

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(Ethanolato- κO)[N'-(3-methoxy-2oxidobenzylidene- κO^2)benzohydrazidato- $\kappa^2 N'$,O]oxidovanadium(V)

Xiao-Hua Chen,^a* Qiong-Jie Wu,^b Li-Juan Chen^c and Ming-Xing Yang^c

^aCollege of Materials Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, People's Republic of China, ^bCollege of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China, and ^cCollege of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou, Fujian 350007, People's Republic of China Correspondence e-mail: xiaohuachen03@163.com

Received 30 June 2012; accepted 15 July 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.038; wR factor = 0.105; data-to-parameter ratio = 16.7.

In the title complex, $[V(C_{15}H_{12}N_2O_4)(C_2H_5O)O]$, the V^V ion is coordinated by an oxide O atom, an ethanolate anion and two O atoms and one N atom from the tridentate benzohydrazidate dianion in a distorted square-pyramidal geometry; the V atom is displaced by 0.4748 (8) Å from the basal plane towards the axial oxide O atom. An intramolecular O-H···N hydrogen bond occurs in the benzohydrazidate ligand. Weak intermolecular C-H···O hydrogen bonding is present in the crystal.

Related literature

For general background to the coordination chemistry and biochemisty of vanadium, see: Deng *et al.* (2007); Monfared *et al.* (2011); Sutradhar *et al.* (2006). For related structures, see: Chen *et al.* (2004); Liu *et al.* (2006); Ghosh *et al.* (2007); Seena *et al.* (2008). For the synthesis, see: Gao *et al.* (1998); Huang *et al.* (2010).

 $V = 1738.6 (12) \text{ Å}^3$

Mo $K\alpha$ radiation $\mu = 0.61 \text{ mm}^{-1}$

 $0.37 \times 0.25 \times 0.13 \text{ mm}$

15371 measured reflections

3968 independent reflections

3243 reflections with $I > 2\sigma(I)$

Z = 4

T = 293 K

 $R_{\rm int} = 0.041$

Experimental

Crystal data

 $\begin{bmatrix} V(C_{15}H_{12}N_2O_4)(C_2H_5O)O \end{bmatrix}$ $M_r = 396.27$ Monoclinic, $P2_1/c$ a = 15.808 (5) Å b = 6.606 (2) Å c = 16.693 (8) Å $\beta = 94.107$ (16)°

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (*TEXRAY*; Molecular Structure Corporation, 1999) $T_{\rm min} = 0.834, T_{\rm max} = 0.924$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	237 parameters
$vR(F^2) = 0.105$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.34 \ {\rm e} \ {\rm \AA}^{-3}$
3968 reflections	$\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$
	7 mm

Table 1

Selected bond lengths (Å).

V1-N1	2.1029 (15)	V1-O5	1.5762 (15)
V1-01	1.8325 (14)	V1-O6	1.7423 (13)
V1-O3	1.9453 (14)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} O4 - H4B \cdots N2 \\ C8 - H8A \cdots O4^{i} \end{array}$	0.82	1.86	2.581 (2)	147
	0.93	2.31	3.236 (2)	177

Symmetry code: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *TEXRAY* (Molecular Structure Corporation, 1999); cell refinement: *TEXRAY*; data reduction: *TEXSAN* (Molecular Structure Corporation, 1999); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEX* (McArdle, 1995); software used to prepare material for publication: *SHELXL97*.

The authors are grateful for financial support from the Foundation of Fujian Educational Committee, China (grant No. JB10007).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5587).

References

- Chen, L.-J., Yang, M.-X. & Lin, S. (2004). Acta Cryst. E60, m1881–m1882. Deng, Z.-P., Gao, S., Zhao, H. & Huo, L.-H. (2007). Chin. J. Inorg. Chem. 23,
- Deng, Z.-P., Gao, S., Zhao, H. & Huo, L.-H. (2007). Chin. J. Inorg. Chem. 23, 173–176.
- Gao, S., Weng, Z.-Q. & Liu, S.-X. (1998). Polyhedron, 17, 3595–3606.
- Ghosh, T., Mondal, B., Ghosh, T., Sutradhar, M., Mukherjee, G. & Drew, M. G. B. (2007). *Inorg. Chim. Acta*, **360**, 1753–1761.

Huang, S.-M., Jiang, F.-F., Chen, X.-H. & Wu, Q.-J. (2010). Acta Cryst. E66, m456.

