organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(4-Methylphenyl)-7-(2-methylpropoxy)-4*H*-chromen-4-one–6-chloro-2-(4methylphenyl)-7-(2-methylpropoxy)-4*H*chromen-4-one (19/1)

Vijay M. Barot,^a Mukesh M. Jotani^b* and Jeshal G. Maheta^a

^aDepartment of Chemistry, Smt. S. M. Panchal Science College, Talod, Gujarat 383 215, India, and ^bDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380 001, India Correspondence e-mail: mmjotani@rediffmail.com

correspondence e mail: minjotamorealinnail.com

Received 19 June 2012; accepted 24 July 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; disorder in main residue; R factor = 0.048; wR factor = 0.136; data-to-parameter ratio = 17.6.

The title co-crystal, $0.95C_{20}H_{20}O_3 \cdot 0.05C_{20}H_{19}ClO_3$, arises as the chloride carried over during the synthesis shares a position with an aromatic H atom; the partial occupancies are 0.947 (2) and 0.053 (2) for H and Cl, respectively. The molecular structure is stabilized by intramolecular C-H···O contacts, forming pseudo five- and six-membered rings with S(5) and S(6) graph-set motifs, respectively. The crystal structure features π - π stacking interactions between the centroids of the central fused ring systems [centroid–centroid distance = 3.501 (2) Å].

Related literature

For background to flavones, see: Hollman *et al.* (1997); Yao *et al.* (2004). For the biological activity of flavones, see: Harborne & Williams (2000); Khan & Hasan (2003); Qin *et al.* (2008); Mota *et al.* (2009); Prakash *et al.* (2009). For hydrogen-bond motifs, see: Bernstein *et al.* (1995).

 $\gamma = 69.833 \ (1)^{\circ}$

Z = 2

V = 814.20 (4) Å³

Mo $K\alpha$ radiation

 $0.30 \times 0.20 \times 0.20$ mm

 $\mu = 0.09 \text{ mm}^{-1}$

T = 293 K

Experimental

Crystal data

 $\begin{array}{l} 0.95 \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_3 \cdot 0.05 \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{ClO}_3 \\ M_r = 310.19 \\ \mathrm{Triclinic}, \ P\overline{1} \\ a = 9.0371 \ (2) \ \text{\AA} \\ b = 9.6216 \ (2) \ \text{\AA} \\ c = 11.0308 \ (3) \ \text{\AA} \\ a = 75.171 \ (2)^{\circ} \\ \beta = 65.865 \ (2)^{\circ} \end{array}$

Data collection

Bruker Kappa APEXII CCD	18174 measured reflections
diffractometer	3847 independent reflections
Absorption correction: multi-scan	2737 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2004)	$R_{\rm int} = 0.026$
$T_{\min} = 0.973, \ T_{\max} = 0.982$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	219 parameters
$vR(F^2) = 0.136$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.34 \text{ e } \text{\AA}^{-3}$
3847 reflections	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C19−H19···O3	0.93	2.38	2.702 (2)	100
C1−H1A···O1	0.96	2.58	2.900 (2)	100

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2* and *SAINT* (Bruker, 2004); data reduction: *SAINT* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

The authors thank the Department of Science and Technology (DST) and SAIF, IIT Madras, Chennai, India, for the intensity data collection. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5116).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker, (2004). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Harborne, J. B. & Williams, C. A. (2000). Phytochemistry, 55, 481-504.

- Hollman, P. C. H., van Trijp, J. M. P., Buysman, M. N. C. P., Van de Gaag, M. S., Mengelers, M. J. B., de Vries, J. H. M. & Katan, M. B. (1997). *FEBS Lett.* **418**, 152–156.
- Khan, M. S. Y. & Hasan, S. M. (2003). Indian J. Chem. Sect. B, 42, 1970–1974.
- Mota, K. S. L., Dias, G. E. N., Pinto, M. E. F., Luiz-Ferreira, A., Souza-Brito, A. R. M., Lima, C. A. H., Filho, J. M. B. & Batista, L. M. (2009). *Molecules*, 14, 979–1012.
- Prakash, O., Kumar, R. & Sehrawat, R. (2009). Eur. J. Med. Chem. 44, 1763– 1767.
- Qin, C. X., Chen, X., Hughes, R. A., Williams, S. J. & Woodman, O. L. (2008). J. Med. Chem. 51, 1874–1884.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Yao, L. H., Jiang, Y. M., Shi, J., Tomas-Barberan, F. A., Datta, N., Singanusong, R. & Chen, S. S. (2004). Plant Foods Hum. Nutr. 59, 113–122.

