Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(Z)-3-(2-Hydroxyethyl)-2-(phenylimino)-1,3-thiazolidin-4-one

Shaaban K. Mohamed, ${ }^{\text {a }}$ Antar A. Abdelhamid, ${ }^{\text {a }}$ Sabry H. H. Younes, ${ }^{\text {b }}$ Mahmoud A. A. Elremaily ${ }^{\text {b }}$ and Jim Simpson ${ }^{\text {c }}$ *
${ }^{\text {a }}$ Chemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, ${ }^{\mathbf{b}}$ Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt, and ${ }^{\text {º Department of Chemistry, University of Otago, }}$ PO Box 56, Dunedin, New Zealand
Correspondence e-mail: jsimpson@alkali.otago.ac.nz
Received 2 July 2012; accepted 2 July 2012
Key indicators: single-crystal X-ray study; $T=91 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; disorder in main residue; R factor $=0.041 ; w R$ factor $=0.100$; data-to-parameter ratio $=16.2$.

In the title compound, $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$, the thiazole and phenyl rings are inclined at $56.99(6)^{\circ}$ to one another. The thiazole ring is planar with an r.m.s. deviation for the five ring atoms of $0.0274 \AA$. The presence of the phenylimine substituent is confirmed with the $\mathrm{C}=\mathrm{N}$ distance to the thiazole ring of 1.2638 (19) A. The molecule adopts a Z conformation with respect to this bond. The -OH group of the hydroxyethyl substituent is disordered over two positions with relative occupancies 0.517 (4) and 0.483 (4). In the crystal, $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, augmented by $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ contacts, form dimers with $R_{2}^{2}(11)$ rings and generate chains along the b axis. Parallel chains are linked in an obverse fashion by weak C$\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds. $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds together with $\mathrm{C}-\mathrm{H} \cdots \pi$ contacts further consolidate the structure, stacking molecules along the b axis.

Related literature

For pharmaceutical background to thiazolidinone compounds, see: Shah \& Desai (2007); Subudhi et al. (2007); Kuecuekguezel et al. (2006); Mehta et al. (2006); Srivastava et al. (2006); Zhou et al. (2008). For our recent work on the synthesis of bioselective molecules, see: Mohamed et al. (2012). For related structures, see: Bally \& Mornon (1973); Moghaddam \& Hojabri (2007); Yella et al. (2008); Abdel-Aziz et al. (2012). For standard bond distances, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$
$M_{r}=236.29$
Monoclinic, $P 2_{1} / c$
$a=11.9612$ (6) £
$b=6.9478$ (3) \AA
$c=13.1554$ (6) \AA
$\beta=91.244(2)^{\circ}$

Data collection

Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2011)
$T_{\text {min }}=0.693, T_{\text {max }}=0.746$

$$
\begin{aligned}
& V=1093.01(9) \AA^{3} \\
& Z=4 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.28 \mathrm{~mm}^{-1} \\
& T=91 \mathrm{~K} \\
& 0.40 \times 0.26 \times 0.11 \mathrm{~mm}
\end{aligned}
$$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041 \quad 6$ restraints
$w R\left(F^{2}\right)=0.100 \quad \mathrm{H}$-atom parameters constrained
$S=1.08$
$\Delta \rho_{\max }=0.79 \mathrm{e}_{\AA^{-3}}$
2547 reflections
157 parameters

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
$C g 2$ is the centroid of the $\mathrm{C} 6-\mathrm{C} 11$ phenyl ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.84	1.98	$2.802(3)$	168
$\mathrm{C} 13-\mathrm{H} 13 B \cdots \mathrm{O}^{\mathrm{ii}}$	0.99	2.67	$3.407(3)$	131
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{iii}}$	0.99	2.56	$3.472(3)$	153
$\mathrm{C} 12-\mathrm{H} 12 B \cdots \mathrm{~S}^{\text {iv }}$	0.99	2.92	$3.613(2)$	128
$\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{~N}^{\mathrm{v}}$	0.99	2.57	$3.519(3)$	162
$\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{Cg}^{\text {vi }}$	0.95	2.77	$3.5731(16)$	142

Symmetry codes: (i) $x, y+1, z$; (ii) $-x, y+\frac{1}{2},-z+\frac{5}{2}$; (iii) $-x,-y,-z+2$; (iv) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (v) $x, y-1, z$; (vi) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$.

Data collection: APEX2 (Bruker, 2011); cell refinement: APEX2 and SAINT (Bruker, 2011); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and TITAN (Hunter \& Simpson, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN; molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

The financial support of the Egyptian Higher Education authority is gratefully acknowledged. We extend also our

organic compounds

thanks to Manchester Metropolitan University for supporting this study and the University of Otago for the purchase of the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5126).