Liu, J.-H., Wu, X.-Y., Zhang, Q.-Z., He, X., Yang, W.-B. & Lu, C.-Z. (2006). *Chin. J. Inorg. Chem.* 22, 1028–1032.

McArdle, P. (1995). J. Appl. Cryst. 28, 65.

Molecular Structure Corporation (1999). *TEXRAY* and *TEXSAN*. MSC, The Woodlands, Texas, USA.

- Monfared, H. H., Kheirabadi, S., Lalami, N. A. & Mayer, P. (2011). *Polyhedron*, **30**, 1375–1384.
- Seena, E. B., Mathew, N., Kuriakose, M. & Kurup, M. P. R. (2008). *Polyhedron*, **27**, 1455–462.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sutradhar, M., Mukherjee, G., Drew, M. G. B. & Ghosh, S. (2006). Inorg. Chem. 45, 5150–5161.

supporting information

Acta Cryst. (2012). E68, m1101-m1102 [https://doi.org/10.1107/S1600536812032229]

(Ethanolato- κO)[N'-(3-methoxy-2-oxidobenzylidene- κO^2)benzohydrazidato- $\kappa^2 N'$,O]oxidovanadium(V)

Xiao-Hua Chen, Qiong-Jie Wu, Li-Juan Chen and Ming-Xing Yang

S1. Comment

In the recent years, the coordination chemistry and biochemisty of vanadium has received considerable attention (Deng *et al.*, 2007; Monfared *et al.*, 2011; Sutradhar *et al.*, 2006). Generally, a tridentate hydrazone ligand is coordinated to the vanadium through O and N atoms, similar to those of the biological system. So, it is important to intensively study the relation ship of the syntheses and structural properties of vanadium hydrazone complexes.

In the title complex, $[VO(C_{15}H_{12}N_2O_4)(C_2H_5O)]$, the V^V ion exists in a distorted square-pyramidal coordination geometry. Three donor atoms (O1, O3 and N1) of the hydrozone ligand and O6 atom from the ethanol group define the coordination basal plane, with a maximum mean plane deviation of 0.030 (1) Å. The V atom is displaced towards the axial oxo O atom by 0.4748 (8) Å from the basal plane. Bond distances (Table 1) and bond angles around V1 atom are compared with those in reported oxovanadium complexes (Chen *et al.*, 2004; Seena *et al.*, 2008; Liu *et al.*,2006; Ghosh *et al.*, 2007). In the crystal structure there are the intramolecular O—H…N hydrogen bonding and intermolecular C—H…O hydrogen bonding (Table 2).

S2. Experimental

 $VO(acac)_2 (acac = acetylacetonate)$ was synthesized according to the reported method of Gao *et al.* (1998). The synthesis of the hydrazone ligand has already been reported in the literature (Huang *et al.*, 2010).

The title compound was prepared by reacting H_2L (0.1 mmol) with VO(acac)₂ (0.1 mmol) in ethanol solvent with stirring. The solution was filtered and allowed to stand at room temperature for one week, and dark-red crystals of complex (I) were obtained.

S3. Refinement

All H atoms were placed in idealized positions and treated as riding with O—H = 0.82 Å, C—H = 0.93–0.97 Å; $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C, O)$.

Figure 1

The molecular structure of the title compound, showing 30% probability displacement ellipsoids for non-H atoms. A dashed line indicates the intramoleculat hydrogen bonding.

(Ethanolato- κO)[N'-(3-methoxy-2- oxidobenzylidene- κO^2)benzohydrazidato- $\kappa^2 N'$,O]oxidovanadium(V)

Crystal data

 $\begin{bmatrix} V(C_{15}H_{12}N_2O_4)(C_2H_5O)O \end{bmatrix}$ $M_r = 396.27$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 15.808 (5) Å b = 6.606 (2) Å c = 16.693 (8) Å $\beta = 94.107 (16)^{\circ}$ $V = 1738.6 (12) Å^3$ Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*TEXRAY*; Molecular Structure Corporation, 1999) $T_{\min} = 0.834, T_{\max} = 0.924$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.105$ S = 1.083968 reflections F(000) = 816 $D_x = 1.514 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3243 reflections $\theta = 3.3-27.5^{\circ}$ $\mu = 0.61 \text{ mm}^{-1}$ T = 293 KPrism, dark-red $0.37 \times 0.25 \times 0.13 \text{ mm}$

