metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[aqua[μ -1,2-bis(pyridin-4-yl)ethene- $\kappa^2 N:N'$][μ -5-(diphenylphosphinoyl)iso-phthalato- $\kappa^3 O^1, O^{1'}:O^3$]nickel(II)]

Peng Zhang,^a Yu-Jie Liu,^b Kai-Hui Li,^a Guang-Rui Yang^a and Chong-Zhen Mei^a*

^aInstitute of Environmental and Municipal Engineering, North China University of Water Conservancy and Electric Power, Zhengzhou 450011, People's Republic of China, and ^bSchool of Biochemical and Chemical Engineering, Nanyang Institute of Technology, Nanyang 473004, People's Republic of China Correspondence e-mail: meichongzhen@163.com

Received 19 June 2012; accepted 8 July 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.006 Å; R factor = 0.047; wR factor = 0.112; data-to-parameter ratio = 13.1.

In the title compound, $[Ni(C_{20}H_{13}O_5P)(C_{12}H_{10}N_2)(H_2O)]_n$, the Ni^{II} cation is coordinated by three O atoms from two 5-(diphenylphosphinoyl)isophthalate anions, two N atoms from two 1,2-bis(pyridin-4-yl)ethene ligands and one water molecule in a distorted octahedral geometry. Both 1,2-bis-(pyridin-4-yl)ethene and 5-(diphenylphosphinoyl)isophthalate bridge the Ni^{II} cations to form polymeric layers parallel to (001). In the crystal, $O-H \cdots O$ hydrogen bonding links layers into a three-dimensional supramolecular structure.

Related literature

For background to the network topologies and applications of coordination polymers, see: Maspoch *et al.* (2007); Ockwig *et al.* (2005); Zang *et al.* (2011). For a related structure, see: Desiraju (2004).

Experimental

Crystal data

 $\begin{bmatrix} \text{Ni}(\text{C}_{20}\text{H}_{13}\text{O}_{5}\text{P})(\text{C}_{12}\text{H}_{10}\text{N}_{2})(\text{H}_{2}\text{O}) \end{bmatrix} \\ M_{r} = 623.22 \\ \text{Monoclinic, } P_{21}/c \\ a = 10.1866 (3) \text{ Å} \\ b = 13.6980 (3) \text{ Å} \\ c = 21.7030 (6) \text{ Å} \\ \beta = 111.174 (2)^{\circ} \\ \end{bmatrix}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{min} = 0.851, T_{max} = 0.864$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	379 parameters
$wR(F^2) = 0.112$	H-atom parameters constrained
S = 0.99	$\Delta \rho_{\rm max} = 0.66 \ {\rm e} \ {\rm \AA}^{-3}$
4971 reflections	$\Delta \rho_{\rm min} = -0.33 \text{ e } \text{\AA}^{-3}$

 $V = 2823.90 (13) \text{ Å}^3$

 $0.21 \times 0.20 \times 0.19 \text{ mm}$

11156 measured reflections

4971 independent reflections

3513 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation $\mu = 0.79 \text{ mm}^{-1}$

Z = 4

T = 296 K

 $R_{\rm int} = 0.043$

 Table 1

 Selected bond lengths (Å).

Ni1-N1	2.145 (3)	Ni1-O2	2.120 (2)
Ni1-N2 ⁱ	2.134 (3)	Ni1-O3 ⁱⁱ	2.039 (2)
Ni1-O1	2.140 (2)	Ni1 - O1W	2.046 (2)

Symmetry codes: (i) x, y - 1, z; (ii) x + 1, y, z.

Table 2

Hydrogen-bond geometry (Å, °).

$D1W - H1WA \cdots O5^{iii} 0.85 1.84 2.684 (3) 173$	···A
$1.01 = 111 \times D^{-1} \cup 0.04 = 0.05 = 1.01 = 2.022 (5) = 1.00 = 1$	

Symmetry codes: (ii) x + 1, y, z; (iii) x, $-y + \frac{3}{2}$, $z - \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *DIAMOND* (Brandenburg, 2010); software used to prepare material for publication: *SHELXTL*.

This work was supported by the International Technology Cooperation Project of the Science and Technology Department of Henan Province of China (grant No. 124300510050).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5570).

References

Brandenburg, K. (2010). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Bruker (2001). *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2007). *APEX2* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin,

USA. Desiraju, G. R. (2004). *Encyclopedia of Supramolecular Chemistry*, edited by J. L. Atwood & J. W. Steed, pp. 658–665. New York: Marcel Dekker Inc.

Maspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 36, 770-818.

