

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-2-{[(2-Aminopyridin-3-yl)imino]methyl}-4,6-di-tert-butylphenol

Alexander Carreño,^a Sonia Ladeira,^b Annie Castel,^b Andres Vega^c and Ivonne Chavez^d*

^aDepartamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Programa de Doctorado en Eisico-Ouímica Molecula, Santiago, Chile ^bUniversité Paul Sabatier, Institut de Chimie de Toulouse (FR 2599), 118 route de Narbonne, 31062 Toulouse Cedex 9, France, ^cDepartamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Santiago, Chile, and ^dDepartamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile

Correspondence e-mail: ichavez@uc.cl

Received 6 June 2012; accepted 13 July 2012

Key indicators: single-crystal X-ray study; T = 193 K; mean σ (C–C) = 0.003 Å; R factor = 0.054; wR factor = 0.160; data-to-parameter ratio = 19.7.

In the title compound, $C_{20}H_{27}N_3O$, the hydroxy group forms an intramolecular $O-H \cdots N$ hydrogen bond with the imino N atom. The dihedral angle between the aromatic rings is $33.09(9)^{\circ}$. In the crystal, molecules form centrosymmetric dimers via pairs of N-H···N hydrogen bonds involving aminopyridine fragments.

Related literature

For asymmetric ligands prepared from aromatic diamines and their metal complexes exhibiting catalytic activity, e.g. metallosalphenes, see: Kleij, Kuil et al. (2005); Kleij, Tooke et al. (2005). For the synthetic procedure, see: Benisvy et al. (2003, 2-amino-3-2004). For the related structure of salicylidenaminopyridine, see: Cimerman et al. (1992).

organic compounds

29076 measured reflections

 $R_{\rm int} = 0.063$

refinement $\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

4532 independent reflections

2875 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

Experimental

Crystal data

C ₂₀ H ₂₇ N ₃ O	V = 1839.5 (2) Å ³
$M_r = 325.45$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 16.8457 (12) Å	$\mu = 0.07 \text{ mm}^{-1}$
b = 10.6227 (8) Å	$T = 193 { m K}$
c = 10.4817 (6) Å	$0.6 \times 0.06 \times 0.04 \text{ mm}$
$\beta = 101.268 \ (4)^{\circ}$	

Data collection

Bruker Kappa APEXII Quazar area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.957, T_{\max} = 0.997$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.054$	
$wR(F^2) = 0.160$	
S = 1.03	
4532 reflections	
230 parameters	
2 restraints	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O1 - H1A \cdots N1 \\ N3 - H203 \cdots N2^{i} \end{array}$	0.84 0.89 (1)	1.87 2.16 (1)	2.6214 (19) 3.045 (2)	149 175 (2)
		1		

Symmetry code: (i) -x, -y + 2, -z - 1.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge financial support from UNAB DI-28-10/I, Proyecto P07-006-F de la Iniciativa Científica Milenio del Ministerio de Economía, Fomento y Turismo and ECOS-CONICYT C08E01. AV is a member of Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia FB0807. A. Carreño acknowledges Universidad Andres Bello for a doctoral fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YK2062).

References

- Benisvy, L., Bill, E., Blake, A. J., Collison, D., Davies, E. S., Garner, C. D., Guindy, C. I., McInnes, E. J. L., McArdle, G., McMaster, J., Wilson, C. & Wolowska, J. (2004). Dalton Trans. pp. 3647-3653.
- Benisvy, L., Blake, A. J., Collison, D., Davies, E. S., Garner, C. D., McInnes, E. J. L., McMaster, J., Whittaker, G. & Wilson, C. (2003). Dalton Trans. pp. 1975-1985.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cimerman, Z., Galesic, N. & Bosner, B. (1992). J. Mol. Struct. 274, 131-144.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Kleij, A. W., Kuil, M., Tooke, D. M., Lutz, M., Spek, A. L. & Reek, J. N. H. (2005). Chem. Eur. J. 11, 4743–4750. Kleij, A. W., Tooke, D. M., Spek, A. L. & Reek, J. N. H. (2005). *Eur. J. Inorg. Chem.* pp. 4626–4634.
 Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.