References

Abdel-Aziz, H. A., Ghabbour, H. A., Chia, T. S. \& Fun, H.-K. (2012). Acta Cryst. E68, o1143.
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bally, R. \& Mornon, J.-P. (1973). Acta Cryst. B29, 1160-1162.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Hunter, K. A. \& Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.
Kuecuekguezel, G., Kocatepe, A., De Clercq, E., Sahin, F. \& Guelluece, M. (2006). Eur. J. Med. Chem. 41, 353-359.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Mehta, P. D., Sengar, N. P., Subrahmanyam, E. V. S. \& Satyanarayana, D. (2006). Indian J. Pharm. Sci. 68, 103-106.

Moghaddam, F. M. \& Hojabri, L. (2007). J. Heterocycl. Chem. 44, 35-38.
Mohamed, S. K., Akkurt, M., Tahir, M. N., Abdelhamid, A. A. \& Khalilov, A. N. (2012). Acta Cryst. E68, o1881-o1882.

Shah, T. J. \& Desai, V. A. (2007). Arkivoc, xiv, 218-228.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Srivastava, S. K., Jain, A. \& Srivastava, S. D. (2006). J. Indian Chem. Soc. 83, 1118-1123.
Subudhi, B. B., Panda, P. K., Kundu, T., Sahoo, S. \& Pradhan, D. (2007). J. Pharm. Res. 6, 114-118.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925
Yella, R., Ghosh, H. \& Patel, B. K. (2008). Green Chem. 10, 1307-1312.
Zhou, H., Wu, S., Zhai, S., Liu, A., Sun, Y., Li, R., Zhang, Y., Ekins, S., Swaan, P. W., Fang, B., Zhang, B. \& Yan, B. (2008). J. Med. Chem. 51, 1242-1250.

supporting information

Acta Cryst. (2012). E68, o2371-o2372 [https://doi.org/10.1107/S1600536812030243]
(Z)-3-(2-Hydroxyethyl)-2-(phenylimino)-1,3-thiazolidin-4-one

Shaaban K. Mohamed, Antar A. Abdelhamid, Sabry H. H. Younes, Mahmoud A. A. Elremaily and Jim Simpson

S1. Comment

Compounds incorporating the thiazolidinone core structure are of great interest to chemists and biologists due to their extensive bioactivities (Shah \& Desai, 2007). These include anti-microbial (Subudhi et al., 2007), anti-mycobacterial (Kuecuekguezel et al., 2006), anti-inflammatory (Srivastava et al., 2006), anti-fungal (Mehta et al., 2006) and anti-cancer effects (Zhou et al., 2008). In this context and following our on-going study of the synthesis of bio-selective molecules we were interested in investigating the microbial inhibiting effect of a newly synthesized series of compounds incorporating thiazolidinone ring systems. The synthesis of such compounds was carried out via a three component reaction technique using amino alcohols as precursors (Mohamed et al., 2012). In this study, the crystal structure determination of the title compound (I) was undertaken to investigate the relationship between its structure and antibacterial activity.
The title compound (I), a phenylimino-thiazolidinone derivative, crystallizes with the $\mathrm{S} 1 / \mathrm{C} 1 / \mathrm{C} 2 / \mathrm{N} 1 / \mathrm{C} 4$ thiazole and C6 \cdots C11 phenyl rings inclined at 56.99 (6) ${ }^{\circ}$ to one another. The thiazole ring is planar with an r.m.s. deviation for the five ring atoms of $0.0274 \AA$. The $\mathrm{C} 4=\mathrm{N} 5$ distance, $1.2638(19) \AA$, confirms this as a double bond and the molecule adopts a Z conformation with respect to this bond. The OH group of the hydroxyethyl substituent is disordered over two positions with relative occupancies 0.517 (4) for $\mathrm{O} 2-\mathrm{H} 2$ and 0.483 (4) for $\mathrm{O} 3-\mathrm{H} 3$. Bond distances (Allen et al., 1987) and angles in the molecule are normal and similar to those found in related structures (Bally \& Mornon, 1973; Moghaddam \& Hojabri, 2007; Yella et al., 2008; Abdel-Aziz et al., 2012).
In the crystal structure head to tail dimers are formed from $\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 1$ hydrogen bonds, bolstered by weaker $\mathrm{C} 1-$ H1B $\cdots \mathrm{N} 1$ interactions, Table 1, forming $R^{2}{ }_{2}(11)$ rings (Bernstein et al., 1995). These also link pairs of molecules into chains along b. Weak $\mathrm{C} 12-\mathrm{H} 1 \mathrm{~B} \cdots \mathrm{~S} 1$ contacts join each chain to an equivalent one progressing in the opposite direction, Fig. 2. Two additional $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds together with $\mathrm{C} 9-\mathrm{H} 9 \cdots \pi$ contacts further consolidate the structure forming stacks along b, Fig. 3 .

