Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[[bis(thiocyanato- $\kappa \mathrm{N}$)-cobalt(II)]-di- μ-thiourea- $\left.\kappa^{4} S: S\right]$

K. Rajarajan, ${ }^{\text {a* }}$ K. Sendil Kumar, ${ }^{\text {b }}$ V. Ramesh, ${ }^{\text {b }}$
V. Shihabuddeen ${ }^{\text {b }}$ and S. Murugavel ${ }^{\mathrm{C}^{*}}$
${ }^{\text {a }}$ Department of Physics, Rajeswari Vedachalam Government Arts College, Chengalpet 603 301, India, ${ }^{\mathbf{b}}$ Research and Development Center, Bharathiar University, Coimbatore 641 046, India, and ${ }^{\text {c }}$ Department of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India Correspondence e-mail: drkrr2007@gmail.com, smurugavel27@gmail.com

Received 21 July 2012; accepted 23 July 2012

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K} ;$ mean $\sigma(\mathrm{Co}-\mathrm{S})=0.002 \AA$; R factor $=0.019 ; w R$ factor $=0.052$; data-to-parameter ratio $=26.0$.

In the title polymeric complex, $\left[\mathrm{Co}(\mathrm{NCS})_{2}\left\{\mathrm{SC}\left(\mathrm{NH}_{2}\right)_{2}\right\}_{2}\right]_{n}$, the asymmetric unit comprises a $\mathrm{Co}^{\text {II }}$ ion, which is situated on an inversion centre, an N-bound thiocyanate anion and a $\mu_{2^{-}}$ bridging thiourea molecule. The $\mathrm{Co}^{\mathrm{II}}$ atom is coordinated in a distorted octahedral fashion within an $\mathrm{N}_{2} \mathrm{~S}_{4}$ donor set. The bridging thiourea ligands link $\mathrm{Co}^{\mathrm{II}}$ ions into a polymeric chain extending along [100]. The molecular conformation is stabilized by intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, which generate $S(6)$ ring motifs. The crystal packing is stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ interactions, which connect the chains into a three-dimensional architecture.

Related literature

For a general introduction to thiocyanato complexes, see: Nardelli et al. (1957). For the crystal structure of the analogous Cd ${ }^{\text {II }}$ complex, see: Wang et al. (2002). For information on the properties of complexes incorporating these ligands, see: Yuan et al. (1997); Yu et al. (2001); Machura et al. (2011). For the use of $\mathrm{Co}^{\mathrm{II}}$ complexes with mixed S-donor ligands as precursors to CoS, see: Kropidłowska et al. (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental

Crystal data

$\left[\mathrm{Co}(\mathrm{NCS})_{2}\left(\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right]$
$\gamma=104.166(2)^{\circ}$
$M_{r}=327.33$
$V=282.4(2) \AA^{3}$
$Z=1$
$a=3.855$ (3) \AA
Mo $K \alpha$ radiation
Mo $K \alpha$ radiatio
$\mu=2.23 \mathrm{~mm}^{-1}$
$b=7.585$ (2) \AA
$T=293 \mathrm{~K}$
$c=10.094$ (2) A
$0.24 \times 0.22 \times 0.16 \mathrm{~mm}$
$\alpha=92.424(3)^{\circ}$
$\beta=98.172(2)^{\circ}$

6452 measured reflections
Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1844 independent reflections
1764 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$T_{\text {min }}=0.591, T_{\text {max }}=0.699$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019 \quad 71$ parameters
$w R\left(F^{2}\right)=0.052$
H -atom parameters constrained
$S=1.07$
$\Delta \rho_{\text {max }}=0.61 \mathrm{e}^{-3}{ }^{-3}$
1844 reflections
$\Delta \rho_{\max }=0.61 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.33 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{~N} 1$	0.86	2.26	$3.079(3)$	159
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{~S}^{\mathrm{i}}$	0.86	2.70	$3.461(3)$	148
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{~S}^{1 i}$	0.86	2.78	$3.483(3)$	140
N3-H3B $\mathrm{S}^{\text {iii }}$	0.86	2.62	$3.456(3)$	166
Symmetry codes:	(i)	$-x+2,-y,-z+2 ;$	(ii) $x+1, y-1, z ;$	(iii)
$-x+2,-y-1,-z+1$.				

