organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,4-Diazabicyclo[2.2.2]octane-*trans,-trans*-hexa-2,4-dienedioic acid (1/1)

Suk-Hee Moon^a and Ki-Min Park^{b*}

^aDepartment of Food & Nutrition, Kyungnam College of Information and Technology, Busan 617-701, Republic of Korea, and ^bDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea Correspondence e-mail: kmpark@gnu.ac.kr

Received 26 June 2012; accepted 28 June 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.045; wR factor = 0.125; data-to-parameter ratio = 16.7.

The title 1:1 co-crystal, $C_6H_{12}N_2 \cdot C_6H_6O_4$, the dicarboxylic acid molecule is close to planar [r.m.s. deviation from the mean plane = 0.07 (1) Å]. In the crystal, the two molecules are arranged alternately and are linked by $O-H \cdot \cdot \cdot N$ hydrogen bonds, leading to the formation of a chain along the [201] direction. The chains are assembled into a two-dimensional framework parallel to the (102) plane through weak C- $H \cdot \cdot \cdot O$ hydrogen bonds between the two types of molecules.

Related literature

For background to the applications of co-crystals, see: Bhogala & Nangia (2003); Gao *et al.* (2004); Hori *et al.* (2009); Weyna *et al.* (2009). For a related structure, see: Moon & Park (2012).

Experimental

Crystal data

 $\begin{array}{l} {\rm C_6H_{12}N_2\cdot C_6H_6O_4}\\ M_r = 254.28\\ {\rm Triclinic}, \ P\overline{1}\\ a = 8.1547 \ (2) \ {\rm \mathring{A}}\\ b = 8.9321 \ (2) \ {\rm \mathring{A}}\\ c = 9.4028 \ (2) \ {\rm \mathring{A}}\\ \alpha = 86.258 \ (1)^\circ\\ \beta = 67.376 \ (1)^\circ \end{array}$

 $\gamma = 80.719 (1)^{\circ}$ $V = 623.90 (2) \text{ Å}^{3}$ Z = 2Mo K\alpha radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 173 K $0.20 \times 0.12 \times 0.10 \text{ mm}$

Data collection

Bruker APEXII CCD

diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.980, T_{max} = 0.990$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	163 parameters
$wR(F^2) = 0.125$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$
2719 reflections	$\Delta \rho_{\rm min} = -0.37 \text{ e} \text{ Å}^{-3}$

10893 measured reflections

 $R_{\rm int} = 0.024$

2719 independent reflections

2382 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond	geometry	(A,	°))
---------------	----------	-----	----	---

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$D1 - H1 \cdots N1$	0.84	1.70	2.5299 (14)	170
$D3 - H3 \cdot \cdot \cdot N2^{i}$	0.84	1.71	2.5447 (15)	170
$C3-H3A\cdots O2^{ii}$	0.95	2.53	3.4182 (17)	155
$C8 - H8A \cdots O3^{ii}$	0.99	2.60	3.4255 (18)	141
$C9 - H9A \cdots O1^{iii}$	0.99	2.56	3.0789 (17)	113
Symmetry codes:	(i) <i>x</i> - 2	2, y, z + 1;	(ii) $-x + 1, -y, -y$	-z + 1; (iii)

Symmetry codes: (i) x - 2, y - x + 2, -y + 1, -z + 1.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL* and *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *SHELXTL*.

This research was supported by the Research Funds of Kyungnam College of Information and Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2482).

References

Bhogala, B. R. & Nangia, A. (2003). Cryst. Growth Des. 3, 547-554.

- Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Gao, X. C., Friscic, T. & Macgillivray, L. R. (2004). Angew. Chem. Int. Ed. 43, 232–236.
- Hori, A., Takatani, S., Miyamoto, T. K. & Hasegawa, M. (2009). *CrystEngComm*, **11**, 567–569.
- Moon, S.-H. & Park, K.-M. (2012). Acta Cryst. E68, o1201.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Weyna, D. R., Shattock, T., Vishweshwar, P. & Zaworotko, M. J. (2009). Cryst. Growth Des. 9, 1106–1123.

supporting information

Acta Cryst. (2012). E68, o2344 [https://doi.org/10.1107/S160053681202942X]

1,4-Diazabicyclo[2.2.2]octane-trans,trans-hexa-2,4-dienedioic acid (1/1)

Suk-Hee Moon and Ki-Min Park

S1. Comment

Co-crystals made up of two or more components have attracted much attention in recent years owing to their contributions to supramolecular chemistry (Bhogala & Nangia, 2003; Gao *et al.*, 2004), materials chemistry (Hori *et al.*, 2009) and pharmaceutical chemistry (Weyna *et al.*, 2009). As a part of our recent efforts to construct supramolecular architectures using the co-crystal strategy, the crystal structure of a co-crystal consisting of *trans,trans*-hexa-2,4-dienedioic acid and 4,4'-bipyridine molecules has been reported by us (Moon & Park, 2012). In this paper we present a co-crystal structure of *trans,trans*-hexa-2,4-dienedioic acid with 1,4-diazabicyclo[2.2.2]octane.

