organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-1-Phenyl-3-[4-(trifluoromethyl)phenyl]prop-2-en-1-one

Pei-Hua Zhao,^a* Er-Jun Hao,^b Ya-Qing Liu^a and Gui-Zhe **Zhao**^a

^aResearch Center for Engineering Technology of Polymeric Composites of Shanxi Province, College of Materials Science and Engineering, North University of China. Taiyuan 030051, People's Republic of China, and ^bKey Laboratory of Green Chemical Media and Reactions, Ministry of Education, College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, People's Republic of China

Correspondence e-mail: zph2004@yahoo.com.cn

Received 13 March 2012; accepted 14 August 2012

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.002 Å; R factor = 0.036; wR factor = 0.078; data-to-parameter ratio = 16.6.

In the title compound, $C_{16}H_{11}F_3O$, the dihedral angle between the two rings is $48.8 (2)^\circ$. The crystal packing exhibits no classical intermolecular interactions between the molecules.

Related literature

For applications of related compounds, see: Shibata (1994); Devincenzo et al. (1995); Dimmock et al. (1999); Go et al. (2005).

 $M_r = 276.25$

Experimental

Crystal data C16H11F3O

```
c = 5.8430 (2) Å
\beta = 92.854 \ (1)^{\circ}
                                                0.20 \times 0.18 \times 0.08 \; \mathrm{mm}
V = 1253.86 (7) Å<sup>3</sup>
Data collection
Rigaku Saturn724 CCD
                                                12984 measured reflections
  diffractometer
                                                3005 independent reflections
Absorption correction: multi-scan
                                                2037 reflections with I > 2\sigma(I)
   (CrystalClear; Rigaku/MSC,
                                                R_{\rm int} = 0.049
  2005)
   T_{\min} = 0.976, T_{\max} = 0.990
```

Refinement

Monoclinic, $P2_1/c$

a = 14.7469 (5) Å

b = 14.5697 (4) Å

$R[F^2 > 2\sigma(F^2)] = 0.036$	181 parameters
$wR(F^2) = 0.078$	H-atom parameters constrained
S = 1.12	$\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$
3005 reflections	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$

Z = 4

Mo $K\alpha$ radiation

 $\mu = 0.12 \text{ mm}^{-1}$

T = 113 K

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

This work was supported financially by the National Natural Science Foundation of China (No. 51102216) and Shanxi Province Science Foundation for Youths (No. 2012021007-4).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AA2055).

References

- Devincenzo, R., Scambia, G., Panici, P. B., Ranelletti, F. O., Bonanno, G., Ercoli, A., Dellemonache, F., Ferrari, F., Piantelli, M. & Mancuso, S. (1995). Drug Des. 10, 481-490.
- Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.

Go, M. L., Wu, X. & Liu, X. L. (2005). Curr. Med. Chem. 12, 483-499.

Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc. The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Shibata, S. (1994). Stem Cells, 12, 44-52.

supporting information

Acta Cryst. (2012). E68, o2750 [doi:10.1107/S1600536812035763]

(E)-1-Phenyl-3-[4-(trifluoromethyl)phenyl]prop-2-en-1-one

Pei-Hua Zhao, Er-Jun Hao, Ya-Qing Liu and Gui-Zhe Zhao

S1. Comment

The title compound belongs to the chalcones, which are Michael acceptors and constitute an important group of natural products that belong to the flavonoid family (Dimmock *et al.*, 1999; Go *et al.*, 2005). Natural and synthetic chalcones have been reported to possess strong antiproliferative effects in ovarian cancer cells and in gastic cancer cells (Shibata, 1994; Devincenzo *et al.*, 1995).

The dihedral angle between two benzene rings is 48.8 (2) ° (Fig. 1). The crystal packing shows no π ··· π or other classical intermolecular interactions (Fig. 2).

S2. Experimental

In 25 ml round-bottomed flask, the acetophenone (5.0 mmol) and sodium hydroxide (7.5 mmol) were dissolved in ethanol (2 ml), and the mixture was stirred at room temperature for 5 min followed by addition of 4-trifluoromethylbenzaldehyde (5.0 mmol). The reaction mixture was then stirred at room temperature and monitored by TLC until the reaction completed. The solid was filtered, washed with cold water, recrystallized from ethanol, and dried *in vacuo* to give the desired product. Crystals of the title compound were obtained by slow evaporation of the dichloromethane/*n*-hexane solution (1:1) at room temperature. ¹N NMR(400 MHz, CDCl₃, TMS): 7.53 (dd, 2H, J = 7.6, 15.6 Hz), 7.60 (m, 2H), 7.68 (d, 2H, J = 8.0 Hz), 7.75 (d, 2H, J = 8.0 Hz), 7.82 (d, 1H, J = 15.6 Hz), 8.03 (d, 2H, J = 8.4 Hz) p.p.m.