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia (1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

The authors thank Dr Babu Varghese, SAIF, IIT, Madras, India, for his help with the data collection.

[^0]
metal-organic compounds

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Kropidłowska, A., Chojnacki, J., Fahmi, A. \& Becker, B. (2008). Dalton Trans. pp. 6825-6831.
Machura, B., Nawrot, I. \& Michalik, K. (2011). Polyhedron, 30, 2619-2626.

Nardelli, M., Braibanti, A. \& Fava, G. (1957). Gazz. Chim. Ital. 87, 1209-1231. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Wang, X. Q., Yu, W. T., Xu, D., Lu, M. K. \& Yuan, D. R. (2002). Acta Cryst. C58, m336-m337.
Yu, W.-T., Wang, X.-Q., Xu, D., Lu, M.-K. \& Yuan, D.-R. (2001). Acta Cryst. C57, 145-146.
Yuan, D. R., Xu, D., Fang, Q., Yu, W. T. \& Jiang, M. H. (1997). Appl. Phys. Lett. 70, 544-546.

supporting information

Acta Cryst. (2012). E68, m1125-m1126 [https://doi.org/10.1107/S1600536812033193]

catena-Poly[[bis(thiocyanato- $\kappa \mathrm{N}$) cobalt(II)]-di- μ-thiourea- $\left.\kappa^{4} \mathrm{~S}: \mathrm{S}\right]$

K. Rajarajan, K. Sendil Kumar, V. Ramesh, V. Shihabuddeen and S. Murugavel

S1. Comment

The interest in the coordination compounds possessing both thiourea and thiocyanato ligands dates back to the 1950's (e.g. Nardelli et al., 1957) when the nature of coordination compounds formed by divalent cations $(M=\mathrm{Mn}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Cd}$, Pb) and organic molecules containing sulfur was extensively studied. The interest in these compounds is related either to their non-linear optical properties (Yuan et al., 1997, Yu et al., 2001) or with their possible use as single-source precursors of semiconducting materials. Moreover, the use of SCN ligands, with bridging abilities, may lead to intriguing architectures and topologies, often generating one-dimensional chains (Machura et al., 2011). For the above reasons and during our studies on new molecular precursors (Kropidłowska et al., 2008), we turned our attention to systems of this type, that is, complexes containing thiourea and thiocyanate ligands connected to a cobalt center.

The title complex, Fig. 1, is isostructural with the previously reported cadmium(II) complex (Wang et al., 2002). The $\mathrm{Co}^{\mathrm{II}}$ atom is located at the inversion centre and is octahedrally coordinated by two N atoms from two thiocynate groups and four S atoms from four thiourea molecules. The bridging thiourea ligands link $\mathrm{Co}^{\mathrm{II}}$ ions into a one dimensional polymeric chain along [100] (Fig. 2). The Co \cdots Co distance along the chain is 3.855 (3) \AA. The octahedral coordination sphere of the cobalt(II) cation is slightly distorted with distances in the range of 2.016 (1) \AA to 2.623 (1) \AA. The angles around the cobalt(II) atom range from $83.4(1)^{\circ}$ to 180°. The thiocynate group is almost linear with the N1—C1—S1 angle $=179.2(1)^{\circ}$.
The molecular conformation is stabilized by intramolecular $\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{~N} 1$ hydrogen bond, forming an $S(6)$ ring motif (Bernstein et al., 1995). In the crystal, molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds into a three-dimensional architecture (Table 1).

