

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*N*-Benzoyl-*N'*,*N'*-diphenylthioureato- $\kappa^2 S$,*O*)(η^4 -cycloocta-1,5-diene)-rhodium(I)

Stefan Warsink* and Andreas Roodt

Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa

Correspondence e-mail: 2011009426@ufs4life.ac.za

Received 27 June 2012; accepted 29 June 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; *R* factor = 0.028; *wR* factor = 0.070; data-to-parameter ratio = 18.7.

The title complex, $[Rh(C_{20}H_{15}N_2OS)(C_8H_{12})]$, exhibits an essentially square-planar coordination environment around the Rh^I atom, which bears a bidentate cyclooctadiene ligand as well as a monoanionic bidentate benzoylthioureate ligand. The Rh^I atom, the S- and O-donor atoms and the alkene centroids of the cyclooctadiene ligand do not deviate by more than 0.031 Å from their least mean-squares plane.

Related literature

For rhodium complexes containing related monoanionic bidentate ligands, see: Trzeciak *et al.* (2004); Roodt *et al.* (2011); Crous *et al.* (2005); Guiseppe *et al.* (2011); Venter *et al.* (2009). For bidentate thioureato ligands, see: Sacht *et al.* (2000*a,b*); Kemp *et al.* (1997). For Rh^I complexes bearing cyclooctadiene and *S,O*-bidentate ligands, see: Grim *et al.* (1991); Hesp *et al.* (2007). For Rh^I complexes bearing a thiourea ligand and cyclooctadiene, see: Kotze *et al.* (2010); Cauzzi *et al.* (1995). For trisubstituted thiourea ligands, see: Hernandez *et al.* (2003); Arslan *et al.* (2003).

Experimental

Crystal data $[Rh(C_{20}H_{15}N_2OS)(C_8H_{12})]$ $M_r = 542.50$

Triclinic, $P\overline{1}$ a = 9.8028 (4) Å

	•		
metal	-organic	compound	S
	- or game	compound	

Mo $K\alpha$ radiation

 $0.22 \times 0.17 \times 0.09 \text{ mm}$

 $\mu = 0.84 \text{ mm}^{-1}$

T = 100 K

Z = 2

b = 11.2293 (5) Å
c = 11.5316 (5) Å
$\alpha = 90.408 \ (2)^{\circ}$
$\beta = 91.684 \ (2)^{\circ}$
$\gamma = 112.1831 \ (18)^{\circ}$
$V = 1174.69 (9) \text{ Å}^3$

Data collection

Bruker X8 APEXII 4K KappaCCD	12388 measured reflections
diffractometer	5583 independent reflections
Absorption correction: multi-scan	5014 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2007)	$R_{\rm int} = 0.025$
$T_{\min} = 0.843, \ T_{\max} = 0.927$	

Refinement

ł

5

$R[F^2 > 2\sigma(F^2)] = 0.028$	298 parameters
$vR(F^2) = 0.07$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.66 \ {\rm e} \ {\rm \AA}^{-3}$
583 reflections	$\Delta \rho_{\rm min} = -1.01 \text{ e } \text{\AA}^{-3}$

Table 1 Selected bond lengths (Å).

Rh1-O5	2.0537 (16)	Rh1-S1	2.2942 (10)
Rh1-C21	2.116 (2)	C01-O5	1.263 (2)
Rh1-C22	2.131 (2)	C01-N1	1.330 (3)
Rh1-C25	2.148 (2)	C02-N1	1.346 (3)
Rh1-C26	2.155 (2)	C02-S1	1.726 (2)

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT-Plus* (Bruker, 2007); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors thank SASOL, the South African NRF and THRIP, the University of the Free State Research Fund and the UFS Materials and Nanosciences SStrategic Research Cluster initiative for financial support. The views expressed do not necessarily represent those of the NRF.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2654).

References

- Arslan, H., Flörke, U. & Külcü, N. (2003). Acta Cryst. E59, 0641-0642.
- Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cauzzi, D., Lanfranchi, M., Marzolini, G., Predieri, G., Tiripicchio, A., Costa, M. & Zanoni, R. (1995). J. Organomet. Chem. 488, 115–125.
- Crous, R., Datt, M., Foster, D., Bennie, L., Steenkamp, C., Huyser, J., Kirsten, L., Steyl, G. & Roodt, A. (2005). *Dalton Trans.* pp. 1108–1116.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Grim, S. O., Kettler, P. B. & Thoden, J. B. (1991). Organometallics, 10, 2399–2403.
- Guiseppe, A. D., Casterlenas, R., Perez-Torrente, J. J., Lahoz, F. H., Polo, V. & Oro, L. A. (2011). Angew. Chem. Int. Ed. 50, 3938–3942.
- Hernandez, W., Spodine, E., Munoz, J. C., Beyer, L., Schroder, U., Ferreira, J. & Pavani, M. (2003). *Bioinorg. Chem. Appl.* 1, 271–284.
- Hesp, K. D., Wechsler, D., Cipot, J., Myers, A., McDonald, R., Ferguson, M. J., Schatte, G. & Stradiotto, M. (2007). Organometallics, 26, 5430–5437.
- Kemp, G., Purcell, W., Roodt, A. & Koch, K. R. (1997). J. Chem. Soc. Dalton Trans. pp. 4481–4483.
- Kotze, P. D. R., Roodt, A., Venter, J. A. & Otto, S. (2010). Acta Cryst. E66, m1028–m1029.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Roodt, A., Visser, H. G. & Brink, A. (2011). Crystallogr. Rev. 17, 241-280.

