Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dimethyl 2,2'-[2,2'-bi(1H-1,3-benzimidazole)-1,1'-diyl]diacetate

Huai-Ling Guo, Jia-Cheng Liu,* Chao-Hu Xiao, Ting Pang and Ping Cao

Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China

Correspondence e-mail: jcliu8@163.com

Received 12 July 2012; accepted 16 July 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.127; data-to-parameter ratio = 12.5.

The whole molecule of the title compound, $C_{20}H_{18}N_4O_4$, is generated by an inversion center. The benzimidazole ring mean plane make a dihedral angle of 89.4 $(8)^{\circ}$ with the plane passing through the acetate group (COO). In the crystal, molecules are linked via weak C-H···O hydrogen bonds and $\pi - \pi$ interactions [centroid–centroid distance = 3.743 (3) Å] involving inversion-related benzimidazole groups.

Related literature

For related structures, see: Al-Mohammed et al. (2012); Fu & Xu (2009); Xu & Wang (2008). For the synthesis of 2,2'bibenzimidazole, see: Tang et al. (2007).

Experimental

Crystal data

C20H18N4O4 $\gamma = 87.172 (5)^{\circ}$ $M_r = 378.38$ V = 438.1 (4) Å³ Triclinic, $P\overline{1}$ Z = 1a = 6.904 (4) Å Mo $K\alpha$ radiation b = 8.494(5) Å $\mu = 0.10 \text{ mm}^{-1}$ c = 8.643 (5) Å T = 296 K $\alpha = 67.191 \ (5)^{\circ}$ $0.33 \times 0.31 \times 0.29 \text{ mm}$ $\beta = 70.360 \ (5)^{\circ}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS: Bruker, 2005) $T_{\min} = 0.967, T_{\max} = 0.971$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	128 parameters
$wR(F^2) = 0.127$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$
1600 reflections	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

3034 measured reflections 1600 independent reflections

 $R_{\rm int} = 0.027$

1172 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C8 - H8B \cdots O1^{i}$	0.97	2.59	3.364 (3)	137
$C10 - H10C \cdots O1^{ii}$	0.96	2.55	3.481 (4)	164

Symmetry codes: (i) -x + 1, -y + 2, -z; (ii) -x, -y + 2, -z.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Foundation of Gansu (No. 0710RJ ZA113).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2479).

References

Al-Mohammed, N. N., Alias, Y., Abdullah, Z. & Khaledi, H. (2012). Acta Cryst. E68, o571.

Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Fu, X. & Xu, G. (2009). Acta Cryst. E65, o1535.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Tang, H.-J., Zhang, Z.-G., Cong, C.-J. & Zhang, K.-L. (2007). Huaxue Shiji, 29, 733-735.

Xu, G.-H. & Wang, W. (2008). Acta Cryst. E64, o1811.

supporting information

Acta Cryst. (2012). E68, o2512 [https://doi.org/10.1107/S1600536812032266]

Dimethyl 2,2'-[2,2'-bi(1H-1,3-benzimidazole)-1,1'-diyl]diacetate

Huai-Ling Guo, Jia-Cheng Liu, Chao-Hu Xiao, Ting Pang and Ping Cao

S1. Comment

The whole molecule of the title compound (Fig.1) is generated by an inversion center. The benzimidazole system is essentially planar, with a dihedral angle of $0.8 (5)^{\circ}$ between the planes of the benzene and imidazole rings. The benzimidazole ring make a dihedral angle of 89.4 (8)° with the plane passing through the acetate group (C9/O1/O2). This value is comparable to that observed in some similar structures (Al-Mohammed *et al.*, 2012; Fu *et al.*, 2009; Xu *et al.*, 2008).

In the crystal, weak intermolecular C—H···O hydrogen bonds (Table 1 and Fig. 2) and π - π stacking interactions [Cg1···Cg2ⁱ = 3.743 (3) Å, where Cg1 is the centroid of ring N1/C1/C6/N2/C7; Cg2 is the centroid of ring C1-C6; symmetry code: (i) -x+1, -y+1, -z+1] stabilize the crystal structure.

S2. Experimental

The synthesis of 2,2'-bibenzimidazole [systematic name: 1H,1'H-2,2'-bibenzo[d]imidazole] has been reported (Tang *et al.*, 2007). A mixture of 2,2'-bibenzimidazole (11.71 g, 50 mmol) and NaOH (4.00 g, 100 mmol) in DMSO (40 mL) was stirred at 278 K for 2 h, and then methyl chloroacetate (10.85 g, 100 mmol) was added. The mixture was cooled to room temperature after stirring at 353 K for 24 h, and then poured into 200 mL of water. A yellow solid formed immediately, which was isolated by filtration. The crude product was then crystallized from methanol. Single crystals of the title compound, suitable for X-ray analysis, were obtained by slow evaporation of a solution in methanol.

S3. Refinement

The C-bound H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.93, 0.96 and 0.97 Å for CH, CH₃ and CH₂ H-atoms, respectively, with $U_{iso}(H) = k \times U_{eq}$ (parent C-atom), where k = 1.5 for CH₃ H-atoms and = 1.2 for other H-atoms.

