

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-[(2Z)-Azepan-2-ylidene]-1-(4-nitrophenvl)ethanone

Siyanda T. Mthembu, Lee G. Madeley, Charles B. de Koning and Joseph P. Michael*

Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, PO Wits 2050, South Africa Correspondence e-mail: joseph.michael@wits.ac.za

Received 10 July 2012; accepted 13 July 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.039; wR factor = 0.116; data-to-parameter ratio = 17.2.

The title compound, C₁₄H₁₆N₂O₃, is an NH-vinylogous amide (enaminone) produced by the reaction of 4-nitrophenacyl bromide with azepane-2-thione. The conformation about the C=C bond [1.3927 (14) Å] is Z, which allows for the formation of an intramolecular N-H···O hydrogen bond that leads to an S(6) loop. Inversion-related molecules associate via N-H···O hydrogen bonds to form a 12membered $\{\cdots OC_3 NH\}_2$ synthon.

Related literature

For uses and reactions of enaminones, see: Roth et al. (1971): Paulvannan & Stille (1994); Michael et al. (1999). For related structures, see: Balderson et al. (2007). For graph-set notation, see: Bernstein et al. (1995).

Experimental

Crystal data

 $C_{14}H_{16}N_2O_3$ $M_r = 260.29$ Triclinic, P1 a = 6.7963 (3) Å b = 8.4054 (3) Å c = 11.6649 (5) Å $\alpha = 76.508 (2)^{\circ}$ $\beta = 81.134 (2)^{\circ}$

 $\gamma = 80.596 \ (2)^{\circ}$ V = 634.58 (5) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 173 K0.56 \times 0.5 \times 0.42 mm 10354 measured reflections

 $R_{\rm int} = 0.048$

3041 independent reflections

2732 reflections with $I > 2\sigma(I)$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.905, T_{\max} = 0.955$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	H atoms treated by a mixture of
$wR(F^2) = 0.116$	independent and constrained
S = 1.06	refinement
3041 reflections	$\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$
177 parameters	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\overline{N1-H1\cdots O1}$	0.897 (16)	1.998 (15)	2.7041 (11)	134.6 (13)
$N1-H1\cdots O1^{i}$	0.897 (16)	2.392 (15)	3.0303 (12)	128.2 (12)

Symmetry code: (i) -x + 2, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

This work was supported by the University of the Witwatersrand, which is thanked for providing the required infrastructure.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5129).

References

- Balderson, J. L., Fernandes, M. A., Michael, J. P. & Perry, C. B. (2007). Acta Cryst. C63, 0734-0738
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2004). SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Michael, J. P., de Koning, C. B., Gravestock, D., Hosken, G. D., Howard, A. S., Jungmann, C. M., Krause, R. W. M., Parsons, A. S., Pelly, S. C. & Stanbury, T. V. (1999). Pure Appl. Chem. 71, 979-988.
- Paulvannan, K. & Stille, J. R. (1994). J. Org. Chem. 59, 1613-1620.
- Roth, M., Dubs, P., Götschi, E. & Eschenmoser, A. (1971). Helv. Chim. Acta, 54, 710-734.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2012). E68, o2479 [https://doi.org/10.1107/S1600536812032035]

2-[(2Z)-Azepan-2-ylidene]-1-(4-nitrophenyl)ethanone

Siyanda T. Mthembu, Lee G. Madeley, Charles B. de Koning and Joseph P. Michael

S1. Comment

The title compound was prepared as part of an ongoing methodological investigation into the use of enaminones in the synthesis of azabicyclic alkaloids (Michael *et al.*, 1999). For example, its reaction with acryloyl chloride, according to the method of Paulvannan & Stille (1994), produced a 2,3,6,7-tetrahydro-5(1*H*)-indolizinone related to numerous natural products. The crystal structures of analogous 4-bromophenyl enaminones with 5-, 6- and 7-membered rings have been reported (Balderson *et al.*, 2007).

