutual C—H… π contacts in which the molecules act as hydrogen bond donors and acceptors resulting in infinite chains. These chains are interconnected by molecules A which only act as acceptor sites for C—H… π interactions (Figure 2).

S2. Experimental

2,3-Dihydro-1*H*-inden-1-one (2 g, 1.8 ml, 15.15 mmol) is dissolved in 30 ml ethanol and mixed with hydrazine hydrate (379 mg, 0.37 ml, 7.58 mmol) in the presence of a catalytic amount of *p*-toluene sulfonic acid. The resulting orange colored mixture is stirred at room temperature for 3 h. Evaporation of the solvent at room temperature for 3 d leads to the formation of the crystalline title compound (yield: 78%).

S3. Refinement

Hydrogen atoms have been placed in idealized positions and were refined using the riding model approximation with C— H distances of 0.95 and 0.99 Å for aromatic and methylene groups, respectively, with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figure 1

Molecular structure of the independent molecules of the title compounds with displacement ellipsoids at the 50% probability level (i = -x, 1-y, 2 - z; ii = -x, -y, 1-z).

Figure 2

Packing diagram of the title compound.

(1*E*,2*E*)-1,2-Bis(2,3-dihydro-1*H*-inden-1-ylidene)hydrazine

a = 5.1161 (10) Å
<i>b</i> = 11.877 (2) Å
c = 12.245 (2) Å
$\alpha = 109.59 \ (3)^{\circ}$

 $\beta = 99.93 (3)^{\circ}$ $\gamma = 100.47 (3)^{\circ}$ $V = 667.1 (2) \text{ Å}^3$ Z = 2 F(000) = 276 $D_x = 1.296 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$

Data collection

Nonius KappaCCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi–scan, w–scan
4726 measured reflections
2999 independent reflections

Primary atom site location: structure-invariant

Refinement

Refinement on F^2

 $wR(F^2) = 0.114$

2999 reflections

181 parameters

0 restraints

S = 1.02

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.048$

Cell parameters from 4726 reflections $\theta = 1.8-27.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 183 KQuader, yellow $0.6 \times 0.1 \times 0.1 \text{ mm}$

1901 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 1.8^{\circ}$ $h = -6 \rightarrow 6$ $k = -14 \rightarrow 15$ $l = -15 \rightarrow 15$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.050P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.19 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.19 \text{ e } \text{Å}^{-3}$