Figure 1

The molecular structure of the title molecule with the atom numbering [symmetry code for suffix A: -x, -y+1, -z+1]. Displacement ellipsoids are drawn at the 30% probability level

Figure 2

The crystal packing of the title compound, viewed along the b axis. Weak C—H···O interaction are shown as dashed lines.

Dimethyl 2,2'-[2,2'-bi(1H-1,3-benzimidazole)-1,1'-diyl]diacetate

Crystal data

$C_{20}H_{18}N_4O_4$ $M_r = 378.38$ Triclinic, <i>P</i> 1 Hall symbol: -P 1 a = 6.904 (4) Å b = 8.494 (5) Å c = 8.643 (5) Å a = 67.191 (5)° $\beta = 70.360$ (5)° $\gamma = 87.172$ (5)°	Z = 1 F(000) = 198 $D_x = 1.434 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 853 reflections $\theta = 2.6-23.8^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 296 K Block, brown $0.33 \times 0.31 \times 0.29 \text{ mm}$		
$V = 438.1 (4) \text{ Å}^3$			
Bruker APEXII CCD diffractometer	Absorption correction: multi-scan (SADABS; Bruker, 2005)		
Radiation source: fine-focus sealed tube	$T_{\min} = 0.967, T_{\max} = 0.971$		
Graphite monochromator	3034 measured reflections		
φ and ω scans	1600 independent reflections		
•	1172 reflections with $I > 2\sigma(I)$		

$R_{\rm int} = 0.027$	$k = -9 \rightarrow 10$
$\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$	$l = -10 \rightarrow 10$
$h = -8 \longrightarrow 8$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.048$	Hydrogen site location: inferred from
$wR(F^2) = 0.127$	neighbouring sites
S = 1.06	H-atom parameters constrained
1600 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0656P)^2 + 0.0023P]$
128 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.25 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.3492 (3)	0.6658 (2)	0.5117 (2)	0.0382 (5)
C2	0.5275 (3)	0.7663 (3)	0.4646 (3)	0.0485 (6)
H2	0.6033	0.8332	0.3460	0.058*
C3	0.5865 (4)	0.7619 (3)	0.6022 (3)	0.0539 (6)
H3	0.7063	0.8271	0.5762	0.065*
C4	0.4722 (4)	0.6624 (3)	0.7808 (3)	0.0533 (6)
H4	0.5173	0.6635	0.8704	0.064*
C5	0.2955 (3)	0.5636 (3)	0.8265 (3)	0.0497 (6)
Н5	0.2197	0.4979	0.9454	0.060*
C6	0.2327 (3)	0.5645 (2)	0.6892 (2)	0.0397 (5)
C7	0.0742 (3)	0.5291 (2)	0.5281 (2)	0.0385 (5)
C8	0.3089 (3)	0.7314 (2)	0.2179 (2)	0.0433 (5)
H8A	0.2674	0.6583	0.1696	0.052*
H8B	0.4585	0.7504	0.1691	0.052*
C9	0.2220 (3)	0.9010 (3)	0.1547 (3)	0.0435 (5)
C10	0.0081 (4)	1.1015 (3)	0.2334 (4)	0.0720 (8)
H10A	0.1162	1.1933	0.1612	0.108*
H10B	-0.0752	1.1195	0.3382	0.108*
H10C	-0.0764	1.0989	0.1659	0.108*
N1	0.2463 (2)	0.64117 (18)	0.41008 (19)	0.0388 (4)
N2	0.0622 (3)	0.4797 (2)	0.6961 (2)	0.0435 (5)
O1	0.2651 (3)	0.9897 (2)	-0.00051 (19)	0.0731 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

02	0.0980	(2) 0.94	4015 (17)	0.28611 (18)	0.0535 (5)		
Atomic	Atomic displacement parameters ($Å^2$)						
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
C1	0.0432 (12)	0.0319 (10)	0.0357 (10)	0.0078 (9)	-0.0109 (9)	-0.0122 (8)	
C2	0.0521 (14)	0.0445 (12)	0.0380(11)	-0.0018 (10)	-0.0083 (10)	-0.0104 (9)	
C3	0.0519 (14)	0.0543 (13)	0.0493 (13)	-0.0041 (11)	-0.0148 (11)	-0.0153 (11)	
C4	0.0571 (15)	0.0605 (14)	0.0434 (12)	0.0081 (12)	-0.0224 (11)	-0.0176 (11)	
C5	0.0498 (14)	0.0542 (13)	0.0354 (11)	0.0099 (11)	-0.0134 (10)	-0.0094 (9)	
C6	0.0429 (13)	0.0351 (10)	0.0329 (10)	0.0077 (9)	-0.0102 (9)	-0.0079 (8)	
C7	0.0420 (12)	0.0299 (10)	0.0321 (10)	0.0035 (9)	-0.0063 (8)	-0.0059 (8)	
C8	0.0497 (13)	0.0421 (11)	0.0280 (10)	-0.0052 (10)	-0.0030 (9)	-0.0110 (8)	
C9	0.0431 (13)	0.0446 (12)	0.0335 (10)	-0.0084 (9)	-0.0131 (9)	-0.0044 (9)	
C10	0.082 (2)	0.0443 (13)	0.0862 (18)	0.0167 (13)	-0.0383 (16)	-0.0158 (13)	
N1	0.0442 (10)	0.0304 (8)	0.0302 (8)	0.0015 (7)	-0.0059 (7)	-0.0058 (7)	
N2	0.0454 (11)	0.0396 (9)	0.0321 (9)	0.0036 (8)	-0.0079 (8)	-0.0049 (7)	
01	0.0739 (12)	0.0779 (12)	0.0375 (9)	0.0000 (10)	-0.0172 (8)	0.0073 (8)	
O2	0.0684 (11)	0.0384 (8)	0.0470 (9)	0.0120 (7)	-0.0185 (8)	-0.0119 (7)	