S2. Experimental

To a well stirred mixture of $135 \mathrm{mg}(1 \mathrm{mmol})$ phenylisothiocyanate and $61 \mathrm{mg}(1 \mathrm{mmol}) 2$-aminoethanol in 50 ml dioxane, $167 \mathrm{mg}(1 \mathrm{mmol})$ of bromo ethylacetate was added. The reaction mixture was refluxed and monitored by TLC until completion after 3 h . A solid product was deposited on cooling to room temperature and collected by filtration. The crude product was recrystallized from ethanol to give a high quality crystals (M.p. 327 K) suitable for X-ray analysis in an excellent yield (92\%).

S3. Refinement

The OH group of the hydroxyethyl substituent is disordered over two positions O 2 and O 3 with relative occupancies that converged to 0.517 (4) and 0.483 (4). Displacement parameters for the C 13 atom bound to the disordered OH groups were slightly higher than normal but a suitable additional disorder model could not be found. All H -atoms bound to carbon were refined using a riding model with $\mathrm{d}(\mathrm{C}-\mathrm{H})=0.95 \AA$ for aromatic and $0.99 \AA$ for $\mathrm{CH}_{2} \mathrm{H}$ atoms, and with $U_{\text {iso }}$ $=1.2 U_{\text {eq }}(\mathrm{C})$. For the disordered $\mathrm{O}-\mathrm{H}$ atoms $\mathrm{d}(\mathrm{O}-\mathrm{H})=0.84 \AA$, with $U_{\mathrm{iso}}=1.5 U_{\mathrm{eq}}(\mathrm{O})$.

Figure 1
The structure of I with ellipsoids drawn at the 50% probability level. Only the major disorder component is shown.

Figure 2
A view of the packing along the a axis showing chains of molecules linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds. Hydrogen bonds are drawn as dashed lines and only the major disorder component is shown.

Figure 3
Overall packing for (1) viewed along the b axis showing a representative $\mathrm{C}-\mathrm{H} \cdots \pi$ contact as a dotted line. The red sphere represents the centroid of the C6 $\cdots \mathrm{C} 11$ phenyl ring. Hydrogen bonds are drawn as dashed lines and only the major disorder component is shown.
(Z)-3-(2-Hydroxyethyl)-2-(phenylimino)-1,3-thiazolidin-4-one

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$
$M_{r}=236.29$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=11.9612$ (6) \AA
$b=6.9478$ (3) \AA
$c=13.1554(6) \AA$
$\beta=91.244$ (2) ${ }^{\circ}$
$V=1093.01(9) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
$T_{\min }=0.693, T_{\text {max }}=0.746$
$F(000)=496$
$D_{\mathrm{x}}=1.436 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5327 reflections
$\theta=3.3-27.6^{\circ}$
$\mu=0.28 \mathrm{~mm}^{-1}$
$T=91 \mathrm{~K}$
Irregular block, yellow
$0.40 \times 0.26 \times 0.11 \mathrm{~mm}$

17811 measured reflections
2547 independent reflections
2150 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.038$
$\theta_{\text {max }}=27.7^{\circ}, \theta_{\text {min }}=3.1^{\circ}$
$h=-15 \rightarrow 15$
$k=-9 \rightarrow 9$
$l=-17 \rightarrow 15$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.100$
$S=1.08$