Ockwig, N. W., Delgado-Friedrichs, O., O'Keefee, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176–182.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Zang, S.-Q., Fan, Y.-J., Li, J.-B., Hou, H.-W. & Mak, T. C. W. (2011). Cryst. Growth Des. 11, 3395–3405.

Acta Cryst. (2012). E68, m1058-m1059 [https://doi.org/10.1107/S1600536812031108]

Poly[aqua[μ -1,2-bis(pyridin-4-yl)ethene- $\kappa^2 N:N'$][μ -5-(diphenyl-phosphinoyl)isophthalato- $\kappa^3 O^1, O^{1'}:O^3$]nickel(II)]

Peng Zhang, Yu-Jie Liu, Kai-Hui Li, Guang-Rui Yang and Chong-Zhen Mei

S1. Comment

Supramolecular coordination assemblies have received much attention due to their discovery of interesting topologies and crystal packing motifs, and the potential applications as functional materials (Maspoch *et al.*, 2007; Ockwig *et al.*, 2005). A great number of carboxylate-based ligands have been successfully employed in the generation of many novel structures (Zang *et al.*, 2011). To further explore various factors that influence the properties and construction of coordination compounds, we undertake synthetic and structural studies on one novel Ni(II) complex based on 5-(oxidediphenylphosphanyl)isophthalic acid (H2L) and 1,2-bis(pyridin-4-yl)ethene (bpe): $[Ni(C_{20}H_{13}O_5P)(C_{12}H_{10}N_2)(H_2O)]_n$ (1).

X-ray crystallographic analysis revealed that the title compound crystallizes in monoclinic space group $P2_1/c$. As shown in Fig. 1, the asymmetric unit consists of one Ni^{II} atom, one L^{2-} anion, one bpe ligand and one coordinated water molecule. Each metal center is six-coordinated by three O atoms from two L^{2-} anions, one O atom from the coordinated water molecule and two N atoms from different 1,2-bis(pyridin-4-yl)ethene ligands. Four atoms O1W, O1, O2 and O3#1 comprise the equatorial plane; while N1, N2#2 occupies the axial position.

Each L^{2-} ligand acts as a μ_2 -bridge linking two Ni^{II} atoms with one carboxylate group in monodentate fashion and the other one in chelating mode to form an infinite Ni- L^{2-} chain running along the *a*-axis. As depicted in Fig. 2, bpe ligand links adjacent chains running along the *b*-axis to form a (4,4)-layer with Ni1···Ni1 distance of 10.1866 (7) Å and 13.6980 (7) Å, respectively. Adjacent layers are associated together by O—H···O hydrogen bonds to achieve a three-dimensional supramolecular structure (Fig. 3). A further investigation reveals a more striking feature of title compound, *i.e.* two sets of symmetric related supamolecular structures are interlocked with each other to display a twofold interpenetrating architecture.

S2. Experimental

The title compound was synthesized hydrothermally in a Teflon-lined stainless teel container by heating a mixture of 5-(oxidediphenylphosphanyl)isophthalic acid (H2*L*) (0.0183 g, 0.05 mmol), 1,2-bis(4-pyridyl)ethane (bpe) (0.0091 g, 0.05 mmol), Ni(NO₃)₂.6H₂O (0.0146 g, 0.05 mmol) and NaOH (0.0040 g, 0.1 mmol) in 7 ml of distilled water at 130°C for 3 days, and then cooled to room temperature. Green block crystals of **1** were obtained in 78% yield based on nickel.

S3. Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å, $U_{iso}(H) = -1.2U_{eq}(C)$ for aromatic H. The H atoms of the water molecules were located from the Fourier difference map and refined with suitable geometric restraints.

Metal coordination and atom labeling in title compound (thermal ellipsoids at 50% probability level). Irrespective hydrogen atoms are omitted for clarity. Symmetry codes: #1: x + 1, y, z; #2: x, y - 1, z.

Figure 2

A view of the layer in compound 1

The three-dimensional supramolecular structure connected by hydrogen bonds. Dotted lines represent hydrogen bonds.

Poly[aqua(μ -1,2-bis(pyridin-4-yl)ethene- $\kappa^2 N:N'$)[μ -5- (diphenylphosphinoyl)isophthalato- $\kappa^3 O^1, O^1:O^3$]nickel(II)]

Crystal data

$[Ni(C_{20}H_{13}O_5P)(C_{12}H_{10}N_2)(H_2O)]$
$M_r = 623.22$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
a = 10.1866 (3) Å
b = 13.6980 (3) Å
c = 21.7030 (6) Å
$\beta = 111.174 (2)^{\circ}$
$V = 2823.90(13) \text{ Å}^3$
Z=4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\min} = 0.851, T_{\max} = 0.864$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.112$ S = 0.994971 reflections 379 parameters F(000) = 1288 $D_x = 1.466 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4354 reflections $\theta = 3.0-29.2^{\circ}$ $\mu = 0.79 \text{ mm}^{-1}$ T = 296 KBlock, green $0.21 \times 0.20 \times 0.19 \text{ mm}$