supporting information

Acta Cryst. (2012). E68, o2507–o2508 [https://doi.org/10.1107/S1600536812032060] (E)-2-{[(2-Aminopyridin-3-yl)imino]methyl}-4,6-di-tert-butylphenol Alexander Carreño, Sonia Ladeira, Annie Castel, Andres Vega and Ivonne Chavez

S1. Comment

Aromatic diamines are used as starting materials for the templated synthesis of nonsymmetric metallosalphen complexes. These are useful in homogeneous catalysis. The non-templated synthesis pathway is also possible (Kleij, Kuil *et al.*, 2005; Kleij, Tooke *et al.*, 2005) even using diamino pyridine in combination with salicyl aldehyde derivatives. Additionaly, partially substituted products like mono Schiff bases are possible to be isolated with good yield under the same experimental conditions.

The title compound, mono Schiff base, was prepared by the non-templated direct condensation of 1,2-diaminopyridine and 3,5-di-*tert*-buthyl-2-ol-benzaldehide according to a previously described method (Benisvy *et al.*, 2003, 2004).

In the title compound, the central benzene ring is substituted at position 1 with a hydroxyl group, at positions 2 and 4 with *tert*-buthyl groups, and at position 6 with a [(2-aminopyridin-3-yl)imino]methyl. The vicinity of the hydroxyl and the [(2-aminopyridin-3-yl)imino]methyl substituents leads to an intramolecular hydrogen bond with O1…N1 distance of 2.621 (1) Å. The reported value for the similar molecule, 2-amino-3-salicylideneaminopyridine, is 2.649 (1) Å (Cimerman *et al.*, 1992).

In addition to that intramolecular interaction, the molecules form dimers in the solid state *via* hydrogen bonds between the amino pyridine fragments, as shown in Figure 2.

S2. Experimental

The compound was prepared by direct interaction between 1,2-diaminopyridine and 3,5-di-*tert*-butyl-2-ol-benzaldehide (Fig. 3) according to a previously described method (Benisvy *et al.*, 2003, 2004), slighty modified by using ethanol as a solvent, instead of diclorometane and 24 h as reaction time. The synthesis yield was 70%.

S3. Refinement

The H atoms attached to C and O were positioned geometrically and refined using a riding model, with C—H distances of 0.95 Å (CH) and 0.98 Å (CH₃) and O—H equal to 0.84 Å. U_{iso} (H) values were set equal to 1.5 U_{eq} of the parent atoms for methyl and hydroxyl groups, while 1.2 U_{eq} for the others. The amine hydrogen atoms were located in the difference Fourier map, and their coordinates were refined with N—H distances restrained to 0.88 Å.

Figure 1

Molecular structure of the title compound showing atom labelling scheme and the intramolecular hydrogen bond. Thermal ellipsoids are drawn at the 50% probability level.

Hydrogen-bonded molecular dimers in the crystal. Symmetry code: (i) -x, 2 - y, -1 - z.

supporting information

Figure 3

Synthetic route to the title compound.

(*E*)-2-{[(2-Aminopyridin-3-yl)imino]methyl}-4,6-di-*tert*- butylphenol

Crystal data

C₂₀H₂₇N₃O $M_r = 325.45$ Monoclinic, P2₁/c Hall symbol: -P 2ybc a = 16.8457 (12) Å b = 10.6227 (8) Å c = 10.4817 (6) Å $\beta = 101.268$ (4)° V = 1839.5 (2) Å³ Z = 4

Data collection

Bruker Kappa APEXII Quazar area-detector diffractometer Radiation source: microfocus sealed tube Multilayer optics monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\min} = 0.957, T_{\max} = 0.997$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.160$ S = 1.034532 reflections 230 parameters 2 restraints Primary atom site location: structure-invariant direct methods F(000) = 704 $D_x = 1.175 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4180 reflections $\theta = 2.3-24.2^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 193 KNeedle, yellow $0.6 \times 0.06 \times 0.04 \text{ mm}$