S2. Experimental

Cobalt(II) chloride, ammonium thiocynate and thiourea were dissolved in aqueous solution in the molar ratio 1:2:2 and stirred well for 2 h to obtain an homogeneous mixture. The dark-brown crystals of the title compound were obtained after the filtrate and had been allowed to stand at room temperature for two weeks.

S3. Refinement

H atoms were positioned geometrically, with $\mathrm{N}-\mathrm{H}=0.86 \AA$ and constrained to ride on their parent atom, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$.

Figure 1
Asymmetric unit of the title complex expanded to show the coordination geometry of the $\mathrm{Co}^{\mathrm{II}}$ atom and the polymeric connectivity. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as a small circles of arbitrary radius. [Symmetry codes: (i) $1+x, y, z$; (ii) $1+x, y, z$; (iii) $1-x,-y, 1-z$; (iv) $2-x,-y, 1-z$].

Figure 2
A view of the linear polymeric chain aligned along [100] in the title complex. Colour code: Co, red; N, blue; S, yellow; C, black; H, green.
catena-Poly[[bis(thiocyanato- κN)cobalt(II)]-di- μ-thiourea- $\left.\kappa^{4} S: S\right]$

Crystal data

$\left[\mathrm{Co}(\mathrm{NCS})_{2}\left(\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right]$
$M_{r}=327.33$
Triclinic, $P 1$
Hall symbol: -P 1
$a=3.855$ (3) \AA
$b=7.585(2) \AA$
$c=10.094$ (2) \AA
$\alpha=92.424(3)^{\circ}$
$\beta=98.172$ (2) ${ }^{\circ}$
$\gamma=104.166(2)^{\circ}$
$V=282.4(2) \AA^{3}$

Data collection

Bruker APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 10.0 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.591, T_{\text {max }}=0.699$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.052$
$S=1.07$
1844 reflections
71 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

$$
\begin{aligned}
& Z=1 \\
& F(000)=165 \\
& D_{\mathrm{x}}=1.925 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 2298 \text { reflections } \\
& \theta=2.0-34.1^{\circ} \\
& \mu=2.23 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& \text { Block, brown } \\
& 0.24 \times 0.22 \times 0.16 \mathrm{~mm}
\end{aligned}
$$

6452 measured reflections
1844 independent reflections
1764 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=34.1^{\circ}, \theta_{\text {min }}=2.0^{\circ}$
$h=-5 \rightarrow 5$
$k=-11 \rightarrow 10$
$l=-14 \rightarrow 15$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0264 P)^{2}+0.0757 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.61 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.33$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.203 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.5577(3)$	$0.18192(15)$	$0.78972(10)$	$0.01952(19)$

C2	$0.9805(3)$	$-0.29358(15)$	$0.69572(11)$	$0.02016(19)$
N1	$0.5889(3)$	$0.10262(13)$	$0.69282(9)$	$0.02280(18)$
N2	$0.9447(3)$	$-0.19551(16)$	$0.80075(10)$	$0.0295(2)$
H2A	0.9899	-0.2301	0.8800	0.035^{*}
H2B	0.8759	-0.0966	0.7903	0.035^{*}
N3	$1.0858(3)$	$-0.44519(15)$	$0.71126(11)$	$0.0324(2)$
H3A	1.1313	-0.4801	0.7904	0.039^{*}
H3B	1.1091	-0.5092	0.6423	0.039^{*}
S1	$0.51233(9)$	$0.29477(5)$	$0.92362(3)$	$0.03241(9)$
S2	$0.89332(7)$	$-0.22779(3)$	$0.53449(2)$	$0.01878(8)$
Co	0.5000	0.0000	0.5000	$0.01874(8)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0193(4)$	$0.0231(5)$	$0.0165(4)$	$0.0073(4)$	$0.0011(3)$	$0.0004(3)$
C2	$0.0189(4)$	$0.0209(5)$	$0.0200(4)$	$0.0033(4)$	$0.0031(3)$	$0.0046(4)$
N 1	$0.0259(4)$	$0.0256(4)$	$0.0169(4)$	$0.0078(4)$	$0.0022(3)$	$-0.0016(3)$
N 2	$0.0430(6)$	$0.0313(5)$	$0.0173(4)$	$0.0147(4)$	$0.0056(4)$	$0.0040(4)$
N3	$0.0484(6)$	$0.0269(5)$	$0.0256(5)$	$0.0173(5)$	$0.0027(4)$	$0.0072(4)$
S1	$0.03586(17)$	$0.0469(2)$	$0.01841(14)$	$0.02104(14)$	$0.00223(11)$	$-0.00877(12)$
S2	$0.02254(13)$	$0.01991(13)$	$0.01566(12)$	$0.00861(9)$	$0.00307(9)$	$0.00202(8)$
Co	$0.02202(11)$	$0.02291(12)$	$0.01230(10)$	$0.00862(8)$	$0.00200(7)$	$-0.00215(7)$