11156 measured reflections 4971 independent reflections 3513 reflections with $I > 2\sigma(I)$ $R_{int} = 0.043$ $\theta_{max} = 25.0^\circ, \ \theta_{min} = 3.0^\circ$ $h = -12 \rightarrow 11$ $k = -16 \rightarrow 10$ $l = -25 \rightarrow 17$

0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.001$
$w = 1/[\sigma^2(F_o^2) + (0.0554P)^2]$	$\Delta \rho_{\rm max} = 0.66 \text{ e } \text{\AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta ho_{ m min} = -0.33 { m e} { m \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ni1	0.42678 (4)	0.81298 (3)	0.86654 (2)	0.01907 (14)	
O1	0.2074 (2)	0.81261 (16)	0.85164 (11)	0.0224 (5)	
O2	0.3689 (2)	0.79683 (16)	0.95050 (11)	0.0248 (5)	
O3	-0.3597 (2)	0.81335 (18)	0.91252 (11)	0.0258 (6)	
O4	-0.2948 (2)	0.8308 (2)	0.82543 (12)	0.0509 (9)	
O5	0.2692 (2)	0.75667 (19)	1.15849 (12)	0.0362 (7)	
O1W	0.4295 (2)	0.82607 (17)	0.77310 (11)	0.0298 (6)	
H1WA	0.3729	0.8019	0.7373	0.045*	
H1WB	0.5171	0.8219	0.7804	0.045*	
N1	0.4236 (3)	0.9691 (2)	0.87333 (16)	0.0285 (7)	
N2	0.4261 (3)	1.65746 (19)	0.86079 (14)	0.0246 (7)	
C1	0.1303 (3)	0.8117 (2)	0.94387 (16)	0.0196 (7)	
C2	0.1668 (3)	0.7974 (2)	1.01139 (17)	0.0229 (8)	
H2	0.2610	0.7912	1.0383	0.027*	
C3	0.0630(3)	0.7924 (2)	1.03897 (16)	0.0234 (8)	
C4	-0.0783 (3)	0.8035 (2)	0.99786 (16)	0.0232 (8)	
H4	-0.1478	0.8007	1.0162	0.028*	
C5	-0.1164 (3)	0.8184 (2)	0.93095 (16)	0.0202 (7)	
C6	-0.0103 (3)	0.8222 (2)	0.90399 (16)	0.0203 (7)	
H6	-0.0345	0.8318	0.8588	0.024*	
C7	0.2423 (3)	0.8062 (2)	0.91300 (17)	0.0202 (7)	
C8	-0.2691 (3)	0.8216 (2)	0.88494 (16)	0.0211 (7)	
C9	0.0171 (3)	0.8171 (3)	1.16355 (17)	0.0257 (8)	
C10	-0.0222 (4)	0.7750 (3)	1.2120 (2)	0.0422 (11)	
H10	-0.0102	0.7083	1.2199	0.051*	
C11	-0.0793 (5)	0.8311 (3)	1.2489 (2)	0.0564 (13)	
H11	-0.1076	0.8018	1.2808	0.068*	
C12	-0.0943 (5)	0.9305 (3)	1.2386 (2)	0.0484 (11)	
H12	-0.1304	0.9686	1.2643	0.058*	
C13	-0.0560 (4)	0.9727 (3)	1.1908 (2)	0.0439 (11)	
H13	-0.0673	1.0396	1.1835	0.053*	
C14	-0.0007 (4)	0.9168 (3)	1.15294 (19)	0.0363 (10)	