S3. Refinement

All the H atoms were positioned geometrically (C—H = 0.95 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of the title compound. Thermal displacement ellipsoids are drawn at the 30% probability level and H atoms are omitted.

F(000) = 568

 $\theta = 2.0-28.0^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$

Prism, colorless

 $0.20\times0.18\times0.08~mm$

T = 113 K

 $D_x = 1.463 \text{ Mg m}^{-3}$

Mo K α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4102 reflections

Figure 2

The crystal packing of the title compound.

(E)-1-Phenyl-3-[4-(trifluoromethyl)phenyl]prop-2-en-1-one

Crystal data

C₁₆H₁₁F₃O $M_r = 276.25$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 14.7469 (5) Å b = 14.5697 (4) Å c = 5.8430 (2) Å $\beta = 92.854$ (1)° V = 1253.86 (7) Å³ Z = 4

Data collection

Rigaku Saturn724 CCD	12984 measured reflections
diffractometer	3005 independent reflections
Radiation source: rotating anode	2037 reflections with $I > 2\sigma(I)$
Multilayer monochromator	$R_{\rm int} = 0.049$
Detector resolution: 14.22 pixels mm ⁻¹	$\theta_{\rm max} = 27.9^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
ω and φ scans	$h = -19 \rightarrow 19$
Absorption correction: multi-scan	$k = -14 \rightarrow 19$
(CrystalClear; Rigaku/MSC, 2005)	$l = -7 \rightarrow 7$
$T_{\min} = 0.976, \ T_{\max} = 0.990$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from
$wR(F^2) = 0.078$	neighbouring sites
S = 1.12	H-atom parameters constrained
3005 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0283P)^2]$
181 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.22 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.27 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
F1	1.01951 (5)	0.12265 (5)	1.04772 (13)	0.0377 (2)
F2	0.95432 (5)	0.05980 (5)	1.32422 (13)	0.0375 (2)
F3	0.95565 (5)	0.20580 (5)	1.29461 (15)	0.0493 (3)
01	0.47484 (6)	0.13892 (6)	0.27878 (15)	0.0329 (2)
C1	0.29314 (8)	0.16320 (7)	0.3888 (2)	0.0215 (3)
H1	0.3095	0.1866	0.2449	0.026*
C2	0.20299 (9)	0.16081 (7)	0.4417 (2)	0.0243 (3)
H2	0.1576	0.1834	0.3353	0.029*
C3	0.17888 (9)	0.12555 (8)	0.6496 (2)	0.0249 (3)
Н3	0.1168	0.1235	0.6851	0.030*
C4	0.24500 (8)	0.09312 (8)	0.8068 (2)	0.0251 (3)
H4	0.2280	0.0684	0.9489	0.030*
C5	0.33571 (8)	0.09691 (8)	0.7565 (2)	0.0225 (3)
Н5	0.3811	0.0761	0.8655	0.027*
C6	0.36044 (8)	0.13127 (7)	0.5461 (2)	0.0198 (3)
C7	0.45675 (8)	0.13432 (8)	0.4807 (2)	0.0220 (3)
C8	0.52985 (8)	0.13323 (8)	0.6661 (2)	0.0230 (3)
H8	0.5162	0.1474	0.8193	0.028*
C9	0.61401 (8)	0.11232 (7)	0.6158 (2)	0.0207 (3)
H9	0.6223	0.0939	0.4623	0.025*
C10	0.69610 (8)	0.11424 (7)	0.7696 (2)	0.0188 (3)
C11	0.77584 (8)	0.07768 (7)	0.6888 (2)	0.0202 (3)
H11	0.7745	0.0490	0.5426	0.024*
C12	0.85708 (8)	0.08253 (8)	0.8182 (2)	0.0211 (3)
H12	0.9109	0.0571	0.7615	0.025*