supporting information

Acta Cryst. (2012). E68, o2582–o2583 [https://doi.org/10.1107/S1600536812033430]

2-(4-Methylphenyl)-7-(2-methylpropoxy)-4*H*-chromen-4-one–6-chloro-2-(4-methylphenyl)-7-(2-methylpropoxy)-4*H*-chromen-4-one (19/1)

Vijay M. Barot, Mukesh M. Jotani and Jeshal G. Maheta

S1. Comment

Flavones can be considered as the derivatives of a parent compound 2-phenylchromen containing varying degrees of hydroxylation and methoxylation (Yao *et al.*, 2004). Also, flavones and their derivatives at different oxidation level are well known naturally occurring oxygen-containing potent anti-oxidant heterocyclic compounds as they chelate ions, scavenge oxygen free radicals and prevent the oxidation of low density lipoprotein (Hollman *et al.*, 1997). Both natural and synthetic flavones possess a wide spectrum of biological activities such as anti-bacterial, anti-fungal, anti-inflammatory, anti-cancer, *etc.* (Prakash *et al.*, 2009; Mota *et al.*, 2009; Qin *et al.*, 2008; Khan & Hasan, 2003). The continuous search for the synthesis of new derivatives in this group due to their medicinal importance (Harborne & Williams, 2000) is the main motivation for the study of title flavone molecule. In view of their importance, the title compound, 2-(4-methylphenyl)-7-(2-methylpropoxy)-4*H*-chromen-4-one (I) was synthesized and its crystal structure studied.

The molecular structure of (I), Fig. 1, consists of a central chromen ring extended by a toluene ring on one side and a propoxy moiety on other side. The bicyclic chromen ring is almost coplanar with C8, C12 and C13 atoms have maximum respective deviations of -0.205 (16), 0.0185 (16) and 0.158 (15) Å with respect to least square plane through it. The fractional chlorine atom remains in the molecule of (I) during the synthesis and its presence is confirmed during the structural refinement as it shares a position with the aromatic hydrogen H19 atom; the partial occupancies are 0.947 (2) and 0.053 (2) for H19 and C11 atoms, respectively. In the absence of hydrogen bonds, the crystal structure of (I) is stabilized by intramolecular short C—H…O contacts forming pseudo five- and six-membered rings of *S*(5) and *S*(6) graph-set motif (Bernstein *et al.*, 1995), Table 1, and by π — π stacking interactions between symmetry related fused chromen rings (*Cg*1—*Cg*2 (2 - *x*, -*y*, 1 - *z*) = 3.501 (2) Å; *Cg*1 = C5—C10 and *Cg*2 = O3/C9/C8/C11—C13), Fig. 2.

S2. Experimental

(2E)-1-[2-Hydroxy-4-(2-methylpropoxy)phenyl]-3-(4-methylphenyl)prop-2-ene-1-one (0.01 mol) was dissolved in DMSO (30 ml) and iodine, in crystalline powder form, was added. The mixture was then heated at about 140–145 °C for 1 h and the reaction was monitored by continuous TLC. The resulting solution was cooled and diluted with water after the completion of reaction. Excess iodine was removed by filtering and washing the product with 20% aqueous sodium bisulphite. The crude product was then purified by column chromatography using toluene-ethyl acetate (10:1) as the mobile phase and a silica gel as the stationary phase. The melting point was measured on an Electro thermal 9200 apparatus and is uncorrected (Yield: 68%, M.pt: 442 K). The colourless block-shaped crystals of the title compound were obtained by re-crystallization from its ethanol solution.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 to 0.98 Å) and were included in the refinement in the riding model approximation with U_{iso} (H) set to 1.2–1.5 U_{eq} (C). A reflection affected by the beam stop, *i.e.* (0 0 1), was omitted from the final refinement.

Figure 1

Molecular structure of (I) showing 50% probability displacement ellipsoids. The hydrogen atoms are omitted for clarity.

Crystal packing showing π — π stacking interactions indicated by dashed lines. H atoms are omitted for clarity.