Geometric parameters ($\AA,{ }^{\circ}$)

C1-N1	1.1627 (14)	N3-H3A	0.8600
C1-S1	1.6226 (11)	N3-H3B	0.8600
C2-N2	1.3121 (15)	S2-Co	2.5668 (10)
C2-N3	1.3182 (15)	S2-Co ${ }^{\text {i }}$	2.6231 (14)
C2-S2	1.7338 (11)	$\mathrm{Co}-\mathrm{N} 1^{\text {ii }}$	2.0158 (10)
N1-Co	2.0158 (10)	$\mathrm{Co}-\mathrm{S}^{2 i}$	2.5668 (10)
N2-H2A	0.8600	$\mathrm{Co}-\mathrm{S}^{\text {iii }}$	2.6231 (14)
N2-H2B	0.8600	$\mathrm{Co}-\mathrm{S}^{2 \mathrm{iv}}$	2.6231 (14)
N1-C1-S1	179.17 (10)	$\mathrm{N} 1-\mathrm{Co}-\mathrm{S}^{\text {ii }}$	83.37 (3)
N2-C2-N3	120.18 (11)	$\mathrm{N} 1^{\text {iii }}-\mathrm{Co}-\mathrm{S}^{\text {ii }}$	96.63 (3)
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{S} 2$	121.31 (9)	N1-Co-S2	96.63 (3)
N3-C2-S2	118.50 (9)	$\mathrm{N} 1^{\text {iii }}-\mathrm{Co}-\mathrm{S} 2$	83.37 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Co}$	160.34 (9)	S2iil ${ }^{\text {ii }}$ - -S 2	180.000 (11)
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	120.0	$\mathrm{N} 1-\mathrm{Co}-\mathrm{S} 2{ }^{\text {iii }}$	88.73 (3)
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	120.0	$\mathrm{N} 1^{\mathrm{ii}}-\mathrm{Co}-\mathrm{S} 2{ }^{\text {iii }}$	91.27 (3)
$\mathrm{H} 2 \mathrm{~A}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	120.0	$\mathrm{S} 2{ }^{\text {ii }}-\mathrm{Co}-\mathrm{S} 2{ }^{\text {iii }}$	95.93 (5)
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{H} 3 \mathrm{~A}$	120.0	$\mathrm{S} 2-\mathrm{Co}-\mathrm{S} 2{ }^{\text {iii }}$	84.07 (5)
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{H} 3 \mathrm{~B}$	120.0	N1-Co-S2 ${ }^{\text {iv }}$	91.27 (3)
H3A-N3-H3B	120.0	$\mathrm{N} 1^{\text {iii }}-\mathrm{Co}-\mathrm{S}^{\text {iv }}$	88.73 (3)
C2-S2-Co	117.06 (4)	$\mathrm{S} 22^{\text {ii }}-\mathrm{Co}-\mathrm{S}^{2 \mathrm{iv}}$	84.07 (5)
$\mathrm{C} 2-\mathrm{S} 2-\mathrm{Co}^{\mathrm{i}}$	104.64 (4)	$\mathrm{S} 2-\mathrm{Co}-\mathrm{S}^{2 \mathrm{iv}}$	95.93 (5)