0.85929 (8)	0.12479 (7)	1.0312 (2)	0.0185 (3)
0.78038 (8)	0.16112 (7)	1.1158 (2)	0.0202 (3)
0.7820	0.1899	1.2619	0.024*
0.69934 (8)	0.15519 (7)	0.9860 (2)	0.0205 (3)
0.6453	0.1793	1.0449	0.025*
0.94629 (8)	0.12902 (8)	1.1725 (2)	0.0234 (3)
	0.85929 (8) 0.78038 (8) 0.7820 0.69934 (8) 0.6453 0.94629 (8)	0.85929 (8)0.12479 (7)0.78038 (8)0.16112 (7)0.78200.18990.69934 (8)0.15519 (7)0.64530.17930.94629 (8)0.12902 (8)	0.85929 (8)0.12479 (7)1.0312 (2)0.78038 (8)0.16112 (7)1.1158 (2)0.78200.18991.26190.69934 (8)0.15519 (7)0.9860 (2)0.64530.17931.04490.94629 (8)0.12902 (8)1.1725 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.0177 (4)	0.0663 (5)	0.0293 (5)	-0.0017 (4)	0.0027 (3)	0.0043 (4)
F2	0.0314 (5)	0.0496 (5)	0.0311 (5)	0.0037 (3)	-0.0037 (4)	0.0171 (4)
F3	0.0378 (5)	0.0427 (5)	0.0648 (6)	0.0105 (4)	-0.0231 (5)	-0.0281 (4)
01	0.0250 (5)	0.0531 (6)	0.0208 (5)	-0.0003 (4)	0.0020 (4)	0.0019 (4)
C1	0.0247 (7)	0.0216 (6)	0.0180 (7)	-0.0040 (5)	-0.0002 (5)	0.0000 (5)
C2	0.0216 (7)	0.0227 (7)	0.0282 (8)	-0.0008 (5)	-0.0028 (6)	-0.0013 (5)
C3	0.0217 (7)	0.0240 (7)	0.0291 (7)	-0.0045 (5)	0.0044 (6)	-0.0065 (6)
C4	0.0313 (7)	0.0248 (7)	0.0198 (7)	-0.0074 (6)	0.0059 (6)	-0.0031 (5)
C5	0.0254 (7)	0.0224 (6)	0.0193 (7)	-0.0015 (5)	-0.0023 (5)	0.0004 (5)
C6	0.0206 (6)	0.0190 (6)	0.0198 (7)	-0.0023 (5)	0.0000 (5)	-0.0023 (5)
C7	0.0222 (7)	0.0229 (6)	0.0209 (7)	0.0002 (5)	0.0010 (5)	0.0009 (5)
C8	0.0234 (7)	0.0259 (7)	0.0197 (7)	-0.0017 (5)	0.0008 (5)	-0.0011 (5)
C9	0.0239 (7)	0.0195 (6)	0.0188 (7)	-0.0013 (5)	0.0008 (5)	-0.0010 (5)
C10	0.0206 (6)	0.0157 (6)	0.0201 (7)	-0.0012 (5)	0.0013 (5)	0.0026 (5)
C11	0.0248 (7)	0.0194 (6)	0.0165 (6)	0.0011 (5)	0.0025 (5)	-0.0007(5)
C12	0.0201 (6)	0.0223 (6)	0.0211 (7)	0.0033 (5)	0.0042 (5)	0.0007 (5)
C13	0.0197 (6)	0.0174 (6)	0.0183 (6)	0.0006 (5)	0.0003 (5)	0.0029 (5)
C14	0.0238 (7)	0.0199 (6)	0.0170 (6)	0.0020 (5)	0.0020 (5)	-0.0013 (5)
C15	0.0199 (7)	0.0208 (6)	0.0211 (7)	0.0031 (5)	0.0048 (5)	0.0005 (5)
C16	0.0224 (7)	0.0255 (7)	0.0226 (7)	0.0032 (5)	0.0027 (5)	-0.0010 (6)

Geometric parameters (Å, °)

F1—C16	1.3361 (14)	С7—С8	1.4896 (16)
F2—C16	1.3439 (14)	C8—C9	1.3249 (16)
F3—C16	1.3301 (14)	C8—H8	0.9500
O1—C7	1.2244 (14)	C9—C10	1.4715 (16)
C1—C2	1.3802 (17)	С9—Н9	0.9500
C1—C6	1.3981 (16)	C10—C11	1.3946 (16)
C1—H1	0.9500	C10—C15	1.3967 (16)
C2—C3	1.3815 (17)	C11—C12	1.3866 (16)
С2—Н2	0.9500	C11—H11	0.9500
C3—C4	1.3889 (17)	C12—C13	1.3874 (16)
С3—Н3	0.9500	C12—H12	0.9500
C4—C5	1.3850 (16)	C13—C14	1.3914 (15)
C4—H4	0.9500	C13—C16	1.4920 (16)
C5—C6	1.3929 (16)	C14—C15	1.3860 (16)
С5—Н5	0.9500	C14—H14	0.9500

