Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dimethylammonium 5-carboxy-2-(1-oxo- $1\lambda^5$ -pyridin-2-yl)-1*H*-imidazole-4-carboxylate

Chuntao Dai,* Jianhua Nie, Yuehua Lin and Jun Wang

Zhongshan Polytechnic, Zhongshan, Guangdong 528404, People's Republic of China

Correspondence e-mail: wangjun7203@126.com

Received 17 July 2012; accepted 25 July 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.036; *wR* factor = 0.085; data-to-parameter ratio = 7.4.

In the title salt, $C_2H_8N^+ \cdot C_{10}H_6N_3O_5^-$, the imidazolecarboxylate anion is essentially planar [maximum deviation from the least-squares plane = 0.046 (5) Å], with a dihedral angle between the rings of 2.7 (2)°. This conformation is maintained by the presence of both intramolecular carboxy–carboxylate $O-H\cdots O$ and imidazole–oxide $N-H\cdots O$ hydrogen bonds. In the crystal, cation–carboxylate $N-H\cdots O$ and cation– imidazole $N-H\cdots N$ hydrogen bonds result in chains along the *b* axis.

Related literature

For the structures of compounds with similar ligands, see: Chen (2008; Chen *et al.* (2011); Sun *et al.* (2005). For the synthesis of the ligand, see: Sun *et al.* (2006).

Experimental

Crystal data $C_2H_8N^+ \cdot C_{10}H_6N_3O_5^-$

 $M_r=294.27$

Monoclinic, Cc	
a = 10.9690 (18) Å	
b = 17.305 (3) Å	
c = 8.0160 (13) Å	
$\beta = 120.901 \ (2)^{\circ}$	
V = 1305.6 (4) Å ³	

Data collection

Bruker APEXII area-detector	3782 measured reflections
diffractometer	1419 independent reflections
Absorption correction: multi-scan	1204 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.025$
$T_{\min} = 0.963, \ T_{\max} = 0.970$	

Z = 4

Mo $K\alpha$ radiation

 $0.32 \times 0.28 \times 0.26 \text{ mm}$

 $\mu = 0.12 \text{ mm}^{-1}$

T = 298 K

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	2 restraints
$wR(F^2) = 0.085$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.14 \text{ e} \text{ Å}^{-3}$
1419 reflections	$\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$
193 parameters	

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N4 - H4B \cdot \cdot \cdot N1^{i}$	0.90	2.49	3.166 (3)	132
$N4-H4B\cdotsO1^{i}$	0.90	2.11	2.933 (3)	151
$N4-H4A\cdotsO1^{ii}$	0.90	1.95	2.806 (3)	159
O3−H3···O2	0.82	1.64	2.455 (3)	170
$N2 - H2 \cdots O5$	0.86	2.06	2.603 (3)	120

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) x - 1, y, z - 1.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The work was supported by Zhongshan Polytechnic.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2224).

References

- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, L.-Z. (2008). Acta Cryst. E64, m1286.
- Chen, L.-Z., Wang, F.-M. & Shu, H. (2011). J. Coord. Chem. 65, 439-452.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sun, Y. Q., Chen, Y. M. & Yang, G. Y. (2005). Angew. Chem. Int. Ed. 44, 5814– 5817.
- Sun, T., Ma, J.-P., Huang, R.-Q. & Dong, Y.-B. (2006). Acta Cryst. E62, o2751– o2752.

supporting information

Acta Cryst. (2012). E68, o2600 [https://doi.org/10.1107/S1600536812033557]

Dimethylammonium 5-carboxy-2- $(1-0x0-1\lambda^5$ -pyridin-2-yl)-1*H*-imidazole-4-carboxylate

Chuntao Dai, Jianhua Nie, Yuehua Lin and Jun Wang

S1. Comment

Imidazole-4,5-dicarboxylic acid and its derivatives have a variety of coordination modes as ligands in the formation of metal complexes (Chen, 2008; Sun *et al.*, 2005), which include those with the lanthanide metals (Chen *et al.*, 2011). In the title salt, $C_2 H_8 N^+ C_{10} H_6 N_3 O_5^-$, (Fig. 1), which consists of a dimethylammonium cation and a 5-carboxy-2-(2-pyridyl-*N*-oxide)-1*H*-imidazole-4-carboxylate anion, the anion is essentially planar [maximum deviation from the l.s. plane = 0.046 (5) Å], with the dihedral angle between the rings of 2.7 (2)Å. This conformation is maintained by the presence of both intramolecular carboxyl O—H…O and imidazole N—H…O_{oxide} hydrogen bonds while intermolecular cation N—H…O_{carboxyl} and N—H…N_{imidazole} hydrogen bonds (Table 1) give a one-dimensional chain structure.