The title compound is shown in Fig. 1. The asymmetric unit contains one 1,4-diazabicyclo[2.2.2]octane molecule and one *trans,trans*-hexa-2,4-dienedioic acid molecule. The dicarboxylic acid molecule is essentially planar, with an r.m.s. deviation from the mean plane of 0.07 Å.

In the crystal structure, both components are arranged alternately, and linked by intermolecular O—H···N hydrogen bonds, leading to the formation of a one-dimensional chain. Additionally, the chains are assembled into a two-dimensional framework through weak intermolecular C—H···O hydrogen bonds between 1,4-diazabicyclo[2.2.2]octane and dicarboxylic acid molecules (Fig. 2, Table 1).

S2. Experimental

A mixture of stoichiometric amounts of *trans,trans*-hexa-2,4-dienedioic acid and 1,4-Diazabicyclo[2.2.2]octane in DMF (in a 1:1 volume ratio) was heated until the two components dissolved and was then kept at room temperature. Upon slow evaporation of the solvent, *X*-ray quality single crystals were obtained.

S3. Refinement

All H-atoms were positioned geometrically and refined using a riding model. C—H = 0.95 Å for Csp², C—H = 0.99 Å for methylene C and O—H = 0.84 Å for the hydroxyl groups; $U_{iso}(H) = 1.2U_{eq}$ (parent atom).

Figure 1

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. The dashed line indicates a hydrogen bond.

Figure 2

Crystal packing of the title compound with intermolecular O—H…N and C—H…O hydrogen bonds shown as dashed lines. (Symmetry codes: i) x - 2, y, z + 1; ii) -x + 1, -y, -z + 1; iii) -x + 2, -y + 1, -z + 1.) H atoms not involved in the hydrogen bond interactions have been omitted for clarity.

1,4-Diazabicyclo[2.2.2]octane-trans,trans-hexa-2,4-dienedioic acid (1/1)

Crystal data

C₆H₁₂N₂·C₆H₆O₄ $M_r = 254.28$ Triclinic, *P*1 Hall symbol: -P 1 a = 8.1547 (2) Å b = 8.9321 (2) Å c = 9.4028 (2) Å $\alpha = 86.258$ (1)° $\beta = 67.376$ (1)° $\gamma = 80.719$ (1)° V = 623.90 (2) Å³

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.980, T_{\max} = 0.990$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.125$ S = 1.062719 reflections 163 parameters Z = 2 F(000) = 272 $D_x = 1.354 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5075 reflections $\theta = 3.3-28.4^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 173 KPlate, colourless $0.20 \times 0.12 \times 0.10 \text{ mm}$

10893 measured reflections 2719 independent reflections 2382 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 27.0^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -10 \rightarrow 9$ $k = -11 \rightarrow 11$ $l = -12 \rightarrow 12$

0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} < 0.001$
$w = 1/[\sigma^2(F_o^2) + (0.0641P)^2 + 0.2432P]$	$\Delta \rho_{\rm max} = 0.39 \text{ e } \text{\AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta ho_{ m min} = -0.37 \ m e \ m \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.76168 (14)	0.35311 (12)	0.48540 (14)	0.0383 (3)	
H1	0.8660	0.3185	0.4255	0.046*	
O2	0.70091 (14)	0.13027 (12)	0.44151 (14)	0.0356 (3)	
O3	-0.25828 (14)	0.13485 (13)	0.96677 (14)	0.0384 (3)	
H3	-0.3611	0.1718	1.0276	0.046*	
O4	-0.20125 (14)	0.37072 (12)	0.96904 (14)	0.0370 (3)	
C1	0.65577 (17)	0.25426 (15)	0.50280 (15)	0.0231 (3)	
C2	0.46734 (18)	0.30803 (16)	0.60830 (16)	0.0253 (3)	
H2	0.4375	0.4100	0.6432	0.030*	
C3	0.33925 (17)	0.22026 (15)	0.65586 (15)	0.0221 (3)	
H3A	0.3679	0.1191	0.6190	0.027*	
C4	0.15787 (17)	0.27194 (16)	0.76141 (15)	0.0234 (3)	
H4	0.1279	0.3750	0.7929	0.028*	
C5	0.03082 (18)	0.18318 (16)	0.81672 (16)	0.0257 (3)	
Н5	0.0598	0.0800	0.7857	0.031*	
C6	-0.15544 (18)	0.23910 (16)	0.92551 (16)	0.0250 (3)	
N1	1.08788 (14)	0.27644 (12)	0.31399 (13)	0.0215 (3)	
N2	1.41841 (14)	0.22012 (13)	0.14620 (13)	0.0230 (3)	
C7	1.11006 (18)	0.27117 (17)	0.15051 (16)	0.0261 (3)	
H7A	1.0583	0.3700	0.1199	0.031*	
H7B	1.0455	0.1919	0.1366	0.031*	
C8	1.31022 (19)	0.23589 (17)	0.04914 (16)	0.0279 (3)	
H8A	1.3332	0.1406	-0.0081	0.033*	
H8B	1.3454	0.3187	-0.0267	0.033*	
C9	1.18363 (18)	0.39594 (16)	0.33479 (16)	0.0252 (3)	
H9A	1.1706	0.3982	0.4438	0.030*	
H9B	1.1302	0.4963	0.3087	0.030*	
C10	1.38327 (18)	0.36395 (16)	0.23055 (17)	0.0273 (3)	
H10A	1.4159	0.4484	0.1563	0.033*	
H10B	1.4575	0.3558	0.2936	0.033*	
C11	1.16529 (18)	0.12776 (15)	0.35852 (16)	0.0252 (3)	
H11A	1.1041	0.0467	0.3432	0.030*	