supporting information

C6—C7	1.4897 (16)	C15—H15	0.9500
C2—C1—C6	120.29 (12)	С10—С9—Н9	116.1
C2—C1—H1	119.9	C11—C10—C15	118.58 (11)
С6—С1—Н1	119.9	C11—C10—C9	117.90 (11)
C1—C2—C3	119.95 (12)	C15—C10—C9	123.42 (11)
C1—C2—H2	120.0	C12—C11—C10	121.06 (11)
С3—С2—Н2	120.0	C12—C11—H11	119.5
C2—C3—C4	120.34 (12)	C10—C11—H11	119.5
С2—С3—Н3	119.8	C11—C12—C13	119.55 (11)
С4—С3—Н3	119.8	C11—C12—H12	120.2
C5-C4-C3	119.98 (12)	C13—C12—H12	120.2
C5-C4-H4	120.0	C12-C13-C14	120.32(11)
C3—C4—H4	120.0	C12-C13-C16	119.73 (11)
C4—C5—C6	119.99 (11)	C14-C13-C16	119.94 (11)
C4—C5—H5	120.0	C15-C14-C13	119.70 (11)
С6—С5—Н5	120.0	C15-C14-H14	120.1
C_{5} C_{6} C_{1}	119 43 (11)	C13—C14—H14	120.1
C_{5} C_{6} C_{7}	122.13 (11)	C_{14} C_{15} C_{10}	120.1 120.78(11)
C1 - C6 - C7	118 44 (11)	C_{14} C_{15} H_{15}	119.6
01 - C7 - C8	121 12 (11)	C10-C15-H15	119.6
01-C7-C6	120.32(11)	F3-C16-F1	106 62 (10)
C8-C7-C6	118 56 (11)	F_{3} —C16—F2	100.02(10) 105.91(10)
C9-C8-C7	119 56 (11)	$F_1 - C_1 - F_2$	105.12 (9)
C9-C8-H8	120.2	$F_3 - C_1 6 - C_{13}$	103.12(9) 113.26(10)
C7-C8-H8	120.2	$F_1 - C_1 - C_{13}$	113.20(10) 113.02(10)
$C_{8} - C_{9} - C_{10}$	127.71 (12)	F_{2} $-C_{16}$ $-C_{13}$	112.02(10) 112.27(10)
C8—C9—H9	116.1	12 010 013	112.27 (10)
	110.1		
C6—C1—C2—C3	-0.92 (17)	C15—C10—C11—C12	-0.73 (17)
C1—C2—C3—C4	0.55 (17)	C9—C10—C11—C12	175.76 (10)
C2—C3—C4—C5	0.65 (17)	C10—C11—C12—C13	-0.31 (17)
C3—C4—C5—C6	-1.48 (17)	C11—C12—C13—C14	0.78 (17)
C4—C5—C6—C1	1.10 (17)	C11—C12—C13—C16	179.16 (10)
C4—C5—C6—C7	-178.18 (10)	C12—C13—C14—C15	-0.18 (17)
C2-C1-C6-C5	0.10 (17)	C16—C13—C14—C15	-178.57 (10)
C2-C1-C6-C7	179.41 (10)	C13—C14—C15—C10	-0.88 (16)
C5—C6—C7—O1	158.69 (12)	C11—C10—C15—C14	1.33 (16)
C1—C6—C7—O1	-20.61 (16)	C9—C10—C15—C14	-174.95 (10)
C5—C6—C7—C8	-22.32 (16)	C12—C13—C16—F3	145.25 (11)
C1—C6—C7—C8	158.38 (10)	C14—C13—C16—F3	-36.36 (16)
O1—C7—C8—C9	-18.27 (17)	C12-C13-C16-F1	23.86 (15)
C6—C7—C8—C9	162.75 (11)	C14—C13—C16—F1	-157.75 (10)
C7—C8—C9—C10	175.00 (10)	C12—C13—C16—F2	-94.84 (13)
C8—C9—C10—C11	171.53 (11)	C14—C13—C16—F2	83.55 (13)
C8—C9—C10—C15	-12.17 (19)		