H14	0.0247	0.9463	1.1203	0.044*
C15	0.0537 (4)	0.6256 (3)	1.11215 (18)	0.0323 (9)
C16	-0.0846 (5)	0.5991 (3)	1.0956 (2)	0.0477 (11)
H16	-0.1515	0.6454	1.0956	0.057*
C17	-0.1247 (6)	0.5019 (4)	1.0788 (3)	0.0721 (16)
H17	-0.2179	0.4829	1.0679	0.087*
C18	-0.0238 (8)	0.4353 (4)	1.0787 (3)	0.0777 (18)
H18	-0.0503	0.3712	1.0662	0.093*
C19	0.1130 (7)	0.4611 (4)	1.0965 (3)	0.0748 (16)
H19	0.1799	0.4144	1.0973	0.090*
C20	0.1536 (5)	0.5558 (3)	1.1132 (2)	0.0511 (12)
H20	0.2477	0.5734	1.1253	0.061*
C21	0.3952 (4)	1.0150 (3)	0.92197 (19)	0.0360 (10)
H21	0.3723	0.9770	0.9522	0.043*
C22	0.3981 (4)	1.1145 (3)	0.9296 (2)	0.0395 (10)
H22	0.3784	1.1421	0.9645	0.047*
C23	0.4301 (4)	1.1727 (3)	0.8860 (2)	0.0350 (10)
C24	0.4573 (4)	1.1272 (3)	0.8351 (2)	0.0494 (12)
H24	0.4776	1.1641	0.8037	0.059*
C25	0.4542 (4)	1.0257 (3)	0.8312 (2)	0.0450 (11)
H25	0.4748	0.9963	0.7971	0.054*
C26	0.4401 (4)	1.2818 (3)	0.8951 (2)	0.0409 (10)
H26	0.4719	1.3061	0.9380	0.049*
C27	0.4072 (4)	1.3439 (3)	0.8468 (2)	0.0384 (10)
H27	0.3746	1.3186	0.8042	0.046*
C28	0.4170 (4)	1.4519 (3)	0.8536 (2)	0.0328 (9)
C29	0.5025 (4)	1.5007 (3)	0.9098 (2)	0.0410 (10)
H29	0.5582	1.4656	0.9467	0.049*
C30	0.5046 (4)	1.6028 (3)	0.91086 (19)	0.0368 (10)
H30	0.5643	1.6339	0.9487	0.044*
C31	0.3449 (4)	1.6099 (3)	0.8069 (2)	0.0397 (10)
H31	0.2893	1.6466	0.7709	0.048*
C32	0.3386 (4)	1.5088 (3)	0.8013 (2)	0.0437 (11)
H32	0.2810	1.4798	0.7622	0.052*
P1	0.11389 (9)	0.75019 (7)	1.12316 (4)	0.0244 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0152 (2)	0.0192 (2)	0.0231 (3)	0.00013 (18)	0.00720 (18)	-0.0006 (2)
01	0.0184 (12)	0.0279 (13)	0.0209 (13)	-0.0002 (10)	0.0070 (10)	-0.0014 (11)
O2	0.0141 (12)	0.0354 (14)	0.0253 (13)	0.0012 (10)	0.0076 (10)	-0.0010 (11)
O3	0.0135 (11)	0.0425 (15)	0.0223 (13)	-0.0006 (11)	0.0076 (10)	0.0043 (12)
O4	0.0190 (13)	0.112 (3)	0.0192 (15)	0.0003 (15)	0.0046 (11)	0.0110 (16)
05	0.0215 (13)	0.0544 (18)	0.0269 (14)	0.0031 (12)	0.0018 (11)	0.0106 (13)
O1W	0.0211 (12)	0.0436 (16)	0.0222 (13)	-0.0066 (11)	0.0047 (10)	-0.0044 (12)
N1	0.0241 (16)	0.0178 (15)	0.0431 (19)	-0.0017 (13)	0.0116 (15)	-0.0006 (15)
N2	0.0257 (16)	0.0193 (15)	0.0289 (17)	0.0034 (13)	0.0099 (14)	-0.0002 (14)