supporting information

H11B	1.1471	0.1290	0.4688	0.030*	
C12	1.36674 (19)	0.09588 (16)	0.25949 (17)	0.0274 (3)	
H12A	1.4366	0.0877	0.3263	0.033*	
H12B	1.3943	-0.0016	0.2047	0.033*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0164 (5)	0.0337 (6)	0.0531 (7)	-0.0076 (4)	0.0034 (5)	-0.0147 (5)
O2	0.0232 (5)	0.0290 (5)	0.0455 (7)	-0.0053 (4)	-0.0009 (5)	-0.0109 (5)
03	0.0190 (5)	0.0351 (6)	0.0470 (7)	-0.0081 (4)	0.0059 (5)	-0.0094 (5)
O4	0.0240 (5)	0.0287 (6)	0.0456 (7)	-0.0033 (4)	0.0006 (5)	-0.0012 (5)
C1	0.0176 (6)	0.0246 (7)	0.0252 (7)	-0.0034 (5)	-0.0058 (5)	-0.0002 (5)
C2	0.0195 (7)	0.0242 (6)	0.0289 (7)	-0.0022 (5)	-0.0056 (5)	-0.0027 (5)
C3	0.0177 (6)	0.0254 (6)	0.0218 (6)	-0.0017 (5)	-0.0065 (5)	-0.0001 (5)
C4	0.0178 (6)	0.0272 (7)	0.0235 (6)	-0.0019 (5)	-0.0067 (5)	0.0001 (5)
C5	0.0191 (7)	0.0291 (7)	0.0256 (7)	-0.0029 (5)	-0.0047 (5)	-0.0024 (5)
C6	0.0179 (6)	0.0302 (7)	0.0243 (7)	-0.0040 (5)	-0.0052 (5)	0.0016 (5)
N1	0.0163 (5)	0.0238 (6)	0.0222 (6)	-0.0039 (4)	-0.0041 (4)	-0.0029 (4)
N2	0.0168 (5)	0.0262 (6)	0.0222 (6)	-0.0035 (4)	-0.0030 (4)	-0.0017 (4)
C7	0.0216 (7)	0.0325 (7)	0.0252 (7)	-0.0033 (5)	-0.0101 (5)	-0.0015 (5)
C8	0.0245 (7)	0.0358 (8)	0.0206 (6)	-0.0039 (6)	-0.0054 (5)	-0.0026 (5)
C9	0.0201 (6)	0.0252 (7)	0.0273 (7)	-0.0042 (5)	-0.0043 (5)	-0.0066 (5)
C10	0.0197 (6)	0.0287 (7)	0.0320 (7)	-0.0079 (5)	-0.0055 (6)	-0.0052 (6)
C11	0.0218 (7)	0.0260 (7)	0.0246 (7)	-0.0059 (5)	-0.0049 (5)	0.0024 (5)
C12	0.0229 (7)	0.0245 (7)	0.0295 (7)	-0.0007 (5)	-0.0057 (6)	0.0024 (5)

Geometric parameters (Å, °)