- Sacht, C. I., Datt, M. S., Otto, S. & Roodt, A. (2000a). J. Chem. Soc. Dalton Trans. pp. 727-73.
- Sacht, C. I., Datt, M. S., Otto, S. & Roodt, A. (2000b). J. Chem. Soc. Dalton Trans. pp. 4579–4586.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Trzeciak, A. M., Borak, B., Cinnik, Z., Ziolkowski, J. J., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2004). *Eur. J. Inorg. Chem.* pp. 1411–1419.
- Venter, J. A., Purcell, W., Visser, H. G. & Muller, T. J. (2009). Acta Cryst. E65, m1578.

supporting information

Acta Cryst. (2012). E68, m1053–m1054 [https://doi.org/10.1107/S1600536812029753] (*N*-Benzoyl-*N'*,*N'*-diphenylthioureato- $\kappa^2 S$,*O*)(η^4 -cycloocta-1,5-diene)rhodium(I)

Stefan Warsink and Andreas Roodt

S1. Comment

Rhodium complexes bearing bidentate ligands that bond through σ -interactions, such as β -diketonates and 8-hydroxyquinolates are well known (Trzeciak *et al.*, 2004; Guiseppe *et al.*, 2011). These bidentate ligands are compatible with a wide range of other ligands such as carbonyls and phosphines (Crous *et al.*, 2005; Venter *et al.*, 2009; Roodt *et al.*, 2011). Also regularly employed are thioureato ligands (Sacht *et al.*, 2000*a,b*; Kemp *et al.*, 1997).

The title compound $[Rh(C_8H_{12})(C_{20}H_{15}N_2OS)]$, (I), bears a benzoyl-functionalized thioureato moiety (Arslan *et al.*, 2003), which can coordinate as a mono- or a bidentate ligand, depending on the metal and the other ligands present. With this specific ligand class, it was found that the peripheral substitution pattern significantly influences the coordination behaviour. When an *N*,*N'*,*N'*-trisubstituted thiourea ligand was employed, as is the case in this study, the thiourea coordinates as a monoanionic bidentate ligand, whereas an *N*,*N'*-disubstituted thiourea coordinates only through its sulfur-atom as a neutral monodentate ligand which is stabilized through intramolecular hydrogen bonding (Cauzzi *et al.*, 1995; Kotze *et al.*, 2010). One of these hydrogen bonds ensures that the sulfur and oxygen atoms are in a mutual *trans*-position, which stabilizes the pre-ligand in such a way that bidentate coordination is prevented. In the trisubstituted variation used in this study, this intramolecular interaction is not possible (Hernandez *et al.*, 2003), which enables the ligand to coordinate through its sulfur and oxygen atoms simultaneously. This structural report is only the third in which a rhodium complex bears both cyclooctadiene and *S*,*O*-bidentate ligands (Grim *et al.*, 1991; Hesp *et al.*, 2007).

The geometric parameters show that the rhodium(I) atom in the title compound has an essentially square planar coordination sphere. The deviation of the rhodium ion from the least mean squares plane, defined by the rhodium, oxygen and sulfur atoms and the centroids of the cyclooctadiene alkene bonds, is 0.001 Å. The donor atoms of the thioureato ligand and the centroids do not deviate more than 0.031 and 0.011 Å, respectively. The *S*,*O*-ligand exhibits a bite angle of 92.60 (5)°, and the cyclooctadiene ligand shows a bite angle of 87.90 (8)°. The bond lengths of the ligands to rhodium are all within the expected range for a compound of this type. The monoanionic ligand shows electron delocalization so that the bond lengths fall between those of single and double C—O, C—S and C—N bonds. There are no significant intermolecular interactions.

S2. Experimental

The title compound was prepared by adding 0.4 mmol of *N*-benzoyl-*N*,*N*'-diphenyl thiourea to a suspension of 0.2 mmol [RhCl(cod)]₂ (cod is cyclooctadiene) in 5 ml of dichloromethane. The orange suspension changed into an orange solution, from which a yellow precipitate formed. After one hour of stirring, the yellow solid was isolated by filtration with a yield of 197 mg (90%, 0.36 mmol). ¹H NMR (300 MHz, CDCl₃): δ 7.66 (d, ³*J*(HH) = 7.4 Hz, 2H, *o*-benzoyl-H), 7.5–7.2 (m, 13H, 2x Ph, benzoyl), 4.71 (m, 2H, cod-alkene), 3.84 (m, 2H, cod-alkene), 2.6–2.4 (m, 4H, cod-alkane), 2.1–1.9 (m, 4H, cod-alkane). Yellow crystals of (I) were obtained by slow evaporation of a dichloromethane solution.

S3. Refinement

The hydrogen atoms were added geometrically and refined as riding on their parent atoms, with C—H distances of 0.95 Å for phenyl H atoms, of 1.00 Å for those bonded to sp^2 C atoms and of 0.99 Å for those bonded to sp^2 C atoms of the cyclooctadiene ligand. The thermal displacement coefficients $U_{iso}(H)$ were set to $1.2U_{eq}(C)$ of the corresponding parent atoms.

Figure 1

Molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. H-atoms have been omitted for clarity.

 $(N-\text{Benzoyl-}N', N'-\text{diphenylthioureato-} \kappa^2 S, O)(\eta^4-\text{cycloocta-}1, 5-\text{diene})\text{rhodium}(I)$

Cry	stai	da	ta	
	\sim			

$[Rh(C_{20}H_{15}N_2OS)(C_8H_{12})]$	Z = 2
$M_r = 542.50$	F(000) = 556
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.534 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71069$ Å
a = 9.8028 (4) Å	Cell parameters from 7390 reflections
b = 11.2293 (5) Å	$\theta = 2.7 - 28.4^{\circ}$
c = 11.5316(5) Å	$\mu=0.84~\mathrm{mm^{-1}}$
$\alpha = 90.408 \ (2)^{\circ}$	T = 100 K
$\beta = 91.684 \ (2)^{\circ}$	Cuboid, yellow
$\gamma = 112.1831 \ (18)^{\circ}$	$0.22 \times 0.17 \times 0.09 \text{ mm}$
$V = 1174.69 (9) Å^3$	