Special details

direct methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.0535 (2)	0.51077 (11)	0.95393 (11)	0.0280 (3)	
C1	0.3116 (3)	0.50842 (14)	0.74721 (14)	0.0304 (4)	
H1	0.2287	0.5754	0.7683	0.036*	
C2	0.4487 (3)	0.49064 (14)	0.65753 (14)	0.0338 (4)	
H2	0.4614	0.5461	0.6168	0.041*	
N2	0.0565 (3)	-0.00657 (12)	0.45007 (11)	0.0319 (3)	
C3	0.5684 (3)	0.39184 (14)	0.62645 (14)	0.0326 (4)	
H3	0.6627	0.3807	0.5648	0.039*	
C4	0.5518 (3)	0.30961 (14)	0.68430 (14)	0.0309 (4)	
H4	0.6330	0.2421	0.6624	0.037*	
C5	0.4150 (3)	0.32704 (13)	0.77458 (13)	0.0243 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C6	0.2971 (3)	0.42640 (13)	0.80617 (13)	0.0238 (3)
C7	0.1704 (3)	0.42645 (13)	0.90464 (13)	0.0237 (3)
C8	0.2091 (3)	0.31658 (13)	0.93521 (14)	0.0276 (4)
H8B	0.0291	0.2597	0.9222	0.033*
H8A	0.3110	0.3439	1.0199	0.033*
C9	0.3745 (3)	0.25193 (13)	0.85068 (14)	0.0291 (4)
H9B	0.5534	0.2519	0.8969	0.035*
H9A	0.2712	0.1654	0.8005	0.035*
C10	0.1242 (3)	0.20212 (14)	0.17948 (13)	0.0314 (4)
H10	0.0774	0.2678	0.1594	0.038*
C11	0.2587 (3)	0.12604 (15)	0.11147 (15)	0.0365 (4)
H11	0.3040	0.1397	0.0441	0.044*
C12	0.3292 (3)	0.02931 (15)	0.13998 (14)	0.0356 (4)
H12	0.4231	-0.0217	0.0924	0.043*
C13	0.2633 (3)	0.00749 (14)	0.23669 (14)	0.0302 (4)
H13	0.3104	-0.0583	0.2565	0.036*
C14	0.1258 (3)	0.08405 (13)	0.30495 (13)	0.0250 (3)
C15	0.0581 (3)	0.18161 (13)	0.27746 (13)	0.0259 (4)
C16	-0.0860 (3)	0.25116 (13)	0.36545 (14)	0.0302 (4)
H16B	-0.2718	0.2490	0.3237	0.036*
H16A	0.0203	0.3385	0.4089	0.036*
C17	-0.1032 (3)	0.18309 (14)	0.45227 (14)	0.0289 (4)
H17B	-0.0041	0.2396	0.5352	0.035*
H17A	-0.2971	0.1508	0.4506	0.035*
C18	0.0289 (3)	0.07840 (13)	0.40943 (13)	0.0250 (3)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
N1	0.0332 (7)	0.0306 (7)	0.0251 (7)	0.0124 (6)	0.0151 (6)	0.0108 (6)
C1	0.0360 (9)	0.0302 (9)	0.0310 (9)	0.0135 (7)	0.0142 (7)	0.0136 (7)
C2	0.0429 (10)	0.0356 (9)	0.0322 (9)	0.0135 (8)	0.0172 (8)	0.0190 (8)
N2	0.0459 (8)	0.0310(7)	0.0301 (8)	0.0157 (6)	0.0198 (6)	0.0174 (6)
C3	0.0365 (9)	0.0392 (9)	0.0297 (9)	0.0143 (7)	0.0183 (8)	0.0150 (8)
C4	0.0328 (9)	0.0349 (9)	0.0317 (9)	0.0171 (7)	0.0162 (7)	0.0126 (8)
C5	0.0221 (7)	0.0268 (8)	0.0242 (8)	0.0068 (6)	0.0072 (7)	0.0091 (7)
C6	0.0251 (8)	0.0236 (7)	0.0223 (8)	0.0061 (6)	0.0079 (6)	0.0073 (6)
C7	0.0223 (7)	0.0238 (8)	0.0233 (8)	0.0059 (6)	0.0063 (6)	0.0066 (6)
C8	0.0298 (8)	0.0270 (8)	0.0289 (9)	0.0080 (7)	0.0120 (7)	0.0115 (7)
C9	0.0311 (8)	0.0280 (8)	0.0325 (9)	0.0116 (7)	0.0123 (7)	0.0125 (7)
C10	0.0423 (9)	0.0325 (9)	0.0300 (9)	0.0151 (7)	0.0142 (8)	0.0195 (8)
C11	0.0509 (10)	0.0400 (9)	0.0322 (9)	0.0170 (8)	0.0226 (8)	0.0219 (8)
C12	0.0476 (10)	0.0350 (9)	0.0333 (10)	0.0187 (8)	0.0227 (8)	0.0141 (8)
C13	0.0377 (9)	0.0265 (8)	0.0310 (9)	0.0112 (7)	0.0137 (7)	0.0126 (7)
C14	0.0261 (8)	0.0256 (8)	0.0229 (8)	0.0052 (6)	0.0064 (6)	0.0092 (7)
C15	0.0284 (8)	0.0268 (8)	0.0243 (8)	0.0078 (6)	0.0084 (7)	0.0106 (7)
C16	0.0368 (9)	0.0296 (8)	0.0318 (9)	0.0154 (7)	0.0131 (7)	0.0152 (7)
C17	0.0321 (8)	0.0325 (8)	0.0271 (8)	0.0126 (7)	0.0110 (7)	0.0136 (7)