The asymmetric unit of (I) consists of one molecule of 2-[(2*Z*)-azepan-2-ylidene]-1-(4-nitrophenyl)ethan-1-one (Fig. 1). The hydrogen bonding consists of an intramolecular N—H···O=C hydrogen bond, and an intermolecular N—H···O=C hydrogen bond (Table 1). The combination of these two hydrogen bonds results in an $R^2_2(4)$ ring (Fig. 2) as described by graph set notation (Bernstein *et al.*, 1995).

S2. Experimental

The employed synthesis followed the Eschenmoser procedure (Roth *et al.*, 1971). *p*-Nitrophenacyl bromide (995 mg, 4.08 mmol) was added to a solution of azepane-2-thione (502 mg, 3.88 mmol) in dry acetonitrile (30 ml). The resulting solution was stirred at room temperature for 4 h, after which *S*-alkylation was complete as shown by the precipitation of the thioiminium salt. This was then followed by the addition of triphenylphosphine (1.069 g, 4.08 mmol) and triethyl-amine (413 mg, 4.08 mmol) to induce sulfur extrusion. The reaction mixture was poured into water and the organic components were extracted with diethyl ether (3×30 ml). The resulting organic layer was dried over MgSO₄, filtered and the solvent removed *in vacuo*. The resulting residue was purified by column chromatography on silica gel with hexane:ethyl acetate (19:1 *v/v*) as eluent to yield 2-[(2*Z*)-azepan-2-ylidene]-1-(4-nitrophenyl)ethan-1-one (829 mg, 82%) as yellow crystals, m.p. 398–400 K.

S3. Refinement

The C-bound H atoms were geometrically placed [C—H = 0.95 Å (alkenyl- and aromatic-H) and 0.99 Å (methylene-H)] and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$. The N-bound H atom was located in a difference Fourier map and refined freely.

Figure 1

The molecular structure of (I) showing the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level.

Figure 2

Hydrogen bonding diagram of the compound. Intermolecular and intramolecular N—H…O hydrogen bonds (shown as dashed red lines) form a four-membered ring. Non-participating H atoms have been omitted for clarity.

2-[(2Z)-Azepan-2-ylidene]-1-(4-nitrophenyl)ethanone

Crystal data	
$C_{14}H_{16}N_2O_3$	$\gamma = 80.596 \ (2)^{\circ}$
$M_r = 260.29$	V = 634.58 (5) Å ³
Triclinic, $P\overline{1}$	Z = 2
Hall symbol: -P 1	F(000) = 276
a = 6.7963 (3) Å	$D_{\rm x} = 1.362 {\rm ~Mg} {\rm ~m}^{-3}$
b = 8.4054 (3) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 11.6649 (5) Å	Cell parameters from 6539 reflections
$\alpha = 76.508 \ (2)^{\circ}$	$\theta = 2.5 - 28.4^{\circ}$
$\beta = 81.134 \ (2)^{\circ}$	$\mu = 0.10 \mathrm{~mm^{-1}}$

T = 173 KBlock, red

Bruker APEXII CCD area-detector diffractometer	3041 independent reflections 2732 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int}=0.048$
Absorption correction: multi-scan	$\theta_{\max} = 28.0^\circ, \ \theta_{\min} = 1.8^\circ$
(SADABS; Sheldrick, 1996)	$h = -8 \rightarrow 8$
$T_{\min} = 0.905, \ T_{\max} = 0.955$	$k = -11 \rightarrow 11$
10354 measured reflections	$l = -15 \rightarrow 15$
Refinement	
Refinement on F^2	H atoms treated by a mixture of independent
Least-squares matrix: full	and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.039$	$w = 1/[\sigma^2(F_o^2) + (0.0618P)^2 + 0.1127P]$
$wR(F^2) = 0.116$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
3041 reflections	$\Delta \rho_{\rm max} = 0.30 \text{ e} \text{ Å}^{-3}$
177 parameters	$\Delta \rho_{\min} = -0.24 \text{ e} \text{ Å}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc*=kFc[1+0.001xFc ² λ^{3} /sin(2 θ)] ^{-1/4}
	Extinction coefficient. $0.170(12)$