Data collection

Bruker X8 APEXII 4K KappaCCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2007) $T_{\min} = 0.843, T_{\max} = 0.927$ Refinement	12388 measured reflections 5583 independent reflections 5014 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 28^{\circ}, \theta_{min} = 1.8^{\circ}$ $h = -12 \rightarrow 12$ $k = -14 \rightarrow 14$ $l = -14 \rightarrow 15$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.028$	Hydrogen site location: inferred from
$wR(F^2) = 0.07$	neighbouring sites
S = 1.04	H-atom parameters constrained
5583 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0309P)^2 + 0.9591P]$
298 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
0 constraints	$\Delta \rho_{\rm max} = 0.66 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	$\Delta \rho_{\min} = -1.01 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The intensity data was collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 10 s/frame. A total of 1166 frames was collected with a frame width of 0.5° covering up to $\theta = 28.00^{\circ}$ with 98.3% completeness accomplished.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Rh1	0.208984 (18)	0.353095 (14)	0.129434 (13)	0.01276 (6)
C01	0.2830 (2)	0.59145 (18)	0.28171 (17)	0.0130 (4)
C02	0.2300 (2)	0.41377 (19)	0.40937 (17)	0.0140 (4)
C03	0.3203 (2)	0.73436 (19)	0.28531 (18)	0.0140 (4)
C04	0.3589 (2)	0.8052 (2)	0.18426 (19)	0.0171 (4)
H04	0.3621	0.7631	0.1132	0.02*
C05	0.3927 (3)	0.9370(2)	0.1869 (2)	0.0219 (5)
H05	0.42	0.9849	0.118	0.026*
C06	0.3866 (3)	0.9989(2)	0.2904 (2)	0.0229 (5)
H06	0.4089	1.0889	0.2921	0.027*
C07	0.3477 (3)	0.9289 (2)	0.3912 (2)	0.0212 (5)
H07	0.3431	0.9713	0.4617	0.025*
C08	0.3154 (2)	0.7970 (2)	0.38982 (19)	0.0181 (4)

U08	0 2001	0 7408	0.4503	0.022*
C09	0.2901 0.1083 (2)	0.7498	0.4595	0.022
C10	0.1765(2)	0.20327(10) 0.1837(2)	0.50741(17) 0.50464(18)	0.0135(4)
H10	-0.0243	0.2112	0.59404 (10)	0.0175 (4)
C11	0.0243	0.2112	0.5809 0.64042 (10)	0.021
	-0.0675	0.0030 (2)	0.64642 (19)	0.0200 (4)
ПП С12	-0.0073	0.007	0.0308 0.66217(18)	0.023°
U12	0.1404 (5)	0.0243 (2)	0.00217 (18)	0.0191 (4)
П12 С13	0.1200 0.2801 (2)	-0.0381	0.0934	0.023°
U13	0.2691 (5)	0.1030 (2)	0.03044 (10)	0.0177 (4)
П13 С14	0.3088	0.0791	0.0340	0.021°
C14	0.3101(2) 0.4125	0.22373 (19)	0.59104 (18)	0.0100 (4)
П14 С15	0.4155	0.2811	0.3738	0.019°
C15	0.2400(2) 0.1200(2)	0.49150(19)	0.00970(17)	0.0146(4)
	0.1290 (3)	0.3237 (2)	0.03970 (19)	0.0193 (4)
H10 C17	0.0340 0.1407 (2)	0.4800	0.0035	0.023°
C17	0.1497 (3)	0.6194 (2)	0.7232 (2)	0.0229 (5)
HI/	0.0696	0.6423	0.7437	0.028*
	0.2883 (3)	0.6818 (2)	0.77667 (19)	0.0226 (5)
HI8	0.3028	0./4//	0.8332	0.02/*
C19	0.4047 (3)	0.6476 (2)	0.74738 (19)	0.0206 (5)
HI9	0.4988	0.6895	0.7846	0.025*
C20	0.3844 (2)	0.5520 (2)	0.66356 (19)	0.0179 (4)
H20	0.4642	0.5284	0.6434	0.021*
C21	0.2178 (3)	0.17668 (19)	0.07235 (18)	0.0182 (4)
H21	0.235	0.1239	0.1364	0.022*
C22	0.0719 (2)	0.16845 (19)	0.06089 (18)	0.0170 (4)
H22	0.0045	0.1112	0.1183	0.02*
C23	-0.0034 (3)	0.1745 (2)	-0.0552 (2)	0.0214 (5)
H23A	-0.109	0.1182	-0.0531	0.026*
H23B	0.0411	0.1412	-0.1172	0.026*
C24	0.0098 (3)	0.3117 (2)	-0.0848(2)	0.0220 (5)
H24A	0.0075	0.3199	-0.1701	0.026*
H24B	-0.076	0.3266	-0.0546	0.026*
C25	0.1499 (3)	0.4135 (2)	-0.03437 (18)	0.0178 (4)
H25	0.1477	0.5018	-0.032	0.021*
C26	0.2907 (3)	0.4124 (2)	-0.04074 (18)	0.0186 (4)
H26	0.3709	0.4998	-0.0423	0.022*
C27	0.3242 (3)	0.3089 (2)	-0.10575 (19)	0.0213 (5)
H27A	0.4215	0.3481	-0.1412	0.026*
H27B	0.249	0.2721	-0.169	0.026*
C28	0.3250 (3)	0.2003 (2)	-0.0247 (2)	0.0228 (5)
H28A	0.3	0.1199	-0.0712	0.027*
H28B	0.4257	0.2227	0.0093	0.027*
N1	0.2633 (2)	0.53861 (16)	0.38583 (15)	0.0151 (3)
N2	0.2253 (2)	0.38996 (16)	0.52418 (15)	0.0144 (3)
O5	0.27726 (18)	0.54244 (13)	0.18189 (12)	0.0178 (3)
S1	0.19325 (6)	0.28310 (5)	0.31682 (4)	0.01539 (11)