2-(4-Methylphenyl)-7-(2-methylpropoxy)-4*H*-chromen-4-one- 6-chloro-2-(4-methylphenyl)-7-(2-methylpropoxy)-4*H*-chromen-4-one (19/1)

Crystal data

$\begin{array}{l} 0.95C_{20}H_{20}O_{3} \cdot 0.05C_{20}H_{19}ClO_{3} \\ M_{r} = 310.19 \\ \text{Triclinic, } PI \\ \text{Hall symbol: -P 1} \\ a = 9.0371 (2) \text{ Å} \\ b = 9.6216 (2) \text{ Å} \\ c = 11.0308 (3) \text{ Å} \\ a = 75.171 (2)^{\circ} \\ \beta = 65.865 (2)^{\circ} \\ v = 69.833 (1)^{\circ} \end{array}$	Z = 2 F(000) = 329.6 $D_x = 1.265 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71069 \text{ Å}$ Cell parameters from 5339 reflections $\theta = 3.0-25.0^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 293 K Block, colourless		
V = 814.20 (4) Å ³	0.50 × 0.20 × 0.20 mm		
Data collection			
Bruker Kappa APEXII CCD diffractometer	Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2004)		
Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scan	$T_{\text{min}} = 0.973, T_{\text{max}} = 0.982$ 18174 measured reflections 3847 independent reflections		

$h = -11 \rightarrow 11$
$k = -12 \rightarrow 12$
$l = -14 \rightarrow 14$
Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0582P)^2 + 0.1669P]$
where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.005$
$\Delta ho_{ m max} = 0.34 \ { m e} \ { m \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	0.96616 (14)	-0.37259 (11)	0.75225 (11)	0.0496 (3)	
O2	0.73241 (16)	0.33677 (12)	0.64615 (12)	0.0611 (3)	
O3	0.72302 (13)	0.01688 (10)	0.47020 (10)	0.0427 (3)	
C1	0.9533 (3)	-0.6722 (2)	0.8857 (2)	0.0753 (6)	
H1B	1.0079	-0.7685	0.9223	0.113*	
H1C	0.8465	-0.6739	0.8881	0.113*	
H1A	0.9360	-0.5981	0.9377	0.113*	
C2	1.0620 (2)	-0.63483 (17)	0.74312 (17)	0.0502 (4)	
H2	1.0725	-0.7099	0.6924	0.060*	
C3	1.2383 (2)	-0.6446 (2)	0.7309 (3)	0.0807 (7)	
H3C	1.3039	-0.6216	0.6384	0.121*	
H3A	1.2900	-0.7440	0.7645	0.121*	
H3B	1.2327	-0.5746	0.7820	0.121*	
C4	0.9825 (2)	-0.48407 (16)	0.67936 (16)	0.0464 (4)	
H4A	1.0526	-0.4655	0.5862	0.056*	
H4B	0.8726	-0.4815	0.6828	0.056*	
C5	0.90580 (18)	-0.22724 (16)	0.70937 (15)	0.0412 (3)	
C6	0.9127 (2)	-0.12487 (17)	0.77583 (16)	0.0471 (4)	
H6	0.9567	-0.1590	0.8443	0.057*	0.9470 (18)
C7	0.8550 (2)	0.02482 (17)	0.74021 (16)	0.0467 (4)	
H7	0.8601	0.0919	0.7851	0.056*	
C8	0.78841 (17)	0.07948 (16)	0.63740 (14)	0.0398 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