15371 measured reflections 3968 independent reflections 3243 reflections with $I > 2\sigma(I)$ $R_{int} = 0.041$ $\theta_{max} = 27.5^\circ, \theta_{min} = 3.3^\circ$ $h = -19 \rightarrow 20$ $k = -8 \rightarrow 7$ $l = -21 \rightarrow 21$

237 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_o^2) + (0.0564P)^2 + 0.3657P]$
neighbouring sites	where $P = (F_o^2 + 2F_c^2)/3$
H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
V1	0.327165 (17)	0.03858 (5)	0.379657 (17)	0.03227 (11)	
01	0.30812 (8)	0.2237 (2)	0.45811 (8)	0.0442 (3)	
O2	0.35894 (10)	0.5229 (2)	0.55498 (9)	0.0496 (4)	
03	0.28941 (8)	-0.2038 (2)	0.32138 (8)	0.0407 (3)	
O4	0.04552 (9)	-0.2451 (3)	0.20545 (12)	0.0782 (6)	
H4B	0.0647	-0.1583	0.2368	0.117*	
05	0.36775 (9)	0.1609 (2)	0.31098 (9)	0.0516 (4)	
06	0.40591 (8)	-0.1056 (2)	0.43088 (8)	0.0435 (3)	
N1	0.19698 (9)	0.0812 (2)	0.34927 (8)	0.0328 (3)	
N2	0.15908 (9)	-0.0609(2)	0.29735 (9)	0.0372 (4)	
C1	0.25579 (11)	0.3816 (3)	0.46463 (10)	0.0357 (4)	
C2	0.17609 (11)	0.3877 (3)	0.42268 (10)	0.0358 (4)	
C3	0.12022 (13)	0.5497 (3)	0.43503 (12)	0.0472 (5)	
H3A	0.0668	0.5530	0.4077	0.057*	
C4	0.14474 (15)	0.7014 (4)	0.48709 (13)	0.0546 (6)	
H4A	0.1078	0.8079	0.4952	0.065*	
C5	0.22441 (14)	0.6982 (3)	0.52816 (12)	0.0488 (5)	
H5A	0.2402	0.8029	0.5633	0.059*	
C6	0.28039 (13)	0.5414 (3)	0.51739 (11)	0.0394 (4)	
C7	0.38639 (16)	0.6801 (4)	0.60921 (14)	0.0617 (6)	
H7A	0.4451	0.6602	0.6263	0.092*	
H7B	0.3531	0.6772	0.6551	0.092*	
H7C	0.3795	0.8087	0.5828	0.092*	
C8	0.14914 (11)	0.2298 (3)	0.36837 (11)	0.0366 (4)	
H8A	0.0938	0.2341	0.3453	0.044*	
C9	0.21338 (11)	-0.2052 (3)	0.28567 (10)	0.0342 (4)	
C10	0.18783 (11)	-0.3739 (3)	0.23241 (10)	0.0353 (4)	
C11	0.10557 (12)	-0.3869 (4)	0.19530 (13)	0.0471 (5)	
C12	0.08370 (15)	-0.5527 (4)	0.14672 (14)	0.0570 (6)	
H12A	0.0287	-0.5640	0.1234	0.068*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C13	0.14231 (15)	-0.6997 (4)	0.13284 (13)	0.0541 (5)
H13A	0.1269	-0.8090	0.0998	0.065*
C14	0.22383 (15)	-0.6862 (3)	0.16759 (13)	0.0509 (5)
H14A	0.2636	-0.7851	0.1575	0.061*
C15	0.24613 (13)	-0.5261 (3)	0.21720 (11)	0.0409 (4)
H15A	0.3010	-0.5186	0.2411	0.049*
C16	0.47854 (16)	-0.2211 (5)	0.41625 (15)	0.0726 (8)