 $0.56 \times 0.5 \times 0.42 \text{ mm}$

Special details

Experimental. Absorption corrections were made using the program SADABS (Sheldrick, 1996)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
C1	1.01720 (16)	0.40728 (13)	0.79045 (9)	0.0296 (2)
H1A	1.0007	0.4794	0.8483	0.035*
H1B	1.155	0.4094	0.7482	0.035*
C2	0.99594 (18)	0.23125 (14)	0.85852 (10)	0.0342 (3)
H2A	1.1187	0.1856	0.8974	0.041*
H2B	0.9882	0.1633	0.8009	0.041*
C3	0.8137 (2)	0.21416 (15)	0.95278 (11)	0.0394 (3)
H3A	0.8141	0.096	0.9913	0.047*
H3B	0.8279	0.2735	1.0144	0.047*
C4	0.61162 (18)	0.27927 (13)	0.90694 (10)	0.0333 (3)
H4A	0.5034	0.2527	0.9728	0.04*
H4B	0.5976	0.2215	0.8443	0.04*
C5	0.58338 (16)	0.46611 (13)	0.85608 (9)	0.0281 (2)
H5A	0.4378	0.5065	0.8606	0.034*
H5B	0.6428	0.5213	0.9062	0.034*
C6	0.67677 (15)	0.51517 (12)	0.72942 (9)	0.0248 (2)
C7	0.55481 (15)	0.60086 (12)	0.64327 (9)	0.0256 (2)
H7	0.4135	0.6146	0.665	0.031*

C8	0.63077 (15)	0.66855 (12)	0.52480 (9)	0.0249 (2)	
C9	0.48836 (15)	0.78776 (12)	0.44815 (8)	0.0236 (2)	
C10	0.28080 (15)	0.78647 (13)	0.46714 (9)	0.0267 (2)	
H10	0.2248	0.7046	0.5285	0.032*	
C11	0.15532 (15)	0.90342 (13)	0.39730 (9)	0.0270 (2)	
H11	0.0138	0.9038	0.411	0.032*	
C12	0.24127 (15)	1.01984 (12)	0.30693 (9)	0.0244 (2)	
C13	0.44670 (16)	1.02284 (12)	0.28387 (9)	0.0271 (2)	
H13	0.5021	1.1028	0.2207	0.033*	
C14	0.56934 (15)	0.90611 (13)	0.35534 (9)	0.0273 (2)	
H14	0.7107	0.9064	0.3411	0.033*	
N1	0.87397 (13)	0.47603 (11)	0.70420 (8)	0.0275 (2)	
H1	0.923 (2)	0.5042 (18)	0.6274 (14)	0.042 (4)*	
N2	0.10920 (13)	1.14105 (10)	0.23068 (8)	0.0275 (2)	
O1	0.81102 (11)	0.64279 (10)	0.48208 (7)	0.0328 (2)	
O2	-0.07169 (12)	1.15862 (11)	0.26345 (8)	0.0403 (2)	
03	0.18635 (12)	1.21881 (10)	0.13628 (7)	0.0373 (2)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0269 (5)	0.0327 (5)	0.0286 (5)	-0.0022 (4)	-0.0067 (4)	-0.0047 (4)
C2	0.0361 (6)	0.0315 (5)	0.0320 (6)	0.0020 (4)	-0.0066 (5)	-0.0036 (4)
C3	0.0462 (7)	0.0339 (6)	0.0301 (6)	0.0000 (5)	-0.0018 (5)	0.0034 (4)
C4	0.0379 (6)	0.0319 (5)	0.0276 (5)	-0.0090 (4)	0.0047 (4)	-0.0041 (4)
C5	0.0294 (5)	0.0320 (5)	0.0213 (5)	-0.0027 (4)	0.0015 (4)	-0.0062 (4)
C6	0.0267 (5)	0.0249 (5)	0.0224 (5)	-0.0042 (4)	-0.0002 (4)	-0.0056 (4)
C7	0.0225 (5)	0.0283 (5)	0.0241 (5)	-0.0023 (4)	0.0005 (4)	-0.0045 (4)
C8	0.0238 (5)	0.0262 (5)	0.0241 (5)	-0.0030 (4)	-0.0017 (4)	-0.0050 (4)
C9	0.0241 (5)	0.0245 (5)	0.0218 (5)	-0.0030 (4)	-0.0008 (4)	-0.0057 (4)
C10	0.0265 (5)	0.0286 (5)	0.0233 (5)	-0.0064 (4)	-0.0012 (4)	-0.0017 (4)
C11	0.0213 (5)	0.0326 (5)	0.0262 (5)	-0.0048 (4)	-0.0016 (4)	-0.0047 (4)
C12	0.0265 (5)	0.0233 (5)	0.0235 (5)	-0.0016 (4)	-0.0040 (4)	-0.0055 (4)
C13	0.0283 (5)	0.0258 (5)	0.0257 (5)	-0.0063 (4)	-0.0014 (4)	-0.0020 (4)
C14	0.0217 (5)	0.0313 (5)	0.0272 (5)	-0.0050 (4)	-0.0006 (4)	-0.0036 (4)
N1	0.0253 (4)	0.0332 (5)	0.0211 (4)	-0.0019 (3)	-0.0017 (3)	-0.0023 (3)
N2	0.0282 (5)	0.0251 (4)	0.0286 (4)	-0.0026 (3)	-0.0040 (3)	-0.0047 (3)
01	0.0236 (4)	0.0398 (4)	0.0278 (4)	0.0009 (3)	0.0021 (3)	0.0002 (3)
O2	0.0263 (4)	0.0435 (5)	0.0434 (5)	0.0029 (3)	-0.0038 (3)	0.0004 (4)
03	0.0378 (5)	0.0363 (4)	0.0319 (4)	-0.0056 (3)	-0.0043 (3)	0.0049 (3)