С9	0.78410 (17)	-0.02488 (15)	0.57358 (14)	0.0373 (3)	
C10	0.84152 (17)	-0.17760 (15)	0.60726 (14)	0.0397 (3)	
H10	0.8369	-0.2447	0.5623	0.048*	
C11	0.72965 (19)	0.23849 (16)	0.59441 (15)	0.0446 (4)	
C12	0.67062 (19)	0.27121 (16)	0.48452 (16)	0.0455 (4)	
H12	0.6314	0.3707	0.4520	0.055*	
C13	0.66968 (17)	0.16449 (15)	0.42691 (15)	0.0406 (3)	
C14	0.61702 (18)	0.18806 (16)	0.31181 (15)	0.0425 (3)	
C15	0.5271 (2)	0.32770 (17)	0.26928 (16)	0.0485 (4)	
H15	0.4986	0.4081	0.3142	0.058*	
C16	0.4797 (2)	0.34794 (17)	0.16082 (17)	0.0507 (4)	
H16	0.4203	0.4427	0.1334	0.061*	
C17	0.5174 (2)	0.23220 (18)	0.09144 (16)	0.0489 (4)	
C18	0.6088 (3)	0.09398 (19)	0.13338 (19)	0.0627 (5)	
H18	0.6381	0.0141	0.0877	0.075*	
C19	0.6579 (2)	0.07170 (18)	0.24164 (19)	0.0587 (5)	
H19	0.7191	-0.0227	0.2678	0.070*	
C20	0.4595 (2)	0.2551 (2)	-0.02344 (18)	0.0628 (5)	
H20A	0.5374	0.2937	-0.1039	0.094*	
H20B	0.3498	0.3249	-0.0052	0.094*	
H20C	0.4543	0.1615	-0.0348	0.094*	
C11	0.9913 (10)	-0.1791 (10)	0.9090 (9)	0.060 (3)	0.0530 (18)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
01	0.0659 (7)	0.0342 (6)	0.0515 (7)	-0.0061 (5)	-0.0312 (6)	-0.0029 (5)
O2	0.0839 (9)	0.0380 (6)	0.0665 (8)	-0.0159 (6)	-0.0280 (7)	-0.0138 (5)
O3	0.0506 (6)	0.0282 (5)	0.0497 (6)	-0.0065 (4)	-0.0231 (5)	-0.0029 (4)
C1	0.1004 (16)	0.0513 (11)	0.0633 (12)	-0.0210 (11)	-0.0291 (12)	0.0109 (9)
C2	0.0599 (10)	0.0339 (8)	0.0580 (10)	-0.0101 (7)	-0.0277 (8)	-0.0004 (7)
C3	0.0635 (12)	0.0462 (10)	0.132 (2)	-0.0063 (9)	-0.0503 (13)	0.0042 (11)
C4	0.0549 (9)	0.0370 (8)	0.0483 (9)	-0.0088 (7)	-0.0225 (7)	-0.0050 (7)
C5	0.0415 (8)	0.0339 (7)	0.0433 (8)	-0.0072 (6)	-0.0135 (7)	-0.0037 (6)
C6	0.0529 (9)	0.0455 (9)	0.0457 (9)	-0.0121 (7)	-0.0212 (7)	-0.0062 (7)
C7	0.0517 (9)	0.0428 (9)	0.0487 (9)	-0.0137 (7)	-0.0164 (7)	-0.0121 (7)
C8	0.0381 (7)	0.0348 (7)	0.0422 (8)	-0.0108 (6)	-0.0075 (6)	-0.0079 (6)
C9	0.0356 (7)	0.0344 (7)	0.0382 (8)	-0.0092 (6)	-0.0102 (6)	-0.0039 (6)
C10	0.0424 (8)	0.0325 (7)	0.0428 (8)	-0.0091 (6)	-0.0142 (7)	-0.0055 (6)
C11	0.0455 (8)	0.0356 (8)	0.0477 (9)	-0.0117 (6)	-0.0086 (7)	-0.0099 (6)
C12	0.0479 (9)	0.0287 (7)	0.0521 (9)	-0.0057 (6)	-0.0146 (7)	-0.0045 (6)
C13	0.0376 (7)	0.0305 (7)	0.0459 (8)	-0.0066 (6)	-0.0111 (6)	-0.0021 (6)
C14	0.0424 (8)	0.0321 (7)	0.0478 (9)	-0.0083 (6)	-0.0149 (7)	-0.0010 (6)
C15	0.0510 (9)	0.0331 (8)	0.0560 (10)	-0.0065 (7)	-0.0190 (8)	-0.0040 (7)
C16	0.0494 (9)	0.0361 (8)	0.0589 (10)	-0.0077 (7)	-0.0224 (8)	0.0062 (7)
C17	0.0473 (9)	0.0475 (9)	0.0483 (9)	-0.0161 (7)	-0.0169 (7)	0.0039 (7)
C18	0.0868 (13)	0.0410 (9)	0.0661 (12)	-0.0078 (9)	-0.0392 (11)	-0.0094 (8)
C19	0.0780 (12)	0.0320 (8)	0.0685 (11)	0.0000 (8)	-0.0408 (10)	-0.0060 (7)

supporting information

C20	0.0691 (12)	0.0642 (12)	0.0582 (11)	-0.0207 (9)	-0.0303 (9)	0.0033 (9)
C11	0.053 (5)	0.061 (6)	0.059 (5)	-0.016 (4)	-0.016 (4)	-0.001 (4)