S2. Experimental

The ligand,(4,5-dicarboxy-1*H*-imidazol-2-yl)pyridine-1-oxide was prepared by the method reported in the literature (Sun *et al.*, 2006). A diluted dimethylamine aqueous solution was added dropwise to an ethanolic solution of the ligand until the pH reached 7.4. Crystals of the title compound suitable for X-ray analysis were obtained after a few days of slow evaporation of the solvent.

S3. Refinement

Hydrogen atoms were placed at calculated positions (C—H = 0.95–0.99 Å, N—H = 0.90 Å and O—H = 0.82 Å) and were treated as riding on their parent atoms, with $U_{iso}(H) = 1.2-1.5U_{eq}(C, N, O)$. In the absence of a suitable heavy atom, Friedel pairs were averaged in the refinement.

Figure 1

Molecular conformation and atom-numbering scheme for the title compound, with displacement ellipsoids drawn at the 50% probability level.

Dimethylammonium 5-carboxy-2-(1-oxo-1 λ^5 -pyridin-2-yl)-1*H*-imidazole-4-carboxylate

Crystal data

•	
$C_2H_8N^+ \cdot C_{10}H_6N_3O_5^-$	F(000) = 616
$M_r = 294.27$	$D_{\rm x} = 1.497 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, Cc	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: C -2yc	Cell parameters from 3600 reflections
a = 10.9690 (18) Å	$\theta = 1.3 - 28.0^{\circ}$
b = 17.305 (3) Å	$\mu = 0.12 \text{ mm}^{-1}$
c = 8.0160 (13) Å	T = 298 K
$\beta = 120.901 \ (2)^{\circ}$	Block, colourless
$V = 1305.6 (4) \text{ Å}^3$	$0.32 \times 0.28 \times 0.26 \text{ mm}$
Z = 4	

Data collection

Bruker APEXII area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.963, T_{\max} = 0.970$ <i>Rafinement</i>	3782 measured reflections 1419 independent reflections 1204 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 27.0^{\circ}, \theta_{min} = 2.4^{\circ}$ $h = -14 \rightarrow 12$ $k = -19 \rightarrow 21$ $l = -8 \rightarrow 10$
Refinement on Γ^2	Secondamy stam site locations differences Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.036$ wR(F^2) = 0.085	Hydrogen site location: inferred from neighbouring sites
S = 1.05	H-atom parameters constrained
1419 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0423P)^2P]$
193 parameters	where $P = (F_0^2 + 2F_c^2)/3$
2 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R* factors *R* are based on *F* with *F* sat to grap for parentius F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

-					
	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.8048 (3)	0.88560 (14)	0.6235 (4)	0.0435 (6)	
C2	0.6875 (3)	0.92371 (14)	0.4485 (4)	0.0399 (6)	
C3	0.6630(3)	1.00178 (15)	0.4067 (4)	0.0405 (6)	
C4	0.7352 (3)	1.07430 (16)	0.5114 (4)	0.0462 (7)	
C5	0.4999 (3)	0.93154 (13)	0.1662 (4)	0.0392 (6)	
C6	0.3776 (3)	0.90945 (15)	-0.0207 (4)	0.0408 (6)	
C7	0.3453 (3)	0.83297 (16)	-0.0743 (4)	0.0504 (7)	
H7	0.4041	0.7945	0.0095	0.060*	
C8	0.2281 (4)	0.81248 (17)	-0.2486 (5)	0.0581 (8)	
H8	0.2074	0.7607	-0.2825	0.070*	
С9	0.1414 (3)	0.86974 (19)	-0.3729 (4)	0.0578 (8)	
H9	0.0610	0.8570	-0.4910	0.069*	
C10	0.1752 (4)	0.94533 (19)	-0.3202 (5)	0.0584 (8)	
H10	0.1173	0.9838	-0.4047	0.070*	
C11	0.1058 (4)	0.83037 (18)	0.1270 (5)	0.0663 (9)	
H11A	0.0357	0.8668	0.1150	0.099*	