29076 measured reflections 4532 independent reflections 2875 reflections with $I > 2\sigma(I)$ $R_{int} = 0.063$ $\theta_{max} = 28.3^\circ, \theta_{min} = 3.1^\circ$ $h = -22 \rightarrow 22$ $k = -14 \rightarrow 14$ $l = -13 \rightarrow 13$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0793P)^2 + 0.3155P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.26 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso} * / U_{\rm eq}$ х Ζ v C1 0.0257 (4) 0.33157 (10) 0.86007 (16) 0.29538 (16) H1 0.031* 0.3674 0.8829 0.3736 C2 0.28038(10)0.95302 (16) 0.23052 (16) 0.0249(4)C3 0.91744 (16) 0.0257 (4) 0.22810(10) 0.11465 (16) 0.22863 (10) C4 0.79318 (16) 0.06788 (16) 0.0245(4)C5 0.28054 (10) 0.70461 (16) 0.13891 (17) 0.0266(4)H5 0.2794 0.032* 0.6204 0.108 C6 0.33349 (10) 0.73537 (16) 0.25259 (16) 0.0253(4)C7 0.28219(12) 1.08949 (17) 0.28088(17)0.0320(4)C8 0.34609 (13) 1.10793 (19) 0.40455 (18) 0.0390(5)0.058* H8A 0.3332 1.0544 0.4739 H8B 0.3467 1.1963 0.4315 0.058* H8C 0.3994 1.0849 0.058* 0.3876 C9 0.19959 (13) 1.1247 (2) 0.3122 (2) 0.0461 (5) H9A 1.1094 0.2357 0.069* 0.157 0.069* H9B 0.1997 1.2139 0.336 H9C 0.1894 0.385 0.069* 1.0733 C10 0.30327 (16) 1.17916 (19) 0.1770(2)0.0478 (6) H10A 0.355 1.154 0.1554 0.072* H10B 0.072* 0.3075 1.2654 0.2109 H10C 0.2607 1.1752 0.0987 0.072* C11 0.39232 (11) 0.63577 (17) 0.32438 (16) 0.0304(4)C12 0.43933 (14) 0.6829(2)0.4540(2)0.0479 (6) 0.4739 0.6152 0.4976 0.072* H12A H12B 0.4014 0.7094 0.5088 0.072* H₁₂C 0.4731 0.7546 0.4394 0.072* 0.34424 (14) 0.5187 (2) C13 0.3506(2) 0.0473 (6) H13A 0.3133 0.4864 0.2681 0.071* 0.071* H13B 0.307 0.5414 0.408 H13C 0.071* 0.3818 0.4537 0.3923 C14 0.45191 (13) 0.5987(2)0.0484(6)0.2383(2)H14A 0.5655 0.1555 0.073* 0.422 H14B 0.4889 0.534 0.2823 0.073* H14C 0.4831 0.6728 0.2218 0.073* C15 0.17797 (10) 0.75478 (17) -0.05444(16)0.0275(4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H15	0.1788	0.6688	-0.079	0.033*	
C16	0.05978 (11)	0.86736 (18)	-0.35148 (17)	0.0299 (4)	
C17	0.08167 (10)	0.78338 (17)	-0.24490 (16)	0.0281 (4)	
C18	0.04954 (11)	0.66344 (19)	-0.25690 (18)	0.0335 (4)	
H18	0.0632	0.605	-0.1874	0.04*	
C19	-0.00259 (12)	0.6285 (2)	-0.37037 (18)	0.0383 (5)	
H19	-0.0231	0.5451	-0.3819	0.046*	