C1	0.0152 (16)	0.0185 (17)	0.0263 (18)	0.0002 (14)	0.0089 (14)	0.0014 (16)
C2	0.0137 (16)	0.026 (2)	0.0261 (19)	-0.0001 (14)	0.0038 (14)	0.0024 (16)
C3	0.0181 (17)	0.028 (2)	0.0219 (18)	0.0004 (15)	0.0050 (15)	0.0003 (16)
C4	0.0175 (17)	0.031 (2)	0.0234 (19)	0.0032 (15)	0.0097 (15)	0.0038 (17)
C5	0.0149 (16)	0.0217 (18)	0.0243 (18)	0.0000 (14)	0.0072 (14)	0.0025 (16)
C6	0.0200 (17)	0.0232 (18)	0.0177 (17)	0.0009 (15)	0.0070 (14)	0.0030 (15)
C7	0.0160 (17)	0.0172 (17)	0.026 (2)	-0.0020 (14)	0.0060 (15)	-0.0016 (16)
C8	0.0192 (17)	0.0251 (19)	0.0194 (18)	0.0020 (15)	0.0074 (14)	0.0018 (16)
C9	0.0241 (18)	0.032 (2)	0.0191 (18)	0.0006 (17)	0.0051 (15)	0.0009 (17)
C10	0.065 (3)	0.032 (2)	0.036 (2)	0.007 (2)	0.026 (2)	0.004 (2)
C11	0.084 (4)	0.061 (3)	0.043 (3)	0.014 (3)	0.045 (3)	0.009 (2)
C12	0.059 (3)	0.052 (3)	0.038 (2)	0.016 (2)	0.021 (2)	-0.005 (2)
C13	0.049 (3)	0.033 (2)	0.045 (3)	0.008 (2)	0.013 (2)	0.000 (2)
C14	0.044 (2)	0.034 (2)	0.032 (2)	0.0027 (19)	0.0146 (19)	0.0090 (19)
C15	0.044 (2)	0.030 (2)	0.027 (2)	0.0013 (19)	0.0182 (19)	0.0034 (18)
C16	0.053 (3)	0.037 (3)	0.051 (3)	-0.007 (2)	0.017 (2)	-0.004 (2)
C17	0.084 (4)	0.066 (4)	0.064 (4)	-0.031 (3)	0.023 (3)	-0.004 (3)
C18	0.131 (6)	0.032 (3)	0.070 (4)	-0.015 (4)	0.037 (4)	-0.005 (3)
C19	0.113 (5)	0.039 (3)	0.080 (4)	0.018 (3)	0.044 (4)	0.004 (3)
C20	0.067 (3)	0.038 (3)	0.058 (3)	0.009 (2)	0.035 (3)	0.008 (2)
C21	0.041 (2)	0.029 (2)	0.030 (2)	-0.0027 (18)	0.0025 (19)	-0.0016 (18)
C22	0.038 (2)	0.029 (2)	0.043 (3)	0.0035 (19)	0.005 (2)	-0.009 (2)
C23	0.029 (2)	0.026 (2)	0.052 (3)	-0.0003 (17)	0.0153 (19)	-0.005 (2)
C24	0.060 (3)	0.025 (2)	0.079 (4)	-0.009 (2)	0.044 (3)	0.009 (2)
C25	0.055 (3)	0.025 (2)	0.070 (3)	0.001 (2)	0.040 (3)	-0.004 (2)
C26	0.041 (2)	0.034 (2)	0.048 (3)	-0.0032 (19)	0.017 (2)	-0.005 (2)
C27	0.046 (2)	0.034 (2)	0.043 (3)	0.0019 (19)	0.025 (2)	0.007 (2)
C28	0.032 (2)	0.0233 (19)	0.050 (3)	-0.0040 (17)	0.022 (2)	-0.005 (2)
C29	0.049 (3)	0.025 (2)	0.045 (3)	0.0120 (19)	0.013 (2)	0.017 (2)
C30	0.040 (2)	0.031 (2)	0.032 (2)	-0.0011 (19)	0.0034 (19)	0.0004 (19)
C31	0.040 (2)	0.027 (2)	0.042 (3)	0.0008 (19)	0.003 (2)	0.001 (2)
C32	0.049 (3)	0.027 (2)	0.045 (3)	-0.004 (2)	0.005 (2)	-0.005 (2)
P1	0.0209 (5)	0.0307 (5)	0.0206 (5)	0.0027 (4)	0.0062 (4)	0.0039 (4)

Geometric parameters (Å, °)

Nil—Nl	2.145 (3)	C12—C13	1.363 (6)	
Ni1-N2 ⁱ	2.134 (3)	C12—H12	0.9300	
Nil—O1	2.140 (2)	C13—C14	1.383 (5)	
Nil—O2	2.120 (2)	C13—H13	0.9300	
Ni1—O3 ⁱⁱ	2.039 (2)	C14—H14	0.9300	
Nil—O1W	2.046 (2)	C15—C16	1.372 (5)	
O1—C7	1.251 (4)	C15—C20	1.390 (5)	
O2—C7	1.259 (4)	C15—P1	1.799 (4)	
O3—C8	1.273 (4)	C16—C17	1.401 (6)	
O3—Ni1 ⁱⁱⁱ	2.039 (2)	C16—H16	0.9300	
O4—C8	1.228 (4)	C17—C18	1.375 (7)	
O5—P1	1.491 (2)	C17—H17	0.9300	