H16A	0.4651	-0.3632	0.4225	0.087*
H16B	0.5233	-0.1876	0.4569	0.087*
C17	0.51099 (16)	-0.1928 (5)	0.33759 (16)	0.0734 (8)
H17A	0.5644	-0.2613	0.3359	0.110*
H17B	0.5186	-0.0510	0.3279	0.110*
H17C	0.4713	-0.2476	0.2970	0.110*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
V1	0.02768 (17)	0.03613 (19)	0.03235 (17)	0.00497 (12)	-0.00236 (11)	-0.00102 (12)
01	0.0396 (7)	0.0454 (8)	0.0458 (7)	0.0120 (6)	-0.0079 (5)	-0.0127 (6)
O2	0.0487 (8)	0.0503 (8)	0.0481 (8)	0.0044 (7)	-0.0073 (6)	-0.0160 (7)
O3	0.0343 (7)	0.0413 (7)	0.0453 (7)	0.0066 (6)	-0.0066 (5)	-0.0083 (6)
O4	0.0364 (8)	0.0960 (14)	0.0991 (14)	0.0110 (9)	-0.0166 (8)	-0.0531 (11)
O5	0.0450 (8)	0.0587 (10)	0.0510 (8)	0.0002 (7)	0.0032 (6)	0.0117 (7)
O6	0.0391 (7)	0.0507 (8)	0.0391 (7)	0.0148 (6)	-0.0069 (5)	-0.0039 (6)
N1	0.0296 (7)	0.0363 (8)	0.0319 (7)	0.0023 (6)	-0.0013 (6)	-0.0012 (6)
N2	0.0315 (8)	0.0398 (9)	0.0393 (8)	0.0004 (7)	-0.0037 (6)	-0.0058 (7)
C1	0.0397 (9)	0.0352 (9)	0.0327 (9)	0.0047 (8)	0.0053 (7)	-0.0010 (7)
C2	0.0365 (9)	0.0382 (10)	0.0329 (9)	0.0065 (8)	0.0047 (7)	0.0011 (7)
C3	0.0441 (11)	0.0514 (13)	0.0454 (11)	0.0150 (9)	-0.0011 (9)	-0.0037 (9)
C4	0.0640 (14)	0.0497 (13)	0.0499 (12)	0.0238 (11)	0.0034 (10)	-0.0062 (10)
C5	0.0661 (13)	0.0419 (11)	0.0384 (10)	0.0080 (10)	0.0030 (9)	-0.0084 (9)
C6	0.0464 (11)	0.0398 (10)	0.0319 (9)	0.0032 (8)	0.0024 (7)	-0.0022 (8)
C7	0.0697 (15)	0.0599 (15)	0.0529 (13)	0.0004 (12)	-0.0131 (11)	-0.0198 (11)
C8	0.0298 (8)	0.0419 (10)	0.0376 (9)	0.0043 (8)	-0.0002 (7)	0.0021 (8)
C9	0.0347 (9)	0.0370 (10)	0.0306 (8)	0.0002 (8)	0.0003 (7)	0.0020 (7)
C10	0.0381 (9)	0.0386 (10)	0.0294 (8)	-0.0028 (8)	0.0037 (7)	0.0005 (7)
C11	0.0383 (10)	0.0558 (12)	0.0471 (11)	-0.0018 (9)	0.0030 (8)	-0.0124 (10)
C12	0.0467 (12)	0.0691 (16)	0.0548 (13)	-0.0144 (11)	0.0012 (10)	-0.0193 (11)
C13	0.0692 (15)	0.0495 (13)	0.0442 (11)	-0.0149 (11)	0.0076 (10)	-0.0117 (9)
C14	0.0667 (14)	0.0398 (11)	0.0464 (11)	0.0052 (10)	0.0061 (10)	-0.0048 (9)
C15	0.0467 (11)	0.0382 (10)	0.0376 (10)	0.0027 (8)	0.0008 (8)	0.0014 (8)
C16	0.0608 (15)	0.094 (2)	0.0636 (15)	0.0445 (15)	0.0118 (12)	0.0132 (14)
C17	0.0587 (15)	0.087 (2)	0.0769 (18)	0.0242 (14)	0.0189 (13)	0.0034 (15)