H11B	0.1698	0.8554	0.0960	0.099*
H11C	0.1580	0.8113	0.2580	0.099*
C12	-0.0512 (4)	0.71875 (19)	0.0443 (6)	0.0688 (9)
H12A	0.0075	0.6984	0.1731	0.103*
H12B	-0.0929	0.6769	-0.0464	0.103*
H12C	-0.1250	0.7501	0.0399	0.103*
N1	0.5853 (3)	0.88073 (11)	0.2989 (4)	0.0414 (5)
N2	0.5433 (2)	1.00487 (12)	0.2268 (3)	0.0418 (5)
H2	0.5024	1.0462	0.1629	0.050*
N3	0.2913 (2)	0.96589 (13)	-0.1477 (3)	0.0468 (6)
N4	0.0354 (3)	0.76580 (12)	-0.0071 (4)	0.0483 (5)
H4A	-0.0202	0.7846	-0.1280	0.058*
H4B	0.1019	0.7356	-0.0080	0.058*
01	0.8070 (2)	0.81390 (9)	0.6329 (3)	0.0522 (5)
O2	0.8994 (2)	0.92884 (11)	0.7573 (3)	0.0584 (6)
03	0.8499 (2)	1.06669 (12)	0.6792 (3)	0.0583 (6)
H3	0.8722	1.0209	0.6990	0.087*
O4	0.6859 (3)	1.13664 (11)	0.4385 (4)	0.0669 (6)
O5	0.3198 (3)	1.03909 (11)	-0.1066 (3)	0.0666 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0445 (15)	0.0422 (14)	0.0441 (15)	0.0006 (13)	0.0229 (13)	0.0027 (13)
C2	0.0444 (15)	0.0369 (13)	0.0429 (15)	0.0007 (13)	0.0256 (13)	0.0014 (13)
C3	0.0437 (16)	0.0379 (13)	0.0433 (16)	-0.0040 (11)	0.0249 (14)	-0.0003 (11)
C4	0.0520 (19)	0.0372 (16)	0.0480 (18)	-0.0081 (12)	0.0248 (16)	-0.0012 (12)
C5	0.0427 (16)	0.0351 (14)	0.0415 (16)	-0.0004 (11)	0.0227 (14)	0.0032 (12)
C6	0.0405 (15)	0.0405 (13)	0.0404 (15)	-0.0010 (12)	0.0199 (13)	0.0046 (12)
C7	0.0578 (19)	0.0426 (14)	0.0482 (18)	-0.0033 (13)	0.0253 (17)	0.0002 (13)
C8	0.067 (2)	0.0522 (18)	0.0520 (18)	-0.0110 (16)	0.0279 (17)	-0.0071 (15)
C9	0.053 (2)	0.067 (2)	0.0443 (18)	-0.0098 (16)	0.0188 (16)	-0.0052 (15)
C10	0.0516 (19)	0.065 (2)	0.0466 (17)	0.0030 (16)	0.0167 (15)	0.0110 (15)
C11	0.0513 (19)	0.0587 (19)	0.067 (2)	0.0029 (15)	0.0145 (17)	-0.0142 (17)
C12	0.057 (2)	0.059 (2)	0.078 (2)	0.0050 (15)	0.0259 (19)	0.0192 (17)
N1	0.0419 (12)	0.0355 (11)	0.0410 (12)	-0.0004 (9)	0.0170 (10)	0.0029 (10)
N2	0.0450 (13)	0.0328 (11)	0.0447 (13)	0.0004 (9)	0.0211 (11)	0.0060 (9)
N3	0.0454 (14)	0.0442 (13)	0.0453 (14)	0.0005 (11)	0.0194 (13)	0.0065 (11)
N4	0.0450 (13)	0.0410 (12)	0.0476 (12)	0.0066 (10)	0.0157 (11)	0.0004 (11)
01	0.0579 (12)	0.0383 (10)	0.0505 (12)	0.0056 (10)	0.0208 (11)	0.0057 (9)
O2	0.0515 (14)	0.0500 (13)	0.0542 (14)	-0.0042 (10)	0.0131 (12)	0.0017 (10)
O3	0.0610 (14)	0.0452 (12)	0.0562 (13)	-0.0110 (10)	0.0212 (12)	-0.0028 (10)
O4	0.0746 (16)	0.0372 (10)	0.0702 (15)	-0.0051 (12)	0.0238 (13)	0.0021 (11)
O5	0.0696 (15)	0.0361 (11)	0.0670 (15)	0.0016 (10)	0.0157 (13)	0.0075 (10)

Geometric parameters (Å, °)