Geometric parameters (Å, °)

C1—N1 1.3	377 (3)	C7 N1	1 270 (2)
		C/N1	1.379(2)
C1—C2 1	381 (3)	$C7 - C7^{i}$	1.449 (4)
C1—C6 1	398 (3)	C8—N1	1.448 (2)
C2—C3 1	368 (3)	C8—C9	1.503 (3)
С2—Н2 0.9	9300	C8—H8A	0.9700
C3—C4 1	398 (3)	C8—H8B	0.9700
С3—Н3 0.9	9300	C9—O1	1.194 (2)
C4—C5 1	367 (3)	C9—O2	1.321 (2)
C4—H4 0.9	9300	C10—O2	1.447 (3)
C5—C6 1	391 (3)	C10—H10A	0.9600
С5—Н5 0.9	9300	C10—H10B	0.9600
C6—N2 1	383 (3)	C10—H10C	0.9600
C7—N2 1	320 (2)		
N1—C1—C2 13	31.59 (18)	N1—C8—C9	115.16 (16)
N1—C1—C6 10	05.60 (18)	N1—C8—H8A	108.5
C2—C1—C6 12	22.81 (19)	С9—С8—Н8А	108.5
C3—C2—C1 11	16.29 (19)	N1—C8—H8B	108.5
С3—С2—Н2 12	21.9	С9—С8—Н8В	108.5
С1—С2—Н2 12	21.9	H8A—C8—H8B	107.5
C2—C3—C4 12	22.0 (2)	01—C9—O2	124.6 (2)
С2—С3—Н3 11	19.0	O1—C9—C8	121.8 (2)
С4—С3—Н3 11	19.0	O2—C9—C8	113.58 (15)
C5—C4—C3 12	21.4 (2)	O2—C10—H10A	109.5
C5—C4—H4 11	19.3	O2—C10—H10B	109.5
C3—C4—H4 11	19.3	H10A—C10—H10B	109.5

supporting information

C4—C5—C6 C4—C5—H5 C6—C5—H5 N2—C6—C5 N2—C6—C1 C5—C6—C1 N2—C7—N1 N2—C7—N1	117.83 (19) 121.1 121.1 130.18 (18) 110.13 (17) 119.7 (2) 112.52 (18) 124.2 (2)	O2—C10—H10C H10A—C10—H10C H10B—C10—H10C C1—N1—C7 C1—N1—C8 C7—N1—C8 C7—N2—C6 C9—O2—C10	109.5 109.5 109.5 106.58 (15) 123.60 (16) 129.65 (17) 105.16 (16) 116.11 (17)
$N1-C7-C7^{i}$	123.3 (2)		
N1-C1-C2-C3 $C6-C1-C2-C3$ $C1-C2-C3-C4$ $C2-C3-C4-C5$ $C3-C4-C5-C6$ $C4-C5-C6-N2$ $C4-C5-C6-N2$ $C4-C5-C6-N2$ $C2-C1-C6-N2$ $N1-C1-C6-N2$ $N1-C1-C6-C5$ $C2-C1-C6-C5$ $N1-C8-C9-O1$ $N1-C8-C9-O2$	179.33 (19) 0.1 (3) -0.5 (3) 0.3 (3) 0.2 (3) -179.3 (2) -0.5 (3) 0.0 (2) 179.38 (19) -179.02 (17) 0.4 (3) 178.39 (19) -1.1 (3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -3.2 (3) \\ 176.12 (16) \\ -0.7 (2) \\ -179.9 (2) \\ -176.09 (18) \\ 4.8 (3) \\ -87.6 (2) \\ 87.1 (2) \\ 0.7 (2) \\ 179.9 (2) \\ 178.5 (2) \\ -0.4 (2) \\ 1.1 (3) \end{array}$
C2-C1-N1-C7 C6-C1-N1-C7	-178.9 (2) 0.42 (19)	C8—C9—O2—C10	-179.49 (17)

Symmetry code: (i) -x, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C8—H8 <i>B</i> ···O1 ⁱⁱ	0.97	2.59	3.364 (3)	137
C10—H10C…O1 ⁱⁱⁱ	0.96	2.55	3.481 (4)	164

Symmetry codes: (ii) -x+1, -y+2, -z; (iii) -x, -y+2, -z.