C18	0.0267 (8)	0.0248 (8)	0.0242 (8)	0.0070 (6)	0.0070 (7)	0.0096 (7)
Geometr	ic parameters (Å, °)					
N1—C7		1.2895 (18)		С9—Н9В		0.9900
N1-N1 ³	i	1.412 (2)		С9—Н9А		0.9900
C1—C2		1.381 (2)		C10-C11		1.379 (2)
C1—C6		1.393 (2)		C10—C15		1.385 (2)
C1—H1		0.9500		C10—H10		0.9500
C2—C3		1.393 (2)		C11—C12		1.396 (2)
С2—Н2		0.9500		C11—H11		0.9500
N2-C18	8	1.2847 (19))	C12—C13		1.377 (2)
N2-N2	ii	1.415 (2)		C12—H12		0.9500
C3—C4		1.385 (2)		C13—C14		1.395 (2)
С3—Н3		0.9500		C13—H13		0.9500
C4—C5		1.386 (2)		C14—C15		1.394 (2)
C4—H4		0.9500		C14—C18		1.467 (2)
С5—С6		1.393 (2)		C15—C16		1.512 (2)
С5—С9		1.505 (2)		C16—C17		1.541 (2)
C6—C7		1.464 (2)		C16—H16B		0.9900
С7—С8		1.509 (2)		C16—H16A		0.9900
С8—С9		1.544 (2)		C17—C18		1.506 (2)
С8—Н8	В	0.9900		C17—H17B		0.9900
С8—Н8.	A	0.9900		С17—Н17А		0.9900
C7—N1-	—N1 ⁱ	111.59 (15)		Н9В—С9—Н9А		108.9
C2-C1-	—C6	118.82 (14)		C11—C10—C15		119.20 (14)
C2-C1-	—H1	120.6		C11-C10-H10		120.4
C6-C1-	—H1	120.6		C15-C10-H10		120.4
C1-C2-	—C3	120.35 (15))	C10-C11-C12		121.08 (15)
C1-C2-	—H2	119.8		C10-C11-H11		119.5
C3—C2-	—H2	119.8		C12—C11—H11		119.5
C18—N2	2—N2 ⁱⁱ	111.52 (15)		C13—C12—C11		120.29 (15)
C4—C3-	—C2	120.84 (14))	C13—C12—H12		119.9
C4—C3-	—Н3	119.6		C11—C12—H12		119.9
C2—C3-	—Н3	119.6		C12—C13—C14		118.55 (15)
C5—C4-	—C3	119.13 (14)		С12—С13—Н13		120.7
C5—C4-	—H4	120.4		C14—C13—H13		120.7
C3—C4-	—H4	120.4		C13—C14—C15		121.22 (14)
C4—C5-	—C6	119.98 (14)		C13—C14—C18		128.93 (15)
C4—C5-	—С9	128.68 (13))	C15—C14—C18		109.84 (13)
C6—C5-	—С9	111.34 (12)		C10-C15-C14		119.64 (14)
C1-C6-	—C5	120.89 (14)		C10-C15-C16		129.42 (14)
C1-C6-	—C7	129.37 (14))	C14—C15—C16		110.94 (13)
C5—C6-	—C7	109.75 (13))	C15—C16—C17		104.84 (12)
N1-C7-	—C6	122.75 (14)		C15—C16—H16B		110.8
N1-C7-	—C8	128.85 (14)		C17—C16—H16B		110.8
C6—C7-	C8	108.39 (12)	1	C15—C16—H16A		110.8

supporting information

C7—C8—C9	105.79 (12)	C17—C16—H16A	110.8
С7—С8—Н8В	110.6	H16B—C16—H16A	108.9
С9—С8—Н8В	110.6	C18—C17—C16	105.91 (12)
С7—С8—Н8А	110.6	C18—C17—H17B	110.6
С9—С8—Н8А	110.6	C16—C17—H17B	110.6
H8B—C8—H8A	108.7	C18—C17—H17A	110.6
C5—C9—C8	104.71 (12)	C16—C17—H17A	110.6
С5—С9—Н9В	110.8	H17B—C17—H17A	108.7
С8—С9—Н9В	110.8	N2-C18-C14	122.08 (14)
С5—С9—Н9А	110.8	N2-C18-C17	129.46 (14)
С8—С9—Н9А	110.8	C14—C18—C17	108.45 (13)

Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x, -y, -z+1.

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.

D—H···A	<i>D</i> —Н	H···A	D····A	D—H…A
C17—H17B…Cg1	0.99	2.76	3.687 (3)	157
C16—H16 <i>B</i> ··· <i>Cg</i> 2 ⁱⁱⁱ	0.99	2.79	3.649 (2)	146

Symmetry code: (iii) x-1, y, z.