supporting information

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Rh1	0.01427 (9)	0.00972 (8)	0.01327 (9)	0.00346 (6)	-0.00045 (6)	-0.00109 (5)
C01	0.0090 (9)	0.0108 (9)	0.0177 (10)	0.0020 (7)	-0.0010 (7)	-0.0010 (7)
C02	0.0112 (10)	0.0144 (9)	0.0156 (10)	0.0042 (8)	-0.0005 (7)	0.0005 (7)
C03	0.0096 (9)	0.0101 (9)	0.0210 (10)	0.0025 (7)	-0.0025 (8)	-0.0006 (7)
C04	0.0155 (10)	0.0154 (10)	0.0194 (10)	0.0049 (8)	-0.0023 (8)	0.0003 (8)
C05	0.0198 (11)	0.0154 (10)	0.0285 (12)	0.0045 (9)	-0.0034 (9)	0.0055 (9)
C06	0.0176 (11)	0.0113 (9)	0.0398 (14)	0.0062 (9)	-0.0055 (10)	-0.0026 (9)
C07	0.0174 (11)	0.0167 (10)	0.0294 (12)	0.0070 (9)	-0.0037 (9)	-0.0087 (9)
C08	0.0153 (10)	0.0154 (10)	0.0225 (11)	0.0046 (8)	-0.0008 (8)	-0.0015 (8)
C09	0.0178 (10)	0.0105 (9)	0.0117 (9)	0.0037 (8)	-0.0011 (8)	-0.0017 (7)
C10	0.0146 (10)	0.0185 (10)	0.0194 (10)	0.0064 (9)	0.0012 (8)	0.0001 (8)
C11	0.0188 (11)	0.0147 (10)	0.0240 (11)	0.0013 (9)	0.0023 (9)	0.0010 (8)
C12	0.0278 (12)	0.0131 (9)	0.0157 (10)	0.0066 (9)	0.0030 (9)	0.0017 (8)
C13	0.0214 (11)	0.0173 (10)	0.0161 (10)	0.0096 (9)	-0.0031 (8)	-0.0031 (8)
C14	0.0146 (10)	0.0147 (10)	0.0169 (10)	0.0036 (8)	-0.0007 (8)	-0.0020 (8)
C15	0.0169 (10)	0.0122 (9)	0.0133 (9)	0.0038 (8)	0.0006 (8)	0.0020 (7)
C16	0.0172 (11)	0.0208 (11)	0.0198 (10)	0.0074 (9)	-0.0018 (8)	-0.0012 (8)
C17	0.0240 (12)	0.0252 (11)	0.0242 (11)	0.0144 (10)	0.0032 (9)	-0.0010 (9)
C18	0.0310 (13)	0.0164 (10)	0.0198 (11)	0.0085 (10)	0.0004 (9)	-0.0028 (8)
C19	0.0206 (11)	0.0144 (10)	0.0221 (11)	0.0015 (9)	-0.0025 (9)	-0.0022 (8)
C20	0.0179 (11)	0.0148 (10)	0.0207 (10)	0.0058 (8)	0.0005 (8)	0.0000 (8)
C21	0.0263 (12)	0.0120 (9)	0.0171 (10)	0.0084 (9)	-0.0016 (9)	-0.0026 (8)
C22	0.0198 (11)	0.0089 (9)	0.0196 (10)	0.0025 (8)	-0.0016 (8)	-0.0035 (7)
C23	0.0216 (12)	0.0159 (10)	0.0236 (11)	0.0040 (9)	-0.0057 (9)	-0.0037 (8)
C24	0.0233 (12)	0.0205 (11)	0.0226 (11)	0.0094 (9)	-0.0064 (9)	-0.0014 (9)
C25	0.0256 (12)	0.0125 (9)	0.0145 (10)	0.0068 (9)	-0.0045 (8)	0.0008 (7)
C26	0.0232 (12)	0.0158 (10)	0.0140 (10)	0.0040 (9)	0.0018 (8)	0.0014 (8)
C27	0.0249 (12)	0.0232 (11)	0.0169 (10)	0.0099 (10)	0.0043 (9)	-0.0005 (8)
C28	0.0254 (12)	0.0251 (11)	0.0218 (11)	0.0142 (10)	0.0001 (9)	-0.0044 (9)
N1	0.0148 (9)	0.0123 (8)	0.0174 (9)	0.0044 (7)	-0.0007 (7)	-0.0003 (6)
N2	0.0151 (9)	0.0104 (8)	0.0152 (8)	0.0023 (7)	-0.0012 (7)	-0.0016 (6)
05	0.0244 (8)	0.0101 (7)	0.0153 (7)	0.0026 (6)	0.0004 (6)	-0.0016 (5)
S1	0.0199 (3)	0.0101 (2)	0.0143 (2)	0.0037 (2)	-0.00070(19)	-0.00073 (18)

Geometric parameters (Å, °)

Rh1—O5	2.0537 (16)	C14—H14	0.95	
Rh1—C21	2.116 (2)	C15—C16	1.384 (3)	
Rh1—C22	2.131 (2)	C15—C20	1.387 (3)	
Rh1—C25	2.148 (2)	C15—N2	1.453 (3)	
Rh1—C26	2.155 (2)	C16—C17	1.390 (3)	
Rh1—S1	2.2942 (10)	C16—H16	0.95	
C01—O5	1.263 (2)	C17—C18	1.393 (3)	
C01—N1	1.330 (3)	C17—H17	0.95	
C01—C03	1.505 (3)	C18—C19	1.384 (3)	