Geometric parameters (Å, °)

C1—N1	1.4630 (13)	C7—C8	1.4174 (14)
C1—C2	1.5254 (15)	С7—Н7	0.95
C1—H1A	0.99	C8—O1	1.2535 (12)
C1—H1B	0.99	C8—C9	1.5073 (14)
C2—C3	1.5259 (17)	C9—C10	1.3952 (14)

supporting information

C2—H2A	0.99	C9—C14	1.3990 (14)
C2—H2B	0.99	C10-C11	1.3870 (14)
C3—C4	1.5219 (18)	C10—H10	0.95
С3—НЗА	0.99	C11—C12	1 3877 (14)
C3—H3B	0.99	C11_H11	0.95
C_{4} C_{5}	1 5353 (15)	C_{12} C_{13}	1.3838(14)
$C_4 = C_5$	1.5555 (15)	C12_C13	1.3636(14)
C4—H4A	0.99	C12—N2	1.4094 (13)
C4—H4B	0.99		1.3848 (15)
C5—C6	1.5060 (13)	С13—Н13	0.95
С5—Н5А	0.99	C14—H14	0.95
С5—Н5В	0.99	N1—H1	0.897 (16)
C6—N1	1.3306 (13)	N2—O2	1.2253 (12)
С6—С7	1.3927 (14)	N2—O3	1.2300 (12)
N1—C1—C2	114 74 (9)	C7—C6—C5	119 10 (9)
N1—C1—H1A	108.6	C6-C7-C8	123 35 (9)
$C_2 C_1 H_1 \Lambda$	108.6	C6 C7 H7	118.3
NI CI UID	108.0	C° C^{-117}	118.3
	108.0	$C_{0} - C_{1} - H_{1}$	118.5
C2—CI—HIB	108.6	01-08-07	124.12 (9)
HIA—CI—HIB	107.6	01	118.04 (9)
C1—C2—C3	115.04 (9)	C7—C8—C9	117.72 (9)
C1—C2—H2A	108.5	C10—C9—C14	119.09 (9)
C3—C2—H2A	108.5	C10—C9—C8	122.91 (9)
C1—C2—H2B	108.5	C14—C9—C8	117.99 (9)
C3—C2—H2B	108.5	C11—C10—C9	120.69 (9)
H2A—C2—H2B	107.5	C11—C10—H10	119.7
C4—C3—C2	115.06 (10)	C9—C10—H10	119.7
C4—C3—H3A	108.5	C10-C11-C12	118.47 (9)
С2—С3—НЗА	108.5	C10—C11—H11	120.8
C4-C3-H3B	108 5	C12— $C11$ — $H11$	120.8
$C_2 - C_3 - H_3B$	108.5	C_{13} C_{12} C_{11}	120.0 122.46(9)
$H_{3A} = C_3 = H_{3B}$	107.5	C_{13} C_{12} N_2	122.40(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.3 112.72(0)	C13 - C12 - N2	118.91(9)