Geometric parameters (Å, °)

01—C5	1.3503 (17)	С7—Н7	0.9300
O1—C4	1.4333 (17)	C8—C9	1.3844 (19)
O2—C11	1.2348 (17)	C8—C11	1.457 (2)
O3—C13	1.3589 (16)	C9—C10	1.3852 (19)
О3—С9	1.3762 (17)	C10—H10	0.9300
C1—C2	1.503 (3)	C11—C12	1.439 (2)
C1—H1B	0.9600	C12—C13	1.343 (2)
C1—H1C	0.9600	C12—H12	0.9300
C1—H1A	0.9600	C13—C14	1.470 (2)
C2—C4	1.513 (2)	C14—C19	1.383 (2)
C2—C3	1.514 (2)	C14—C15	1.386 (2)
С2—Н2	0.9800	C15—C16	1.377 (2)
С3—Н3С	0.9600	C15—H15	0.9300
С3—НЗА	0.9600	C16—C17	1.380 (2)
С3—Н3В	0.9600	C16—H16	0.9300
C4—H4A	0.9700	C17—C18	1.380 (2)
C4—H4B	0.9700	C17—C20	1.499 (2)
C5—C10	1.379 (2)	C18—C19	1.380 (2)
С5—С6	1.401 (2)	C18—H18	0.9300
С6—С7	1.364 (2)	C19—H19	0.9300
C6—C11	1.772 (9)	C20—H20A	0.9600
С6—Н6	0.9300	C20—H20B	0.9600
С7—С8	1.400 (2)	C20—H20C	0.9600
C5—O1—C4	118.87 (11)	O3—C9—C8	121.81 (12)
С13—О3—С9	119.23 (11)	O3—C9—C10	115.07 (12)
C2—C1—H1B	109.5	C8—C9—C10	123.12 (13)
C2—C1—H1C	109.5	C5-C10-C9	118.11 (13)
H1B—C1—H1C	109.5	C5-C10-H10	120.9
C2—C1—H1A	109.5	C9—C10—H10	120.9
H1B—C1—H1A	109.5	O2—C11—C12	122.81 (14)
H1C—C1—H1A	109.5	O2—C11—C8	123.12 (14)
C1—C2—C4	112.08 (15)	C12—C11—C8	114.06 (12)
C1—C2—C3	112.10 (17)	C13—C12—C11	122.91 (13)
C4—C2—C3	110.95 (14)	C13—C12—H12	118.5
C1—C2—H2	107.1	C11—C12—H12	118.5
C4—C2—H2	107.1	C12—C13—O3	121.86 (13)
С3—С2—Н2	107.1	C12—C13—C14	126.37 (13)
С2—С3—Н3С	109.5	O3—C13—C14	111.77 (12)
С2—С3—НЗА	109.5	C19—C14—C15	118.04 (14)
НЗС—СЗ—НЗА	109.5	C19—C14—C13	120.87 (13)
С2—С3—Н3В	109.5	C15—C14—C13	121.09 (14)
НЗС—СЗ—НЗВ	109.5	C16—C15—C14	120.31 (14)