Geometric parameters (Å, °)

V1-N1	2.1029 (15)	C5—C6	1.382 (3)
V1—01	1.8325 (14)	С5—Н5А	0.9300

supporting information

V1—O3	1.9453 (14)	C7—H7A	0.9600
V1—O5	1.5762 (15)	C7—H7B	0.9600
V1—O6	1.7423 (13)	C7—H7C	0.9600
O1—C1	1.340 (2)	C8—H8A	0.9300
O2—C6	1.356 (2)	C9—C10	1.464 (3)
Q2—C7	1.424 (3)	C10—C15	1.399 (3)
O3—C9	1.303 (2)	C10-C11	1.402 (3)
04—C11	1.353 (3)	C11—C12	1.391 (3)
04—H4B	0.8200	C12-C13	1.373 (3)
06-C16	1414(2)	C12—H12A	0.9300
N1_C8	1.111(2) 1.293(2)	C12 $C12$ $C14$	1 378 (3)
N1N2	1.295(2) 1.385(2)	C13_H13A	0.9300
N2 C9	1.305(2) 1.307(2)	C14 $C15$	1.374(3)
$C_1 = C_2$	1.307(2) 1 307(3)	C14 - C15	1.374(3)
C1 - C2	1.397(3) 1.411(2)	C14 $H15A$	0.9300
$C_1 = C_0$	1.411(3)	C15—HI5A C16—C17	0.9300
$C_2 = C_3$	1.412(3)		1.430 (3)
$C_2 = C_8$	1.427 (3)		0.9700
$C_3 - C_4$	1.364 (3)	C16—H16B	0.9700
C3—H3A	0.9300		0.9600
C4—C5	1.390 (3)	С17—Н17В	0.9600
C4—H4A	0.9300	C17—H17C	0.9600
05—V1—06	108.88 (8)	O2—C7—H7C	109.5
O5—V1—O1	105.89 (9)	H7A—C7—H7C	109.5
O6—V1—O1	99.34 (7)	H7B—C7—H7C	109.5
O5—V1—O3	100.64 (8)	N1—C8—C2	123.93 (16)
O6—V1—O3	88.75 (6)	N1—C8—H8A	118.0
O1—V1—O3	147.85 (6)	С2—С8—Н8А	118.0
05—V1—N1	101.43 (7)	O3—C9—N2	121.40 (17)
06—V1—N1	147.57 (7)	O3—C9—C10	119.24 (16)
01—V1—N1	82.81 (6)	N^{2} C9 C10	119 35 (16)
O3-V1-N1	74 32 (6)	$C_{15} - C_{10} - C_{11}$	118 54 (18)
C1 - O1 - V1	13534(12)	$C_{15} - C_{10} - C_{9}$	120.02(17)
C6-02-C7	117 11 (17)	$C_{11} - C_{10} - C_{9}$	120.02(17) 121.44(17)
C9 - O3 - V1	117.11(17) 118.32(12)	04-011-012	121.11(17) 118.07(19)
C_{11} O_{4} H_{4B}	109.5	04-011-012	122 61 (19)
C16-06-V1	140 40 (14)	C_{12} C_{11} C_{10}	122.01(1)) 119.3(2)
C8 N1 N2	140.40(14) 115.75(15)	C_{12} C_{12} C_{11}	117.3(2) 120.8(2)
$C_8 $ N1 V1	113.75(13) 128.45(12)	C13 - C12 - C11 C13 - C12 - H12A	110.6
$N_2 N_1 V_1$	120.43(12) 115.61(11)	C13 - C12 - H12A	119.0
$N_2 = N_1 = V_1$	113.01(11) 100.18(14)	C12 - C12 - C14	119.0
C_{2} N_{2} N_{1}	109.18 (14)	C12 - C13 - C14	120.3 (2)
01 - C1 - C2	121.40 (17)	C12—C13—H13A	119.8
UI - UI - Ub	119.24 (17)	C14— $C13$ — $H13A$	119.8
$C_2 - C_1 - C_0$	119.32 (17)	C15 - C14 - C13	119.7 (2)
C1 - C2 - C3	119.96 (18)	C15—C14—H14A	120.1
C1 - C2 - C8	121.00 (17)	C13—C14—H14A	120.1
C3—C2—C8	119.03 (17)	C14—C15—C10	121.2 (2)
C4—C3—C2	119.83 (19)	C14—C15—H15A	119.4