C02—N1	1.346 (3)	C18—H18	0.95
C02—N2	1.351 (3)	C19—C20	1.393 (3)
C02—S1	1.726 (2)	С19—Н19	0.95
C03—C04	1.395 (3)	С20—Н20	0.95
C03—C08	1.403 (3)	C21—C22	1.400 (3)
C04—C05	1.389 (3)	C21—C28	1.514 (3)
C04—H04	0.95	C21—H21	1
C05—C06	1 390 (3)	C^{22} C^{23}	1 524 (3)
C05—H05	0.95	C22_H22	1
C06-C07	1 389 (3)	C_{23} C_{24}	1 538 (3)
C06 H06	0.95	C23 H23A	0.00
C07 C08	1 302 (3)	C23 H23R	0.99
C07 + 007	0.05	C24 C25	0.55
C0/-H0/	0.95	C_{24} U_{24}	1.312(3)
C00 C14	0.95	C24—H24A	0.99
C09—C14	1.388 (3)	C24—H24B	0.99
C09—C10	1.390 (3)	C25-C26	1.389 (3)
C09—N2	1.449 (2)	С25—Н25	1
C10—C11	1.394 (3)	C26—C27	1.520 (3)
C10—H10	0.95	C26—H26	1
C11—C12	1.382 (3)	C27—C28	1.544 (3)
C11—H11	0.95	С27—Н27А	0.99
C12—C13	1.388 (3)	C27—H27B	0.99
C12—H12	0.95	C28—H28A	0.99
C13—C14	1.392 (3)	C28—H28B	0.99
С13—Н13	0.95		
O5—Rh1—C21	160.27 (8)	C18—C17—H17	120.1
O5—Rh1—C22	160.44 (8)	C19—C18—C17	120.0 (2)
C21—Rh1—C22	38.48 (9)	C19—C18—H18	120
O5—Rh1—C25	86.38 (7)	C17—C18—H18	120
C21—Rh1—C25	98.03 (8)	C18—C19—C20	120.3 (2)
C22—Rh1—C25	81.92 (8)	С18—С19—Н19	119.9
O5—Rh1—C26	89.94 (7)	С20—С19—Н19	119.9
C_{21} —Rh1—C ₂₆	82.25 (8)	C15-C20-C19	1194(2)
C_{22} = Rh1 = C_{26}	90.31 (9)	$C_{15} = C_{20} = H_{20}$	120.3
C_{25} Rh1 C_{26}	37 66 (9)	C19 - C20 - H20	120.3
05-Rh1-S1	92 60 (5)	C_{22} C_{21} C_{28}	125.9(2)
C_{21} Rh1 S1	92.00 (5) 89.41 (6)	$C_{22} = C_{21} = C_{20}$	71.31(12)
$C_{21} = R_{11} = S_1$	03.41(0)	$C_{22} = C_{21} = R_{11}$	100.86(14)
$C_{22} = R_{11} = S_1$	35.50(0)	$C_{20} = C_{21} = K_{11}$	109.80 (14)
C_{23} Rill $-S_{1}$	100.08(7)	$C_{22} = C_{21} = H_{21}$	113.9
C20—Rn1—S1	101.03(7)	C28—C21—H21	113.9
05-001-002	131.01 (18)	Rn1 = C21 = H21	113.9
U5-C01-C03	113.41 (17)	$C_{21} = C_{22} = C_{23}$	123.5 (2)
NI-C01-C03	113.57 (18)	C21—C22—Kh1	/0.21 (12)
N1—C02—N2	113.29 (18)	C23—C22—Rh1	113.14 (14)
N1—C02—S1	130.18 (16)	C21—C22—H22	114.1
N2—C02—S1	116.53 (15)	C23—C22—H22	114.1
C04—C03—C08	119.53 (19)	Rh1—C22—H22	114.1