2547 reflections
157 parameters
6 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0373 P)^{2}+0.9645 P\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.79 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.68 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
S1	0.27696 (4)	0.19764 (7)	0.90742 (4)	0.02132 (14)	
C1	0.18673 (18)	0.0254 (3)	0.96766 (16)	0.0261 (4)	
H1A	0.1232	-0.0083	0.9216	0.031*	
H1B	0.2287	-0.0937	0.9843	0.031*	
C2	0.14480 (17)	0.1172 (3)	1.06312 (15)	0.0248 (4)	
O1	0.08555 (15)	0.0341 (2)	1.12382 (12)	0.0393 (4)	
N1	0.17971 (13)	0.3030 (2)	1.07448 (12)	0.0204 (3)	
C4	0.24668 (14)	0.3775 (3)	0.99792 (13)	0.0172 (4)	
N5	0.28128 (12)	0.5494 (2)	1.00068 (11)	0.0180 (3)	
C6	0.34388 (14)	0.6235 (3)	0.91831 (14)	0.0171 (4)	
C7	0.29991 (15)	0.6270 (3)	0.81901 (14)	0.0196 (4)	
H7	0.2298	0.5682	0.8039	0.023*	
C8	0.35896 (16)	0.7167 (3)	0.74242 (15)	0.0213 (4)	
H8	0.3292	0.7179	0.6749	0.026*	
C9	0.46134 (17)	0.8049 (3)	0.76381 (15)	0.0234 (4)	
H9	0.5014	0.8661	0.7113	0.028*	
C10	0.50430 (16)	0.8025 (3)	0.86274 (15)	0.0233 (4)	
H10	0.5742	0.8623	0.8777	0.028*	
C11	0.44593 (15)	0.7135 (3)	0.94010 (14)	0.0201 (4)	
H11	0.4755	0.7139	1.0077	0.024*	
C12	0.14901 (17)	0.4171 (3)	1.16360 (15)	0.0255 (4)	
H12A	0.2113	0.5057	1.1812	0.031*	
H12B	0.1393	0.3292	1.2220	0.031*	
C13	0.0447 (2)	0.5319 (4)	1.14846 (19)	0.0439 (6)	
H13A	-0.0167	0.4364	1.1469	0.053*	
H13B	0.0363	0.6054	1.2123	0.053*	
O 2	0.0188 (2)	0.6593 (4)	1.0724 (2)	0.0241 (8)	0.517 (4)
H2	0.0483	0.7663	1.0856	0.036*	0.517 (4)
O3	-0.0418 (2)	0.4527 (5)	1.1267 (2)	0.0316 (9)	0.483 (4)
H3	-0.0409	0.4168	1.0658	0.047*	0.483 (4)

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0221(2)$	$0.0226(3)$	$0.0195(2)$	$0.00206(18)$	$0.00538(17)$	$-0.00315(18)$
C1	$0.0326(10)$	$0.0206(10)$	$0.0254(10)$	$-0.0003(8)$	$0.0066(8)$	$-0.0018(8)$
C2	$0.0280(10)$	$0.0244(10)$	$0.0221(10)$	$-0.0040(8)$	$0.0038(8)$	$-0.0013(8)$
O1	$0.0548(10)$	$0.0346(9)$	$0.0292(8)$	$-0.0195(8)$	$0.0170(7)$	$-0.0056(7)$
N1	$0.0211(8)$	$0.0236(8)$	$0.0166(8)$	$-0.0037(6)$	$0.0043(6)$	$-0.0034(6)$
C4	$0.0140(8)$	$0.0230(9)$	$0.0146(8)$	$0.0029(7)$	$-0.0001(6)$	$-0.0010(7)$
N5	$0.0161(7)$	$0.0229(8)$	$0.0150(7)$	$0.0014(6)$	$0.0010(6)$	$-0.0006(6)$
C6	$0.0181(8)$	$0.0163(8)$	$0.0170(9)$	$0.0037(7)$	$0.0029(7)$	$-0.0007(7)$
C7	$0.0197(8)$	$0.0203(9)$	$0.0187(9)$	$0.0040(7)$	$0.0008(7)$	$-0.0016(7)$
C8	$0.0280(9)$	$0.0186(9)$	$0.0172(9)$	$0.0058(7)$	$0.0014(7)$	$0.0014(7)$
C9	$0.0302(10)$	$0.0182(9)$	$0.0220(10)$	$0.0017(8)$	$0.0066(8)$	$0.0043(8)$
C10	$0.0221(9)$	$0.0205(9)$	$0.0272(10)$	$-0.0028(7)$	$0.0018(8)$	$0.0020(8)$
C11	$0.0223(9)$	$0.0191(9)$	$0.0187(9)$	$0.0009(7)$	$-0.0014(7)$	$0.0013(7)$
C12	$0.0322(10)$	$0.0290(10)$	$0.0157(9)$	$-0.0098(8)$	$0.0084(8)$	$-0.0067(8)$
C13	$0.0564(10)$	$0.0410(10)$	$0.0346(9)$	$0.0164(8)$	$0.0045(8)$	$-0.0037(8)$
O2	$0.0295(15)$	$0.0209(14)$	$0.0217(15)$	$-0.0021(11)$	$-0.0001(11)$	$-0.0017(11)$
O3	$0.0208(15)$	$0.054(2)$	$0.0197(16)$	$0.0020(14)$	$0.0030(11)$	$-0.0044(15)$