C_{4} C_{3} H_{3} Λ	120.1	C10 C15 H15A	110 /
$C_2 = C_3 = H_3 \Lambda$	120.1	O_{6} C_{16} C_{17}	117.4
$C_2 = C_3 = C_4 = C_5$	120.1	06 - 016 + 116	113.4 (2)
$C_3 = C_4 = U_4$	120.00 (19)	C_{17} C_{16} H_{16A}	108.4
C_{3} — C_{4} — $H_{4}A$	119.7	CI/-CIO-HIGA	108.4
C5—C4—H4A	119.7		108.4
C6—C5—C4	120.9 (2)	С17—С16—Н16В	108.4
С6—С5—Н5А	119.6	H16A—C16—H16B	107.5
C4—C5—H5A	119.6	С16—С17—Н17А	109.5
O2—C6—C5	125.51 (18)	C16—C17—H17B	109.5
O2—C6—C1	115.07 (17)	H17A—C17—H17B	109.5
C5—C6—C1	119.41 (18)	C16—C17—H17C	109.5
O2—C7—H7A	109.5	H17A—C17—H17C	109.5
O2—C7—H7B	109.5	H17B—C17—H17C	109.5
H7A—C7—H7B	109.5		
O5—V1—O1—C1	68.39 (19)	C7—O2—C6—C5	-1.0 (3)
O6-V1-O1-C1	-178.79 (18)	C7—O2—C6—C1	-179.65 (19)
O3—V1—O1—C1	-76.1 (2)	C4—C5—C6—O2	-179.3 (2)
N1—V1—O1—C1	-31.50 (18)	C4—C5—C6—C1	-0.7 (3)
O5—V1—O3—C9	-89.56 (14)	O1—C1—C6—O2	2.8 (3)
06—V1—O3—C9	161.46 (13)	C2-C1-C6-O2	-179.60 (17)
01 - V1 - 03 - C9	55.77 (18)	01-C1-C6-C5	-175.88(18)
N1 - V1 - O3 - C9	9 46 (12)	$C_{-C_{1}-C_{6}-C_{5}}$	17(3)
05-V1-06-C16	-379(3)	$N_{-N_{-}}^{2} = 01 - 00 - 00$	178 23 (17)
01 - V1 - 06 - C16	-1483(3)	$V_1 = N_1 = C_8 = C_2$	-69(3)
03 - V1 - 06 - C16	63 0 (3)	C1 - C2 - C8 - N1	-5.5(3)
N1 V1 06 C16	1204(3)	$C_1 = C_2 = C_3 = N_1$	175.82(10)
N1 - V1 - 00 - C10	-25.71(17)	$V_{1} = 0^{2} = 0^{2} = 0^{1}$	-0.5(2)
05 - VI - NI - C8	-0.5.71(17)	$V_1 = 03 = 09 = 10$	-9.3(2)
06 - VI - NI - C8	115.25(17)	VI0309010	1/1.59 (12)
$01 - v_1 - v_1 - c_8$	19.13 (16)	N1 - N2 - C9 - O3	1.2 (2)
03—VI—NI—C8	1/6.30 (1/)	NI—N2—C9—C10	-1/9.87 (15)
O5—V1—N1—N2	89.16 (14)	03-09-010-015	-3.2 (3)
06—V1—N1—N2	-69.88 (17)	N2—C9—C10—C15	177.87 (17)
01—V1—N1—N2	-166.00 (13)	O3—C9—C10—C11	177.21 (17)
O3—V1—N1—N2	-8.83 (11)	N2—C9—C10—C11	-1.8(3)
C8—N1—N2—C9	-177.68 (16)	C15—C10—C11—O4	-178.9 (2)
V1—N1—N2—C9	6.78 (18)	C9—C10—C11—O4	0.7 (3)
V1-01-C1-C2	29.7 (3)	C15-C10-C11-C12	1.9 (3)
V1-01-C1-C6	-152.82 (15)	C9—C10—C11—C12	-178.46 (19)
O1—C1—C2—C3	175.72 (18)	O4—C11—C12—C13	178.7 (2)
C6—C1—C2—C3	-1.8 (3)	C10-C11-C12-C13	-2.0 (4)
O1—C1—C2—C8	-3.0 (3)	C11—C12—C13—C14	0.6 (4)
C6—C1—C2—C8	179.54 (17)	C12—C13—C14—C15	0.9 (3)
C1—C2—C3—C4	0.9 (3)	C13—C14—C15—C10	-0.9 (3)
C8—C2—C3—C4	179.6 (2)	C11—C10—C15—C14	-0.5 (3)
C2—C3—C4—C5	0.1 (3)	C9—C10—C15—C14	179.89 (18)
C3—C4—C5—C6	-0.2(4)	V1-06-C16-C17	14.1 (4)
			(.)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
O4—H4 <i>B</i> …N2	0.82	1.86	2.581 (2)	147
C8—H8A····O4 ⁱ	0.93	2.31	3.236 (2)	177

Symmetry code: (i) -x, y+1/2, -z+1/2.