C04—C03—C01	120.11 (19)	C22—C23—C24	112.68 (18)
C08—C03—C01	120.36 (18)	С22—С23—Н23А	109.1
C05—C04—C03	120.4 (2)	C24—C23—H23A	109.1
С05—С04—Н04	119.8	С22—С23—Н23В	109.1
С03—С04—Н04	119.8	C24—C23—H23B	109.1
C04—C05—C06	120.1 (2)	H23A—C23—H23B	107.8
С04—С05—Н05	120	C25—C24—C23	112.62 (18)
С06—С05—Н05	120	C25—C24—H24A	109.1
C07—C06—C05	119.9 (2)	C23—C24—H24A	109.1
С07—С06—Н06	120.1	C25—C24—H24B	109.1
С05—С06—Н06	120.1	C23—C24—H24B	109.1
C06—C07—C08	120.5 (2)	H24A—C24—H24B	107.8
С06—С07—Н07	119.7	$C_{26} - C_{25} - C_{24}$	125.8 (2)
С08—С07—Н07	119.7	$C_{26} = C_{25} = R_{h1}$	71.44 (12)
C07 - C08 - C03	119.6 (2)	C_{24} C_{25} R_{h1}	110.18(14)
C07—C08—H08	120.2	$C_{26} = C_{25} = H_{25}$	113.8
C03 - C08 - H08	120.2	C_{24} C_{25} H_{25}	113.8
C14-C09-C10	121.27 (19)	Rh1 - C25 - H25	113.8
C14-C09-N2	119 49 (19)	C_{25} C_{26} C_{27}	123.3(2)
C10-C09-N2	119.19 (19)	$C_{25} = C_{26} = R_{h1}$	70.90(12)
C09 - C10 - C11	119.0(2)	$C_{27} - C_{26} - R_{h1}$	112 49 (14)
C09 - C10 - H10	120.5	C_{25} C_{26} H_{26}	112.19 (11)
$C_{11} - C_{10} - H_{10}$	120.5	$C_{27} = C_{26} = H_{26}$	114.2
C_{12} C_{11} C_{10} C_{10}	120.3 120.3(2)	Rh1 - C26 - H26	114.2
$C_{12} = C_{11} = C_{10}$	110.0	$C_{20} = C_{20} = C$	111.68 (18)
C12 - C11 - H11	119.9	$C_{20} = C_{27} = C_{28}$	100 3
C_{11} C_{12} C_{13}	119.9 120.1(2)	$C_{20} = C_{27} = H_{27A}$	109.3
$C_{11} = C_{12} = C_{13}$	110.0	$C_{26} = C_{27} = H_{27}R$	109.3
$C_{12} = C_{12} = H_{12}$	119.9	$C_{20} = C_{27} = H_{27}B$	109.3
$C_{13} - C_{12} - H_{12}$	119.9	C_{20} C_{27} H_{27} H_{27}	109.3
$C_{12} = C_{13} = C_{14}$	120.4 (2)	112/A - C2/-112/B	107.9 112.00(10)
С12—С13—Н13	119.8	$C_{21} = C_{20} = C_{27}$	113.09 (19)
C14 - C13 - H13	119.0	$C_{21} = C_{20} = H_{20A}$	109
C09 - C14 - C13	118.9 (2)	$C_2/-C_{20}$ -H28A	109
$C_{09} - C_{14} - H_{14}$	120.0	C_{21} C_{28} H_{28B}	109
C16 C15 C20	120.0	$C_2/-C_{20}$ - Π_{20} B	109
C16 - C15 - C20	120.8(2)	$H_{28A} = C_{28} = H_{28B}$	107.8
C10-C15-N2	120.08 (19)	C01 - N1 - C02	120.80 (18)
C_{20} — C_{15} — N_{2}	119.10 (19)	C02 = N2 = C09	122.68(17)
	119.7 (2)	C02 - N2 - C15	121.22 (17)
C15—C16—H16	120.1	C09 - N2 - C15	116.10 (16)
C17—C16—H16	120.1	C01 = O5 = Rh1	130.27 (13)
	119.9 (2)	C02—S1—Rh1	108.49 (7)
C16—C17—H17	120.1		
O5—C01—C03—C04	-5.8 (3)	C21—Rh1—C25—C26	-66.06 (14)
N1-C01-C03-C04	173.41 (18)	C22—Rh1—C25—C26	-101.12 (14)
O5—C01—C03—C08	173.64 (19)	S1—Rh1—C25—C26	-177.86 (13)
N1-C01-C03-C08	-7.2 (3)	O5—Rh1—C25—C24	-143.13 (16)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8—C03—C04—C05	0.2 (3)	C21—Rh1—C25—C24	56.21 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1—C03—C04—C05	179.6 (2)	C22—Rh1—C25—C24	21.15 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3-C04-C05-C06	-0.7 (3)	C26—Rh1—C25—C24	122.3 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4—C05—C06—C07	0.5 (3)	S1—Rh1—C25—C24	-55.6 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	0.3 (3)	C24—C25—C26—C27	3.0 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6—C07—C08—C03	-0.8 (3)	Rh1-C25-C26-C27	104.9 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4—C03—C08—C07	0.6 (3)	C24—C25—C26—Rh1	-101.9(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1-C03-C08-C07	-178.84 (19)	O5—Rh1—C26—C25	-84.15 (13)
$\begin{split} & \text{N2}-\text{C09}-\text{C10}-\text{C11} & -178.66 (19) & \text{C22}-\text{Rh}1-\text{C26}-\text{C25} & 76.28 \\ & \text{C09}-\text{C10}-\text{C11}-\text{C12} & 1.1 (3) & \text{S1}-\text{Rh}1-\text{C26}-\text{C25} & 177.7 \\ & \text{C10}-\text{C11}-\text{C12}-\text{C13} & 0.0 (3) & \text{O5}-\text{Rh}1-\text{C26}-\text{C27} & 156.7 \\ & \text{C11}-\text{C12}-\text{C13}-\text{C14} & -1.0 (3) & \text{C21}-\text{Rh}1-\text{C26}-\text{C27} & -5.04 \\ & \text{C10}-\text{C09}-\text{C14}-\text{C13} & 0.3 (3) & \text{C22}-\text{Rh}1-\text{C26}-\text{C27} & -42.7 \\ & \text{N2}-\text{C09}-\text{C14}-\text{C13} & 177.69 (18) & \text{C25}-\text{Rh}1-\text{C26}-\text{C27} & -8.94 \\ & \text{C20}-\text{C15}-\text{C16}-\text{C17} & 1.2 (3) & \text{C25}-\text{C26}-\text{C27}-\text{C28} & -94.1 \\ & \text{N2}-\text{C15}-\text{C16}-\text{C17} & 1.2 (3) & \text{C25}-\text{C26}-\text{C27}-\text{C28} & -94.1 \\ & \text{N2}-\text{C15}-\text{C16}-\text{C17} & 178.88 (19) & \text{Rh}1-\text{C26}-\text{C27} & -28.9 \\ & \text{C16}-\text{C17}-\text{C18}-\text{C19} & -0.6 (3) & \text{Rh}1-\text{C26}-\text{C27} & -28.9 \\ & \text{C16}-\text{C17}-\text{C18}-\text{C19} & -0.6 (3) & \text{Rh}1-\text{C26}-\text{C27} & -35.9 \\ & \text{C16}-\text{C15}-\text{C20}-\text{C19} & -1.0 (3) & \text{O5}-\text{C01}-\text{N1}-\text{C02} & -0.6 \\ & \text{N2}-\text{C15}-\text{C20}-\text{C19} & -1.0 (3) & \text{O5}-\text{C01}-\text{N1}-\text{C02} & -0.6 \\ & \text{N2}-\text{C15}-\text{C20}-\text{C19} & -1.0 (3) & \text{O5}-\text{C01}-\text{N1}-\text{C02} & -179. \\ & \text{C16}-\text{C17}-\text{C22} & -167.87 (17) & \text{S1}-\text{C02}-\text{N1}-\text{C01} & -3.7 \\ & \text{C25}-\text{Rh}1-\text{C21}-\text{C22} & -167.87 (17) & \text{S1}-\text{C02}-\text{N2}-\text{C09} & 3.0 (3) \\ & \text{S1}-\text{Rh}1-\text{C21}-\text{C22} & -160.37 (14) & \text{S1}-\text{C02}-\text{N2}-\text{C09} & 3.0 (3) \\ & \text{S1}-\text{Rh}1-\text{C21}-\text{C28} & 45.4 (3) & \text{S1}-\text{C02}-\text{N2}-\text{C09} & 3.0 (3) \\ & \text{S1}-\text{Rh}1-\text{C21}-\text{C28} & 22.07 (15) & \text{C14}-\text{C09}-\text{N2}-\text{C02} & 88.4 \\ \\ & \text{C25}-\text{Rh}1-\text{C21}-\text{C28} & 56.38 (17) & \text{C10}-\text{C09}-\text{N2}-\text{C02} & 94.2 \\ & \text{C26}-\text{Rh}1-\text{C21}-\text{C28} & 22.07 (15) & \text{C14}-\text{C09}-\text{N2}-\text{C02} & 94.2 \\ & \text{C26}-\text{Rh}1-\text{C21}-\text{C28} & 22.07 (15) & \text{C14}-\text{C09}-\text{N2}-\text{C02} & 94.2 \\ & \text{C26}-\text{Rh}1-\text{C21}-\text{C28} & 22.07 (15) & \text{C14}-\text{C09}-\text{N2}-\text{C02} & 94.2 \\ & \text{C26}-\text{Rh}1-\text{C21}-\text{C28} & 22.07 (15) & \text{C14}-\text{C09}-\text{N2}-\text{C02} & 94.2 \\ & \text{C26}-\text{Rh}1-\text{C21}-\text{C28} & 141.51 (15) & \text{C10}-\text{C09}-\text{N2}-\text{C02} & 94.2 \\ & \text{C26}-\text{Rh}1-\text{C21}-\text{C28} & 141.51 (15) & \text$	4—C09—C10—C11	-1.3 (3)	C21—Rh1—C26—C25	114.02 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-178.66 (19)	C22—Rh1—C26—C25	76.28 (13)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9—C10—C11—C12	1.1 (3)	S1—Rh1—C26—C25	177.75 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0-C11-C12-C13	0.0(3)	05—Rh1—C26—C27	156.78 (16)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$1 - C_{12} - C_{13} - C_{14}$	-10(3)	C_{21} = Rh1 = C_{26} = C_{27}	-5.04(16)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 - C09 - C14 - C13	03(3)	C_{22} —Rh1— C_{26} — C_{27}	-42.78(17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-C09-C14-C13	177 69 (18)	C_{25} Rh1 C_{26} C_{27}	-1191(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2—C13—C14—C09	08(3)	S1—Rh1—C26—C27	58 7 (3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 - C15 - C16 - C17	12(3)	C_{25} C_{26} C_{27} C_{28}	-941(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-C15-C16-C17	178 88 (19)	Bh1-C26-C27-C28	-129(2)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	5-C16-C17-C18	-0.4(3)	$C_{22} = C_{21} = C_{28} = C_{27}$	44.9(3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 - C17 - C18 - C19	-0.6(3)	Bh1-C21-C28-C27	-359(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 - C18 - C19 - C20	0.0(3)	$C_{26} = C_{27} = C_{28} = C_{21}$	32.2(3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$6 - C_{15} - C_{20} - C_{19}$	-10(3)	05-01-1020	-0.6(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-C15-C20-C19	-17870(18)	C03 - C01 - N1 - C02	-17959(19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8-C19-C20-C15	0.0(3)	N_{2} C_{02} N_{1} C_{01}	176 38 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-Rh1-C21-C22	-167.87(17)	S1 - C02 - N1 - C01	-37(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 = Rh1 = C21 = C22	-66.06(14)	N1 - C02 - N2 - C09	$-177\ 07\ (18)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 - Rh1 - C21 - C22	-10037(14)	N1 = C02 = N2 = C09	30(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-Rh1-C21-C22	96 05 (12)	N1 - C02 - N2 - C15	3.3(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-Rh1-C21-C28	-454(3)	N1 = C02 = N2 = C15	-176.63(15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 = Rh1 = C21 = C28	1224(2)	$C_{14} = C_{09} = N_2 = C_{02}$	88 4 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 = Rh1 = C21 = C28	56 38 (17)	C10-C09-N2-C02	-942(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 - Rh1 - C21 - C28	22.07 (15)	C14 - C09 - N2 - C15	-920(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-Rh1-C21-C28	-14151(15)	C10-C09-N2-C15	85 4 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8-C21-C22-C23	38(3)	C16-C15-N2-C02	84 2 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1 - C^{21} - C^{22} - C^{23}$	105 22 (19)	C_{20} C_{15} N_{2} C_{02}	-981(2)