O1W H1WA	0.8500	C18_C19	1 352 (7)
O1W—H1WB	0.8500	C18—H18	0.9300
N1-C25	1 320 (5)	C19-C20	1 371 (6)
N1C21	1.320(5) 1.347(5)	C19 - H19	0.9300
N2 C30	1.377(3)	C20 H20	0.9300
N2 C31	1.324(4) 1.222(5)	$C_{20} = 1120$	1.371(5)
	1.333(3)	$C_{21} = C_{22}$	1.371(3)
	2.134(3)	C21—H21	0.9300
C1 = C6	1.387 (4)	C22—C23	1.300 (5)
C1 - C2	1.389 (5)	C22—H22	0.9300
	1.520 (4)	C23—C24	1.381 (6)
C2—C3	1.392 (4)	C23—C26	1.505 (5)
С2—Н2	0.9300	C24—C25	1.393 (5)
C3—C4	1.401 (4)	C24—H24	0.9300
C3—P1	1.805 (3)	C25—H25	0.9300
C4—C5	1.376 (5)	C26—C27	1.296 (5)
C4—H4	0.9300	C26—H26	0.9300
C5—C6	1.403 (4)	C27—C28	1.487 (5)
C5—C8	1.516 (4)	С27—Н27	0.9300
С6—Н6	0.9300	C28—C32	1.370 (5)
C9—C10	1.380 (5)	C28—C29	1.388 (5)
C9—C14	1.387 (5)	C29—C30	1.399 (5)
C9—P1	1.790 (3)	С29—Н29	0.9300
C10—C11	1.380 (5)	С30—Н30	0.9300
C10—H10	0.9300	$C_{31} - C_{32}$	1 389 (5)
C11-C12	1 380 (6)	C31—H31	0.9300
C11—H11	0.9300	C32_H32	0.9300
	0.9500	032 1132	0.9500
03^{ii} Ni1 $-01W$	95 22 (9)	C14—C13—H13	119.8
$O3^{ii}$ Ni1 $O2$	99.11 (9)	C_{13} C_{14} C_{9}	120.2(4)
03 - 101 - 02	165.63.(0)	C_{13} C_{14} H_{14}	110.0
O^{2ii} N;1 N;2	105.05(9)	$C_{13} - C_{14} + H_{14}$	119.9
03 - Ni - N2	90.03(10) 91.73(10)	C_{3} C_{14} C_{15} C_{20}	119.9 110.0(4)
$O_2 = N_1^2 = N_2^2$	91.75 (10)	$C_{10} - C_{15} - C_{20}$	119.9(4)
02—NII—N2 [·]	8/.14(10)	C10-C15-P1	123.7(3)
03^{m} N11–01	160.95 (9)	C20-C15-P1	116.0 (3)
	103.75 (9)		119.7 (5)
02—Nil—Ol	61.96 (8)	С15—С16—Н16	120.2
N2 ¹ —N11—O1	90.45 (10)	C17—C16—H16	120.2
O3 ⁿ —Ni1—N1	90.23 (10)	C18—C17—C16	118.9 (5)
O1W—Ni1—N1	89.24 (11)	C18—C17—H17	120.5
O2—Ni1—N1	91.67 (10)	С16—С17—Н17	120.5
N2 ⁱ —Ni1—N1	178.62 (11)	C19—C18—C17	121.3 (5)
O1—Ni1—N1	88.38 (10)	C19—C18—H18	119.3
C7—O1—Ni1	87.68 (18)	C17—C18—H18	119.3
C7—O2—Ni1	88.37 (19)	C18—C19—C20	120.3 (5)
C8—O3—Ni1 ⁱⁱⁱ	126.6 (2)	C18—C19—H19	119.9
Ni1—O1W—H1WA	128.7	С20—С19—Н19	119.9
Ni1—O1W—H1WB	101.5	C19—C20—C15	119.9 (5)
H1WA—O1W—H1WB	117.6	C19—C20—H20	120.1