$\mathrm{Co}-\mathrm{S} 2-\mathrm{Co}^{\mathrm{i}}$	95.93 (5)	$\mathrm{S} 2{ }^{\text {iii }}-\mathrm{Co}-\mathrm{S}^{\text {iv }}$	180.000 (11)
$\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 1{ }^{\text {ii }}$	180.0		
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 1-\mathrm{Co}$	-33 (7)	$\mathrm{C} 2-\mathrm{S} 2-\mathrm{Co}-\mathrm{N} 1$	21.76 (5)
N2-C2-S2-Co	-19.76 (11)	$\mathrm{Co}^{\mathbf{i}}-\mathrm{S} 2-\mathrm{Co}-\mathrm{N} 1$	-88.02 (3)
N3-C2-S2-Co	160.47 (8)	$\mathrm{C} 2-\mathrm{S} 2-\mathrm{Co}-\mathrm{N} 1^{\text {ii }}$	-158.24 (5)
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{S} 2-\mathrm{Co}^{\text {i }}$	84.92 (10)	$\mathrm{Co}-\mathrm{S} 2-\mathrm{Co}-\mathrm{N} 1^{\mathrm{ii}}$	91.98 (3)
N3-C2-S2-Co ${ }^{\text {i }}$	-94.85 (10)	$\mathrm{C} 2-\mathrm{S} 2-\mathrm{Co}-\mathrm{S} 2{ }^{\text {ii }}$	-117 (100)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 1{ }^{\text {ii }}$	-140 (100)	$\mathrm{Co}-\mathrm{S} 2-\mathrm{Co}-\mathrm{S} 2{ }^{\text {ii }}$	133 (100)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Co}-\mathrm{S} 2{ }^{\text {ii }}$	12.8 (3)	$\mathrm{C} 2-\mathrm{S} 2-\mathrm{Co}-\mathrm{S} 2{ }^{\text {iii }}$	109.79 (4)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Co}-\mathrm{S} 2$	-167.2 (3)	$\mathrm{Co}{ }^{\text {i }}-\mathrm{S} 2-\mathrm{Co}-\mathrm{S} 2{ }^{\text {iii }}$	0.0
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Co}-\mathrm{S} 2{ }^{\text {iii }}$	108.9 (3)	$\mathrm{C} 2-\mathrm{S} 2-\mathrm{Co}-\mathrm{S} 2{ }^{\text {iv }}$	-70.21 (4)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Co}-\mathrm{S2}^{\text {iv }}$	-71.1 (3)	Co ${ }^{\text {i }}$-S2-Co-S2 ${ }^{\text {iv }}$	180.0

Symmetry codes: (i) $x+1, y, z$; (ii) $-x+1,-y,-z+1$; (iii) $-x+2,-y,-z+1$; (iv) $x-1, y, z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D — \mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 2 B \cdots \mathrm{~N} 1$	0.86	2.26	$3.079(3)$	159
$\mathrm{~N} 2 — \mathrm{H} 2 A \cdots \mathrm{~S} 1^{\text {v }}$	0.86	2.70	$3.461(3)$	148
$\mathrm{~N} 3 — \mathrm{H} 3 A \cdots \mathrm{~S} 1^{\text {vi }}$	0.86	2.78	$3.483(3)$	140
$\mathrm{~N} 3 — \mathrm{H} 3 B \cdots \mathrm{~S}^{\text {vii }}$	0.86	2.62	$3.456(3)$	166

Symmetry codes: (v) $-x+2,-y,-z+2$; (vi) $x+1, y-1, z$; (vii) $-x+2,-y-1,-z+1$.

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5133).