НЗА—СЗ—НЗВ	109.5	С16—С15—Н15	119.8
O1—C4—C2	107.95 (12)	C14—C15—H15	119.8
O1—C4—H4A	110.1	C15—C16—C17	122.14 (14)
C2-C4-H4A	110.1	C15—C16—H16	118.9
01—C4—H4B	110.1	С17—С16—Н16	118.9
C2—C4—H4B	110.1	C_{16} C_{17} C_{18}	117 17 (15)
H4A - C4 - H4B	108.4	$C_{16} - C_{17} - C_{20}$	12140(15)
01-C5-C10	124 33 (13)	C18 - C17 - C20	121.10 (15)
01 - C5 - C6	115 33 (13)	C19 - C18 - C17	121.19 (16)
C10-C5-C6	120.34(13)	C19-C18-H18	119.3
C7 - C6 - C5	120.05(14)	C17 - C18 - H18	119.3
C7 - C6 - C11	120.03(14) 1167(3)	C18 - C19 - C14	120.84 (15)
C_{5} C_{6} C_{11}	1232(3)	C18 - C19 - H19	119.6
C7 C6 H6	120.0	$C_{10} = C_{10} = H_{10}$	119.6
C_{5} C_{6} H_{6}	120.0	C_{17} C_{20} H_{20A}	109.5
C_{5}	120.0	C17 = C20 = H20R	109.5
C6 C7 H7	121.20 (15)	$H_{20A} = C_{20} = H_{20B}$	109.5
$C_0 = C_7 = H_7$	119.4	1120A - C20 - 1120B	109.5
$C_{0} = C_{0} = C_{1}$	117.4	H_{20}^{-1}	109.5
$C_{9} = C_{8} = C_{11}$	117.11(13) 120.11(12)	$H_{20}A = C_{20} = H_{20}C$	109.5
C_{2}	120.11(13) 122.75(12)	H20B-C20-H20C	109.5
C/C8C11	122.75 (13)		
$C_{5} - 0_{1} - C_{4} - C_{2}$	176 62 (13)	C7-C8-C11-O2	-0.8(2)
$C_1 - C_2 - C_4 - O_1$	62.80(18)	$C_{1}^{0} = C_{2}^{0} = C_{11}^{0} = C_{12}^{0}$	0.0(2)
$C_{1}^{2} - C_{2}^{2} - C_{4}^{4} - O_{1}^{1}$	-63.37(19)	C_{7} C_{8} C_{11} C_{12}	178 16 (14)
$C_{4} = 01 = C_{5} = C_{10}$	70(2)	$0^{2}-0^{1}-0^{1}-0^{1}$	179.10(14) 179.05(15)
$C_4 O_1 C_5 C_6$	-172.61(13)	C_{11}^{2} C_{12}^{1} C_{13}^{12} C_{13}^{13}	177.03(13)
01 - C5 - C6 - C7	179.97 (14)	C_{11} C_{12} C_{13} C	0.1(2)
C_{10} C_{5} C_{6} C_{7}	(17)(17)	$C_{11} C_{12} C_{13} C_{14}$	-177.83(14)
01 C5 C6 C11	-10(4)	$C_{11}^{0} = C_{12}^{0} = C_{13}^{0} = C_{14}^{0}$	-18(2)
$C_{10} C_{5} C_{6} C_{11}$	1.0(4)	$C_{9} = 0_{3} = 0_{13} = 0_{14}$	1.0(2)
$C_{10} = C_{20} = C_{10} = C_{10}$	-0.1(2)	$C_{2} = 0_{3} = 0_{13} = 0_{14}$	177.00(12)
$C_{3} = C_{0} = C_{1} = C_{8}$	-0.1(2) -1702(2)	C_{12} C_{13} C_{14} C_{19}	-14.08(10)
$C_{11} = C_{0} = C_{1} = C_{0}$	1/9.2(3)	$C_{12} = C_{13} = C_{14} = C_{15}$	14.1(2)
$C_{0} - C_{1} - C_{0} - C_{9}$	-0.1(2)	C12 - C13 - C14 - C13	-14.3(2)
$C_0 - C_1 - C_0 - C_1$	-1/8.39(14)	03-013-014-015	100.74(13)
$C_{13} = 03 = 03 = 03$	1.8(2)	C19 - C14 - C15 - C16	0.4(2)
C13 - 03 - C9 - C10	-1/7.59(12)	C13 - C14 - C15 - C16	1/9.60 (14)
C/-C8-C9-O3	-1/9.21(13)	C14-C15-C16-C17	0.6 (2)
C11 - C8 - C9 - 03	-0.9(2)		-1.4(2)
C7—C8—C9—C10	0.2 (2)	C15—C16—C17—C20	177.83 (15)
C11 - C8 - C9 - C10	1/8.47 (13)	C16—C17—C18—C19	1.2 (3)
01	-1/9.90 (13)	C20—C17—C18—C19	-178.04 (17)
C6—C5—C10—C9	-0.3 (2)	C17—C18—C19—C14	-0.2 (3)
O3—C9—C10—C5	179.46 (12)	C15—C14—C19—C18	-0.6 (3)
C8—C9—C10—C5	0.0 (2)	C13—C14—C19—C18	-179.81 (16)
C9—C8—C11—O2	-179.02 (14)		

supporting information

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
С19—Н19…О3	0.93	2.38	2.702 (2)	100
C1—H1A····O1	0.96	2.58	2.900 (2)	100