C25—N1—C21	116.1 (3)	C15—C20—H20	120.1
C25—N1—Ni1	121.6 (3)	N1—C21—C22	123.9 (4)
C21—N1—Ni1	122.2 (2)	N1—C21—H21	118.0
C30—N2—C31	116.3 (3)	C22—C21—H21	118.0
C30—N2—Ni1 ^{iv}	121.9 (2)	C23—C22—C21	119.8 (4)
C31—N2—Ni1 ^{iv}	121.8 (2)	C23—C22—H22	120.1
C6—C1—C2	119.7 (3)	C21—C22—H22	120.1
C6—C1—C7	120.0 (3)	C22—C23—C24	117.3 (3)
C2-C1-C7	120.0 (3)	C22—C23—C26	120.7 (4)
C1 - C2 - C3	120.3 (3)	C_{24} C_{23} C_{26}	122.0(4)
С1—С2—Н2	119.8	C^{23} C^{24} C^{25}	1195(4)
C3—C2—H2	119.8	C23—C24—H24	120.2
$C_{2} - C_{3} - C_{4}$	119.1 (3)	C25—C24—H24	120.2
$C_2 = C_3 = P_1$	117.8 (2)	N1-C25-C24	120.2 123.3(4)
C4-C3-P1	1222(3)	N1-C25-H25	118.3
$C_{5} - C_{4} - C_{3}$	122.2(3) 1214(3)	C_{24} C_{25} H_{25}	118.3
$C_5 - C_4 - H_4$	119.3	C_{27} C_{25} C_{23}	124.0(4)
$C_3 - C_4 - H_4$	119.3	C_{27} C_{26} C_{25} C_{27} C_{26} H_{26}	121.0(1)
C4 - C5 - C6	119.5	C_{23} C_{26} H_{26}	118.0
$C_{4}^{-}C_{5}^{-}C_{8}^{-}$	1221(3)	$C_{25} = C_{20} = 1120$	125.8 (4)
$C_{4} = C_{5} = C_{8}$	122.1(3) 1191(3)	$C_{26} = C_{27} = C_{26}$	117.1
$C_{1} - C_{6} - C_{5}$	120.9(3)	$C_{28} = C_{27} = H_{27}$	117.1
C1 - C6 - H6	119.6	$C_{20} = C_{20} = C_{20}$	117.1 116.5(3)
C5-C6-H6	119.6	$C_{32} = C_{23} = C_{23}$	110.5(5) 119.1(4)
$C_{3} = C_{0} = 110$	121 8 (3)	$C_{32} = C_{23} = C_{27}$	119.1(4) 124.3(4)
01 - 07 - 02	121.8(3) 1107(3)	$C_{29} = C_{28} = C_{27}$	124.3(4)
01 - 07 - 01	119.7(3) 118.5(3)	$C_{28} = C_{29} = C_{30}$	119.7 (4)
02 - 07 - 01	116.5(3) 126.0(3)	$C_{20} = C_{29} = H_{29}$	120.1
04 - 08 - 03	120.0(3) 118.3(3)	$N_{2} = C_{2} = M_{2}$	120.1 123.5(4)
04 - 08 - 05	116.5(3) 115.7(3)	$N_2 = C_{30} = C_{23}$	123.3 (4)
$C_{10} = C_{8} = C_{14}$	113.7(3) 118.8(2)	$N_2 = C_{30} = H_{30}$	110.3
$C_{10} = C_{9} = C_{14}$	110.0(3)	$V_{29} = C_{30} = H_{30}$	110.5
C10 - C9 - P1	121.3(3)	$N_2 = C_{21} = U_{21}$	123.9 (4)
C14 - C9 - P1	119.0(3)	$N_2 = C_3 I = H_3 I$	118.0
$C_{11} = C_{10} = C_{9}$	120.7 (4)	$C_{32} = C_{31} = H_{31}$	118.0
CII = CI0 = HI0	119.7	$C_{28} = C_{32} = C_{31}$	120.0 (4)
C12 C11 C10	119.7	C28—C32—H32	120.0
	120.0 (4)	$C_{31} - C_{32} - H_{32}$	120.0
CI2—CII—HII	120.0	05-PI-C9	112.80 (16)
	120.0	$O_5 - P_1 - C_{15}$	111.85 (16)
	119.8 (4)	C9—P1—C15	109.22 (16)
C13—C12—H12	120.1	05-P1-C3	111.41 (15)
C11—C12—H12	120.1	C9—P1—C3	108.90 (16)
C12—C13—C14	120.5 (4)	C15—P1—C3	102.11 (16)
C12—C13—H13	119.8		
O3 ⁱⁱ —Ni1—O1—C7	-4.1 (4)	C20-C15-C16-C17	-1.1 (6)
O1W—Ni1—O1—C7	-178.89 (19)	P1-C15-C16-C17	170.9 (4)
O2—Ni1—O1—C7	2.69 (18)	C15-C16-C17-C18	-0.6 (7)