$C_3 = C_4 = C_3$	113.75 (9)	C12 - C12 - N2	118.00 (9)
C3—C4—H4A	108.8		118.20 (9)
C5—C4—H4A	108.8	C12—C13—H13	120.9
C3—C4—H4B	108.8	C14—C13—H13	120.9
C5—C4—H4B	108.8	C13—C14—C9	121.06 (9)
H4A—C4—H4B	107.7	C13—C14—H14	119.5
C6—C5—C4	113.97 (9)	C9—C14—H14	119.5
С6—С5—Н5А	108.8	C6—N1—C1	126.07 (9)
C4—C5—H5A	108.8	C6—N1—H1	115.6 (9)
C6—C5—H5B	108.8	C1—N1—H1	118.0 (9)
C4—C5—H5B	108.8	O2—N2—O3	123.31 (9)
H5A—C5—H5B	107.7	O2—N2—C12	118.66 (9)
N1—C6—C7	122.38 (9)	O3—N2—C12	118.02 (9)
N1-C6-C5	118 52 (9)		
	110.02 (7)		
N1—C1—C2—C3	-73.34 (13)	C9—C10—C11—C12	1.08 (16)

C1—C2—C3—C4	58.23 (14)	C10-C11-C12-C13	0.29 (16)
C2—C3—C4—C5	-64.07 (13)	C10-C11-C12-N2	178.33 (9)
C3—C4—C5—C6	82.62 (12)	C11—C12—C13—C14	-0.94 (16)
C4—C5—C6—N1	-60.10 (13)	N2-C12-C13-C14	-178.98 (9)
C4—C5—C6—C7	120.49 (11)	C12—C13—C14—C9	0.24 (16)
N1-C6-C7-C8	-6.73 (16)	C10-C9-C14-C13	1.07 (16)
C5—C6—C7—C8	172.66 (10)	C8—C9—C14—C13	-177.89 (9)
C6—C7—C8—O1	8.38 (17)	C7—C6—N1—C1	170.95 (10)
C6—C7—C8—C9	-167.41 (9)	C5—C6—N1—C1	-8.44 (15)
O1—C8—C9—C10	157.98 (10)	C2-C1-N1-C6	68.52 (14)
C7—C8—C9—C10	-25.96 (14)	C13—C12—N2—O2	-166.71 (9)
O1—C8—C9—C14	-23.10 (14)	C11—C12—N2—O2	15.17 (14)
C7—C8—C9—C14	152.95 (10)	C13—C12—N2—O3	13.97 (14)
C14—C9—C10—C11	-1.74 (16)	C11—C12—N2—O3	-164.14 (9)
C8—C9—C10—C11	177.16 (9)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D··· A	D—H··· A
N1—H1…O1	0.897 (16)	1.998 (15)	2.7041 (11)	134.6 (13)
N1—H1···O1 ⁱ	0.897 (16)	2.392 (15)	3.0303 (12)	128.2 (12)

Symmetry code: (i) -x+2, -y+1, -z+1.