01—C1	1.2925 (16)	N2—C8	1.4812 (18)
O1—H1	0.8400	N2—C12	1.4815 (18)
O2—C1	1.2177 (17)	N2-C10	1.4836 (17)
O3—C6	1.2944 (17)	C7—C8	1.5324 (18)
О3—Н3	0.8400	С7—Н7А	0.9900
O4—C6	1.2217 (18)	С7—Н7В	0.9900
C1—C2	1.4924 (18)	C8—H8A	0.9900
C2—C3	1.3284 (19)	C8—H8B	0.9900
С2—Н2	0.9500	C9—C10	1.5335 (18)
C3—C4	1.4477 (18)	С9—Н9А	0.9900
С3—НЗА	0.9500	С9—Н9В	0.9900
C4—C5	1.3301 (19)	C10—H10A	0.9900
C4—H4	0.9500	C10—H10B	0.9900
C5—C6	1.4931 (18)	C11—C12	1.5342 (18)
С5—Н5	0.9500	C11—H11A	0.9900
N1—C7	1.4800 (17)	C11—H11B	0.9900
N1-C11	1.4825 (17)	C12—H12A	0.9900
N1—C9	1.4835 (16)	C12—H12B	0.9900

C1—O1—H1	109.5	H7A—C7—H7B	108.2
С6—О3—Н3	109.5	N2—C8—C7	109.89 (11)
O2—C1—O1	125.03 (13)	N2—C8—H8A	109.7
O2—C1—C2	122.44 (12)	С7—С8—Н8А	109.7
O1—C1—C2	112.53 (12)	N2—C8—H8B	109.7
C3—C2—C1	123.21 (12)	С7—С8—Н8В	109.7
С3—С2—Н2	118.4	H8A—C8—H8B	108.2
С1—С2—Н2	118.4	N1-C9-C10	109.92 (10)
C2—C3—C4	122.93 (13)	N1—C9—H9A	109.7
С2—С3—НЗА	118.5	С10—С9—Н9А	109.7
С4—С3—НЗА	118.5	N1—C9—H9B	109.7
C5—C4—C3	123.67 (13)	С10—С9—Н9В	109.7
С5—С4—Н4	118.2	H9A—C9—H9B	108.2
C3—C4—H4	118.2	N2—C10—C9	109.32 (10)
C4—C5—C6	122.70 (13)	N2-C10-H10A	109.8
С4—С5—Н5	118.7	C9—C10—H10A	109.8
С6—С5—Н5	118.7	N2-C10-H10B	109.8
O4—C6—O3	125.06 (13)	C9—C10—H10B	109.8
O4—C6—C5	121.79 (12)	H10A—C10—H10B	108.3
O3—C6—C5	113.15 (12)	N1—C11—C12	109.41 (10)
C7—N1—C11	109.23 (10)	N1-C11-H11A	109.8
C7—N1—C9	109.70 (11)	C12—C11—H11A	109.8
C11—N1—C9	108.99 (10)	N1-C11-H11B	109.8
C8—N2—C12	109.88 (11)	C12—C11—H11B	109.8
C8—N2—C10	109.04 (11)	H11A—C11—H11B	108.2
C12—N2—C10	108.85 (11)	N2-C12-C11	109.83 (11)
N1—C7—C8	109.49 (11)	N2—C12—H12A	109.7
N1—C7—H7A	109.8	C11—C12—H12A	109.7
С8—С7—Н7А	109.8	N2—C12—H12B	109.7
N1—C7—H7B	109.8	C11—C12—H12B	109.7
С8—С7—Н7В	109.8	H12A—C12—H12B	108.2
O2—C1—C2—C3	7.1 (2)	N1—C7—C8—N2	-0.71 (16)
O1—C1—C2—C3	-172.87 (14)	C7—N1—C9—C10	-58.31 (14)
C1—C2—C3—C4	178.33 (12)	C11—N1—C9—C10	61.24 (14)
C2—C3—C4—C5	-176.16 (14)	C8—N2—C10—C9	61.06 (14)
C3—C4—C5—C6	-179.99 (12)	C12—N2—C10—C9	-58.81 (14)
C4—C5—C6—O4	0.4 (2)	N1-C9-C10-N2	-2.11 (16)
C4—C5—C6—O3	-179.44 (13)	C7—N1—C11—C12	61.50 (14)
C11—N1—C7—C8	-59.61 (14)	C9—N1—C11—C12	-58.35 (14)
C9—N1—C7—C8	59.80 (14)	C8—N2—C12—C11	-57.63 (14)
C12—N2—C8—C7	59.59 (14)	C10—N2—C12—C11	61.71 (14)
C10—N2—C8—C7	-59.64 (14)	N1—C11—C12—N2	-2.54 (15)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O1—H1…N1	0.84	1.70	2.5299 (14)	170

supporting information

$O3-H3\cdots N2^{1}$	0.84	1.71	2.5447 (15)	170
C3—H3A····O2 ⁱⁱ	0.95	2.53	3.4182 (17)	155
C8—H8A···O3 ⁱⁱ	0.99	2.60	3.4255 (18)	141
C9—H9A····O1 ⁱⁱⁱ	0.99	2.56	3.0789 (17)	113

Symmetry codes: (i) *x*-2, *y*, *z*+1; (ii) -*x*+1, -*y*, -*z*+1; (iii) -*x*+2, -*y*+1, -*z*+1.