N2 ⁱ —Ni1—O1—C7	89.2 (2)	C16—C17—C18—C19	2.1 (8)
N1—Ni1—O1—C7	-90.1 (2)	C17—C18—C19—C20	-1.9 (9)
O3 ⁱⁱ —Ni1—O2—C7	175.10 (19)	C18—C19—C20—C15	0.2 (8)
O1W—Ni1—O2—C7	-8.9 (5)	C16—C15—C20—C19	1.3 (7)
N2 ⁱ —Ni1—O2—C7	-94.70 (19)	P1-C15-C20-C19	-171.3 (4)
O1—Ni1—O2—C7	-2.67 (18)	C25—N1—C21—C22	-0.6 (5)
N1—Ni1—O2—C7	84.60 (19)	Ni1—N1—C21—C22	177.1 (3)
O3 ⁱⁱ —Ni1—N1—C25	80.4 (3)	N1—C21—C22—C23	0.6 (6)
O1W—Ni1—N1—C25	-14.8 (3)	C21—C22—C23—C24	0.5 (6)
O2—Ni1—N1—C25	179.5 (3)	C21—C22—C23—C26	-177.3 (3)
O1—Ni1—N1—C25	-118.6 (3)	C22—C23—C24—C25	-1.4 (6)
O3 ⁱⁱ —Ni1—N1—C21	-97.2 (3)	C26—C23—C24—C25	176.4 (4)
O1W—Ni1—N1—C21	167.6 (3)	C21—N1—C25—C24	-0.3 (6)
O2—Ni1—N1—C21	1.9 (3)	Ni1—N1—C25—C24	-178.1 (3)
O1—Ni1—N1—C21	63.8 (3)	C23—C24—C25—N1	1.3 (7)
C6—C1—C2—C3	0.7 (5)	C22—C23—C26—C27	-147.7 (4)
C7—C1—C2—C3	-173.4 (3)	C24—C23—C26—C27	34.7 (6)
C1—C2—C3—C4	-0.9 (5)	C23—C26—C27—C28	-179.3 (3)
C1—C2—C3—P1	168.1 (3)	C26—C27—C28—C32	-158.9 (4)
C2—C3—C4—C5	0.5 (5)	C26—C27—C28—C29	21.8 (6)
P1-C3-C4-C5	-168.0 (3)	C32—C28—C29—C30	0.2 (6)
C3—C4—C5—C6	0.2 (5)	C27—C28—C29—C30	179.6 (3)
C3—C4—C5—C8	174.6 (3)	C31—N2—C30—C29	-1.7 (6)
C2-C1-C6-C5	0.0 (5)	Ni1 ^{iv} —N2—C30—C29	177.3 (3)
C7—C1—C6—C5	174.1 (3)	C28—C29—C30—N2	1.4 (6)
C4—C5—C6—C1	-0.4 (5)	C30—N2—C31—C32	0.5 (6)
C8—C5—C6—C1	-175.0 (3)	Ni1 ^{iv} —N2—C31—C32	-178.5 (3)
Ni1—O1—C7—O2	-4.7 (3)	C29—C28—C32—C31	-1.3 (6)
Ni1—O1—C7—C1	174.1 (3)	C27—C28—C32—C31	179.3 (3)
Ni1—O2—C7—O1	4.7 (3)	N2-C31-C32-C28	1.1 (7)
Ni1—O2—C7—C1	-174.1 (3)	C10—C9—P1—O5	-88.3 (3)
C6—C1—C7—O1	1.1 (5)	C14—C9—P1—O5	82.1 (3)
C2-C1-C7-01	175.2 (3)	C10-C9-P1-C15	36.7 (4)
C6—C1—C7—O2	179.9 (3)	C14—C9—P1—C15	-152.9 (3)
C2—C1—C7—O2	-6.0 (5)	C10—C9—P1—C3	147.5 (3)
Ni1 ⁱⁱⁱ —O3—C8—O4	-0.1 (5)	C14—C9—P1—C3	-42.1 (3)
Ni1 ⁱⁱⁱ —O3—C8—C5	-179.3 (2)	C16—C15—P1—O5	164.2 (3)
C4—C5—C8—O4	-176.7 (3)	C20—C15—P1—O5	-23.6 (4)
C6—C5—C8—O4	-2.4 (5)	C16—C15—P1—C9	38.6 (4)
C4—C5—C8—O3	2.5 (5)	C20—C15—P1—C9	-149.2 (3)
C6—C5—C8—O3	176.9 (3)	C16—C15—P1—C3	-76.6 (4)
C14—C9—C10—C11	0.5 (6)	C20—C15—P1—C3	95.6 (3)
P1-C9-C10-C11	171.0 (3)	C2—C3—P1—O5	18.4 (3)
C9—C10—C11—C12	-1.6 (7)	C4—C3—P1—O5	-172.9 (3)
C10—C11—C12—C13	1.7 (7)	C2—C3—P1—C9	143.5 (3)
C11—C12—C13—C14	-0.8 (7)	C4—C3—P1—C9	-47.9 (3)
C12—C13—C14—C9	-0.3 (6)	C2-C3-P1-C15	-101.1 (3)

C10—C9—C14—C13	0.4 (6)	C4—C3—P1—C15	67.5 (3)
P1—C9—C14—C13	-170.3 (3)		

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) *x*+1, *y*, *z*; (iii) *x*-1, *y*, *z*; (iv) *x*, *y*+1, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
O1 <i>W</i> —H1 <i>WA</i> ···O5 ^v	0.85	1.84	2.684 (3)	173
O1 <i>W</i> —H1 <i>WB</i> ···O4 ⁱⁱ	0.85	1.81	2.622 (3)	158

Symmetry codes: (ii) x+1, y, z; (v) x, -y+3/2, z-1/2.