C1-01	1.243 (3)	C9—C10	1.366 (4)	
C1—O2	1.282 (3)	С9—Н9	0.9300	
C1—C2	1.485 (4)	C10—N3	1.361 (4)	
C2—N1	1.367 (4)	C10—H10	0.9300	
С2—С3	1.385 (4)	C11—N4	1.465 (4)	
C3—N2	1.364 (3)	C11—H11A	0.9600	
C3—C4	1.491 (4)	C11—H11B	0.9600	
C4—O4	1.214 (3)	C11—H11C	0.9600	
C4—O3	1.293 (4)	C12—N4	1.462 (4)	
C5—N1	1.326 (3)	C12—H12A	0.9600	
C5—N2	1.355 (3)	C12—H12B	0.9600	
С5—С6	1.458 (4)	C12—H12C	0.9600	
C6—N3	1.377 (3)	N2—H2	0.8600	
C6—C7	1.380 (4)	N3—O5	1.306 (3)	
С7—С8	1.373 (5)	N4—H4A	0.9000	
С7—Н7	0.9300	N4—H4B	0.9000	
C8—C9	1.380 (4)	O3—H3	0.8200	
С8—Н8	0.9300			
01—C1—O2	123.4 (3)	N3-C10-H10	119.1	
O1—C1—C2	118.8 (3)	C9—C10—H10	119.1	
O2—C1—C2	117.9 (2)	N4—C11—H11A	109.5	
N1-C2-C3	110.4 (3)	N4—C11—H11B	109.5	
N1-C2-C1	120.7 (2)	H11A—C11—H11B	109.5	
C3—C2—C1	128.9 (3)	N4—C11—H11C	109.5	
N2—C3—C2	104.8 (2)	H11A—C11—H11C	109.5	
N2-C3-C4	120.4 (2)	H11B—C11—H11C	109.5	
C2—C3—C4	134.7 (3)	N4—C12—H12A	109.5	
O4—C4—O3	123.1 (3)	N4—C12—H12B	109.5	
O4—C4—C3	120.0 (3)	H12A—C12—H12B	109.5	
O3—C4—C3	116.8 (3)	N4—C12—H12C	109.5	
N1C5N2	111.1 (2)	H12A—C12—H12C	109.5	
N1-C5-C6	123.3 (2)	H12B—C12—H12C	109.5	
N2-C5-C6	125.6 (2)	C5—N1—C2	105.44 (19)	
N3—C6—C7	118.8 (3)	C5—N2—C3	108.2 (2)	
N3—C6—C5	119.6 (2)	C5—N2—H2	125.9	
С7—С6—С5	121.6 (3)	C3—N2—H2	125.9	
С8—С7—С6	121.4 (3)	O5—N3—C10	119.2 (2)	
С8—С7—Н7	119.3	O5—N3—C6	121.1 (2)	
С6—С7—Н7	119.3	C10—N3—C6	119.7 (2)	
С7—С8—С9	119.1 (3)	C12—N4—C11	113.1 (3)	
С7—С8—Н8	120.4	C12—N4—H4A	109.0	
С9—С8—Н8	120.4	C11—N4—H4A	109.0	
С10—С9—С8	119.2 (3)	C12—N4—H4B	109.0	
С10—С9—Н9	120.4	C11—N4—H4B	109.0	
С8—С9—Н9	120.4	H4A—N4—H4B	107.8	

supporting information

N3—C10—C9	121.9 (3)	С4—О3—Н3	109.5
01—C1—C2—N1	-1.3 (4)	C6—C7—C8—C9	0.3 (4)
O2-C1-C2-N1	178.4 (2)	C7—C8—C9—C10	0.7 (5)
O1—C1—C2—C3	179.8 (3)	C8—C9—C10—N3	-0.6 (5)
O2—C1—C2—C3	-0.6 (4)	N2-C5-N1-C2	-0.6 (3)
N1—C2—C3—N2	-0.3 (3)	C6-C5-N1-C2	178.4 (2)
C1—C2—C3—N2	178.8 (2)	C3—C2—N1—C5	0.6 (3)
N1—C2—C3—C4	179.4 (3)	C1—C2—N1—C5	-178.6 (2)
C1—C2—C3—C4	-1.5 (5)	N1—C5—N2—C3	0.5 (3)
N2-C3-C4-O4	1.6 (4)	C6—C5—N2—C3	-178.6 (2)
C2—C3—C4—O4	-178.0 (3)	C2—C3—N2—C5	-0.1 (2)
N2-C3-C4-O3	-178.4 (2)	C4—C3—N2—C5	-179.8 (2)
C2—C3—C4—O3	2.0 (4)	C9—C10—N3—O5	178.8 (3)
N1-C5-C6-N3	177.7 (2)	C9—C10—N3—C6	-0.4 (4)
N2-C5-C6-N3	-3.4 (4)	C7—C6—N3—O5	-177.8 (2)
N1-C5-C6-C7	-2.2 (4)	C5—C6—N3—O5	2.3 (3)
N2-C5-C6-C7	176.7 (3)	C7—C6—N3—C10	1.4 (4)
N3—C6—C7—C8	-1.4 (4)	C5-C6-N3-C10	-178.5 (2)
C5—C6—C7—C8	178.5 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N4—H4 <i>B</i> ···N1 ⁱ	0.90	2.49	3.166 (3)	132
N4—H4 B ···O1 ⁱ	0.90	2.11	2.933 (3)	151
N4—H4A···O1 ⁱⁱ	0.90	1.95	2.806 (3)	159
O3—H3…O2	0.82	1.64	2.455 (3)	170
N2—H2…O5	0.86	2.06	2.603 (3)	120

Symmetry codes: (i) *x*-1/2, -*y*+3/2, *z*-1/2; (ii) *x*-1, *y*, *z*-1.