C20	-0.02377 (12)	0.7174 (2)	-0.46567 (18)	0.0397 (5)	
H20	-0.0615	0.6942	-0.5417	0.048*	
N1	0.13236 (9)	0.83038 (15)	-0.13087 (14)	0.0289 (4)	
N2	0.00551 (10)	0.83493 (16)	-0.45811 (14)	0.0355 (4)	
N3	0.09503 (10)	0.98206 (16)	-0.35261 (16)	0.0369 (4)	
H103	0.1261 (11)	1.010 (2)	-0.2805 (14)	0.044*	
H203	0.0683 (12)	1.0386 (16)	-0.4065 (17)	0.044*	
01	0.17780 (8)	1.00391 (12)	0.04615 (12)	0.0353 (3)	
H1A	0.1527	0.9712	-0.023	0.053*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0288 (9)	0.0250 (9)	0.0211 (8)	-0.0005 (7)	-0.0006 (7)	-0.0018 (7)
C2	0.0281 (9)	0.0224 (9)	0.0234 (8)	0.0010 (7)	0.0029 (7)	-0.0004 (7)
C3	0.0268 (9)	0.0238 (9)	0.0245 (8)	0.0038 (7)	0.0001 (7)	0.0028 (7)
C4	0.0253 (9)	0.0225 (9)	0.0241 (8)	-0.0017 (7)	0.0006 (7)	-0.0012 (6)
C5	0.0296 (9)	0.0212 (9)	0.0275 (9)	0.0013 (7)	0.0025 (7)	-0.0020(7)
C6	0.0266 (9)	0.0246 (9)	0.0236 (8)	0.0027 (7)	0.0025 (7)	0.0023 (7)
C7	0.0436 (11)	0.0215 (9)	0.0292 (9)	0.0018 (8)	0.0025 (8)	-0.0033 (7)
C8	0.0523 (12)	0.0277 (10)	0.0331 (10)	-0.0017 (9)	-0.0009 (9)	-0.0065 (8)
C9	0.0538 (13)	0.0368 (12)	0.0456 (12)	0.0138 (10)	0.0043 (10)	-0.0092 (9)
C10	0.0753 (16)	0.0253 (10)	0.0383 (11)	-0.0091 (11)	0.0004 (11)	0.0029 (9)
C11	0.0374 (10)	0.0268 (9)	0.0243 (9)	0.0097 (8)	-0.0007 (7)	0.0006 (7)
C12	0.0552 (13)	0.0433 (13)	0.0358 (11)	0.0196 (11)	-0.0141 (10)	-0.0033 (9)
C13	0.0563 (14)	0.0303 (11)	0.0533 (13)	0.0066 (10)	0.0060 (11)	0.0123 (10)
C14	0.0483 (13)	0.0567 (14)	0.0394 (12)	0.0260 (11)	0.0067 (10)	0.0056 (10)
C15	0.0271 (9)	0.0266 (9)	0.0272 (9)	-0.0002 (7)	0.0016 (7)	-0.0039(7)
C16	0.0288 (9)	0.0342 (10)	0.0254 (9)	0.0033 (8)	0.0024 (7)	-0.0034 (7)
C17	0.0246 (9)	0.0348 (10)	0.0229 (9)	0.0011 (8)	0.0002 (7)	-0.0038 (7)
C18	0.0319 (10)	0.0374 (11)	0.0296 (9)	-0.0020 (8)	0.0020 (8)	0.0001 (8)
C19	0.0386 (11)	0.0407 (12)	0.0334 (10)	-0.0104 (9)	0.0014 (8)	-0.0041 (9)
C20	0.0397 (11)	0.0483 (13)	0.0270 (10)	-0.0079 (10)	-0.0037 (8)	-0.0072 (9)
N1	0.0273 (8)	0.0332 (9)	0.0234 (7)	0.0003 (6)	-0.0016 (6)	-0.0025 (6)
N2	0.0363 (9)	0.0400 (10)	0.0263 (8)	-0.0014 (7)	-0.0035 (7)	-0.0021 (7)
N3	0.0436 (10)	0.0318 (9)	0.0298 (9)	0.0002 (8)	-0.0063 (7)	0.0015 (7)
01	0.0397 (8)	0.0274 (7)	0.0321 (7)	0.0098 (6)	-0.0093 (6)	-0.0004 (5)