Geometric parameters ($A,{ }^{\circ}$)

S1-C4	1.7689 (19)	C8-H8	0.9500
S1-C1	1.806 (2)	C9-C10	1.389 (3)
$\mathrm{C} 1-\mathrm{C} 2$	1.504 (3)	C9—H9	0.9500
C1-H1A	0.9900	C10-C11	1.392 (3)
C1-H1B	0.9900	C10-H10	0.9500
C2-O1	1.224 (2)	C11-H11	0.9500
C2-N1	1.364 (3)	C12-C13	1.490 (3)
N1-C4	1.400 (2)	C12-H12A	0.9900
N1-C12	1.469 (2)	C12-H12B	0.9900
C4-N5	1.264 (2)	C13-O3	1.202 (4)
N5-C6	1.427 (2)	C13-O2	1.367 (4)
C6-C11	1.396 (3)	C13-H13A	0.9900
C6-C7	1.398 (3)	C13-H13B	0.9900
C7-C8	1.391 (3)	$\mathrm{O} 2-\mathrm{H} 2$	0.8400
C7-H7	0.9500	O3-H3	0.8400
C8-C9	1.393 (3)		
C4-S1-C1	92.29 (9)	C10-C9-C8	119.34 (18)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	107.38 (14)	C10-C9-H9	120.3
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	110.2	C8-C9-H9	120.3
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	110.2	C9-C10-C11	120.61 (18)
C2-C1-H1B	110.2	C9-C10-H10	119.7
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	110.2	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{H} 10$	119.7
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	108.5	C10-C11-C6	119.96 (17)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{N} 1$	123.72 (18)	C10-C11-H11	120.0

supporting information

O1-C2-C1	123.58 (19)	C6-C11-H11	120.0
N1-C2-C1	112.69 (17)	N1-C12-C13	113.91 (18)
C2-N1-C4	116.73 (16)	N1-C12-H12A	108.8
C2-N1-C12	121.13 (16)	C13-C12-H12A	108.8
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 12$	122.13 (16)	N1-C12-H12B	108.8
N5-C4-N1	121.38 (16)	C13-C12-H12B	108.8
N5-C4-S1	127.96 (14)	$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	107.7
N1-C4-S1	110.59 (13)	$\mathrm{O} 3-\mathrm{C} 13-\mathrm{O} 2$	86.7 (3)
C4-N5-C6	119.74 (16)	O3-C13-C12	120.0 (3)
C11-C6-C7	119.60 (17)	$\mathrm{O} 2-\mathrm{C} 13-\mathrm{C} 12$	128.4 (2)
C11-C6-N5	118.48 (16)	$\mathrm{O} 2-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$	105.2
C7-C6-N5	121.54 (16)	C12-C13-H13A	105.2
C8-C7-C6	119.88 (17)	$\mathrm{O} 3-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~B}$	109.6
C8-C7-H7	120.1	O2-C13-H13B	105.2
C6-C7-H7	120.1	C12-C13-H13B	105.2
C7-C8-C9	120.61 (18)	H13A-C13-H13B	105.9
C7-C8-H8	119.7	$\mathrm{C} 13-\mathrm{O} 2-\mathrm{H} 2$	109.5
C9-C8-H8	119.7	C13-O3-H3	109.5

Hydrogen-bond geometry (A, ${ }^{\circ}$)
Cg 2 is the centroid of the $\mathrm{C} 6-\mathrm{C} 11$ phenyl ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	0.84	1.98	$2.802(3)$	168
$\mathrm{C} 13-\mathrm{H} 13 B \cdots \mathrm{O}^{\mathrm{ii}}$	0.99	2.67	$3.407(3)$	131
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{iiii}}$	0.99	2.56	$3.472(3)$	153
$\mathrm{C} 12-\mathrm{H} 12 B \cdots \mathrm{~S}^{\mathrm{i}}$	0.99	2.92	$3.613(2)$	128
$\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{~N}^{\vee}$	0.99	2.57	$3.519(3)$	162
$\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{Cg}^{\mathrm{vi}}$	0.95	2.77	$3.5731(16)$	142

Symmetry codes: (i) $x, y+1, z$; (ii) $-x, y+1 / 2,-z+5 / 2$; (iii) $-x,-y,-z+2$; (iv) $x,-y+1 / 2, z+1 / 2$; (v) $x, y-1, z$; (vi) $-x+1, y-1 / 2,-z+1 / 2$.