O5-Rh1-C22-C21 167.77 (18) C20-C15-N2-C09 82.3 (C25-Rh1-C22-C21 113.92 (14) N1-C01-O5-Rh1 8.8 (3) C26-Rh1-C22-C21 77.09 (13) C03-C01-O5-Rh1 -172. S1-Rh1-C22-C21 77.09 (13) C03-C01-O5-Rh1 -172. S1-Rh1-C22-C21 -84.89 (12) C21-Rh1-O5-C01 -104. O5-Rh1-C22-C23 48.8 (3) C22-Rh1-O5-C01 98.2 (C21-Rh1-C22-C23 -119.0 (2) C25-Rh1-O5-C01 151.3 C25-Rh1-C22-C23 -5.05 (17) C26-Rh1-O5-C01 -171. C26-Rh1-C22-C23 -5.05 (17) C26-Rh1-O5-C01 -93.0 S1-Rh1-C22-C23 -5.05 (17) S1-Rh1-O5-C01 -93.0 S1-Rh1-C22-C23 -41.89 (17) S1-Rh1-O5-C01 -93.0 S1-Rh1-C22-C23 -41.89 (17) S1-Rh1-O5-C01 -93.0 S1-Rh1-C22-C23 -41.89 (17) S1-Rh1-O5-C01 -93.0 S1-Rh1-C22-C23 -65.14 (16) N1-C02-S1-Rh1 0.0 (2 C21-C22-C23-C24 -92.8 (3) N2-C02-S1-Rh1 179.9 Rh1-C22-C23-C24 -12.0 (3) O5-Rh1-S1-C02 4.43 (0 <td>$8-C^{2}1-C^{2}2-Bh^{2}$</td> <td>-1014(2)</td> <td>C16-C15-N2-C09</td> <td>-954(2)</td>	$8-C^{2}1-C^{2}2-Bh^{2}$	-1014(2)	C16-C15-N2-C09	-954(2)
C25—Rh1—C22—C21 113.92 (14) N1—C01—O5—Rh1 8.8 (3) C26—Rh1—C22—C21 77.09 (13) C03—C01—O5—Rh1 -172. S1—Rh1—C22—C21 77.09 (13) C03—C01—O5—Rh1 -172. S1—Rh1—C22—C21 -84.89 (12) C21—Rh1—O5—C01 -104. O5—Rh1—C22—C23 48.8 (3) C22—Rh1—O5—C01 98.2 (12) C21—Rh1—C22—C23 -119.0 (2) C25—Rh1—O5—C01 151.3 C25—Rh1—C22—C23 -5.05 (17) C26—Rh1—O5—C01 -171. C26—Rh1—C22—C23 -41.89 (17) S1—Rh1—O5—C01 -9.30 S1—Rh1—C22—C23 156.14 (16) N1—C02—S1—Rh1 0.0 (2) C21—C22—C23—C24 -92.8 (3) N2—C02—S1—Rh1 179.9 Rh1—C22—C23—C24 -12.0 (3) O5—Rh1—S1—C02 4.43 (14.43)	-Rh1-C22-C21	167 77 (18)	C_{20} C_{15} N_{2} C_{09}	82.3 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 = Rh1 = C22 = C21	113 92 (14)	N1-C01-O5-Rh1	88(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 - Rh1 - C22 - C21	77.09 (13)	C03-C01-O5-Rh1	-172.15(13)
O5-Rh1-C22-C23 48.8 (3) C22-Rh1-O5-C01 98.2 (C21-Rh1-C22-C23 -119.0 (2) C25-Rh1-O5-C01 151.3 C25-Rh1-C22-C23 -5.05 (17) C26-Rh1-O5-C01 -171. C26-Rh1-C22-C23 -41.89 (17) S1-Rh1-O5-C01 -9.30 S1-Rh1-C22-C23 156.14 (16) N1-C02-S1-Rh1 0.0 (2 C21-C22-C23-C24 -92.8 (3) N2-C02-S1-Rh1 179.9 Rh1-C22-C23-C24 -12.0 (3) O5-Rh1-S1-C02 4.43 (-Rh1-C22-C21	-84.89(12)	C_{21} = Rh1 = O_{2} = C01	-104.8(3)
C21—Rh1—C22—C23 -119.0 (2) C25—Rh1—O5—C01 151.3 C25—Rh1—C22—C23 -5.05 (17) C26—Rh1—O5—C01 -171. C26—Rh1—C22—C23 -41.89 (17) S1—Rh1—O5—C01 -9.30 S1—Rh1—C22—C23 156.14 (16) N1—C02—S1—Rh1 0.0 (2 C21—C22—C23—C24 -92.8 (3) N2—C02—S1—Rh1 179.9 Rh1—C22—C23—C24 -12.0 (3) O5—Rh1—S1—C02 4.43 (17)	-Rh1-C22-C23	48.8 (3)	C_{22} —Rh1— O_{5} — C_{01}	98.2 (3)
C25—Rh1—C22—C23 -5.05 (17) C26—Rh1—O5—C01 -171. C26—Rh1—C22—C23 -41.89 (17) S1—Rh1—O5—C01 -9.30 S1—Rh1—C22—C23 156.14 (16) N1—C02—S1—Rh1 0.0 (2 C21—C22—C23—C24 -92.8 (3) N2—C02—S1—Rh1 179.9 Rh1—C22—C23—C24 -12.0 (3) O5—Rh1—S1—C02 4.43 (14.5)	1 - Rh1 - C22 - C23	-119.0(2)	C_{25} Rh1-O5-C01	151.38 (19)
C26 Rh1 C22 C23 -41.89 (17) S1 Rh1 O5 C01 -9.30 S1 Rh1 C22 C23 156.14 (16) N1 C02 S1 Rh1 0.0 (2 C21 C22 C23 C24 -92.8 (3) N2 C02 S1 Rh1 179.9 Rh1 C22 C23 C24 -12.0 (3) O5 Rh1 S1 C02 4.43 (2)	5-Rh1-C22-C23	-5.05(17)	C_{26} = Rh1 = O_{5} = C_{01}	-171.10(19)
S1—Rh1—C22—C23 156.14 (16) N1—C02—S1—Rh1 0.0 (2 C21—C22—C23—C24 -92.8 (3) N2—C02—S1—Rh1 179.9 Rh1—C22—C23—C24 -12.0 (3) O5—Rh1—S1—C02 4.43 (6-Rh1-C22-C23	-41.89 (17)	S1—Rh1—O5—C01	-9.30(18)
C21—C22—C23—C24 -92.8 (3) N2—C02—S1—Rh1 179.9 Rh1—C22—C23—C24 -12.0 (3) O5—Rh1—S1—C02 4.43 (10)		156.14 (16)	N1—C02—S1—Rh1	0.0 (2)
Rh1—C22—C23—C24 -12.0 (3) O5—Rh1—S1—C02 4.43 (1—C22—C23—C24	-92.8 (3)	N2—C02—S1—Rh1	179.91 (14)
	1—C22—C23—C24	-12.0 (3)	O5—Rh1—S1—C02	4.43 (9)
C22—C23—C24—C25 30.3 (3) C21—Rh1—S1—C02 164.7	2—C23—C24—C25	30.3 (3)	C21—Rh1—S1—C02	164.79 (10)

supporting information

C23—C24—C25—C26	47.4 (3)	C22—Rh1—S1—C02	-156.91 (10)
C23-C24-C25-Rh1	-33.8 (2)	C25—Rh1—S1—C02	-82.05 (19)
O5-Rh1-C25-C26	94.60 (13)	C26—Rh1—S1—C02	102.1 (2)