Geometric parameters (Å, °)

C1—C2	1.397 (2)	C11—C13	1.538 (3)
C1—C6	1.401 (2)	C12—H12A	0.98
C1—H1	0.95	C12—H12B	0.98
C2—C3	1.406 (2)	C12—H12C	0.98
C2—C7	1.541 (2)	C13—H13A	0.98
C3—O1	1.356 (2)	C13—H13B	0.98
C3—C4	1.409 (2)	C13—H13C	0.98
C4—C5	1.396 (2)	C14—H14A	0.98
C4—C15	1.453 (2)	C14—H14B	0.98
C5—C6	1.381 (2)	C14—H14C	0.98
С5—Н5	0.95	C15—N1	1.279 (2)
C6-C11	1 541 (2)	C15—H15	0.95
C7—C8	1.527 (2)	C16—N2	1 343 (2)
C7—C9	1.527(2) 1.537(3)	C16-N3	1.357(3)
C7-C10	1 539 (3)	C16-C17	1.537(3) 1 421(2)
C8—H8A	0.98	C17 - C18	1.321(2) 1.380(3)
C8—H8B	0.98	C17—N1	1.300(3) 1 417(2)
	0.98	C18-C19	1.417(2) 1 384(3)
	0.98	C18—H18	0.95
C9—H9B	0.98	C_{19} C_{20}	1 370 (3)
C9—H9C	0.98	C19_H19	0.95
C10—H10A	0.98	C_{20} N2	1 339 (3)
C10—H10B	0.98	C_{20} H2	0.95
C10—H10C	0.98	N3—H103	0.882 (9)
C_{11} C_{12}	1 518 (3)	N3—H203	0.885 (9)
C11 - C14	1.510(3)	01—H1A	0.865 ())
	1.527 (5)		0.01
C2—C1—C6	124.28 (15)	C12—C11—C6	112.56 (15)
C2—C1—H1	117.9	C14—C11—C6	108.83 (15)
С6—С1—Н1	117.9	C13—C11—C6	109.36 (15)
C1—C2—C3	116.96 (15)	C11—C12—H12A	109.5
C1—C2—C7	121.96 (15)	C11—C12—H12B	109.5
C3—C2—C7	121.07 (15)	H12A—C12—H12B	109.5
O1—C3—C2	119.77 (15)	C11—C12—H12C	109.5
O1—C3—C4	119.75 (15)	H12A—C12—H12C	109.5
C2—C3—C4	120.47 (15)	H12B—C12—H12C	109.5
C5—C4—C3	119.45 (15)	C11—C13—H13A	109.5
C5—C4—C15	118.68 (15)	C11—C13—H13B	109.5
C3—C4—C15	121.84 (15)	H13A—C13—H13B	109.5
C6—C5—C4	122.16 (16)	C11—C13—H13C	109.5
С6—С5—Н5	118.9	H13A—C13—H13C	109.5
С4—С5—Н5	118.9	H13B—C13—H13C	109.5
C5—C6—C1	116.65 (15)	C11—C14—H14A	109.5
C5—C6—C11	120.27 (15)	C11—C14—H14B	109.5
C1—C6—C11	123.06 (15)	H14A—C14—H14B	109.5
C8—C7—C9	107.74 (16)	C11—C14—H14C	109.5

G0 G7 G10	107 40 (17)		100 5
C8—C/—C10	107.40 (17)	H14A—C14—H14C	109.5
C9—C7—C10	110.13 (17)	H14B—C14—H14C	109.5
C8—C7—C2	112.01 (15)	N1—C15—C4	123.62 (16)
C9—C7—C2	110.13 (16)	N1—C15—H15	118.2
C10—C7—C2	109.38 (15)	C4—C15—H15	118.2
С7—С8—Н8А	109.5	N2—C16—N3	116.81 (16)
С7—С8—Н8В	109.5	N2—C16—C17	121.54 (17)
H8A—C8—H8B	109.5	N3—C16—C17	121.60 (16)
С7—С8—Н8С	109.5	C18—C17—N1	124.26 (16)
H8A—C8—H8C	109.5	C18—C17—C16	118.10 (16)
H8B—C8—H8C	109.5	N1—C17—C16	117.58 (16)
С7—С9—Н9А	109.5	C17—C18—C19	119.84 (18)
С7—С9—Н9В	109.5	C17—C18—H18	120.1
Н9А—С9—Н9В	109.5	C19—C18—H18	120.1
С7—С9—Н9С	109.5	C20-C19-C18	118.20 (19)
Н9А—С9—Н9С	109.5	С20—С19—Н19	120.9
Н9В—С9—Н9С	109.5	C18—C19—H19	120.9
C7-C10-H10A	109.5	N2-C20-C19	123.99 (17)
C7—C10—H10B	109.5	N2—C20—H20	118
H10A—C10—H10B	109.5	С19—С20—Н20	118
C7—C10—H10C	109.5	C15—N1—C17	119.76 (16)
H10A—C10—H10C	109.5	C20—N2—C16	118.12 (17)
H10B—C10—H10C	109.5	C16—N3—H103	118.8 (14)
C12—C11—C14	109.03 (17)	C16—N3—H203	116.5 (14)
C12—C11—C13	107.93 (17)	H103—N3—H203	118 (2)
C14—C11—C13	109.08 (17)	C3—O1—H1A	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
01—H1A…N1	0.84	1.87	2.6214 (19)	149
N3—H203…N2 ⁱ	0.89 (1)	2.16(1)	3.045 (2)	175 (2)

Symmetry code: (i) -x, -y+2, -z-1.