

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 6,7-Dichloro-3-(2,4-dichlorobenzyl)quinoxalin-2(1*H*)-one

# Jinpeng Zhang,<sup>a</sup> Yinan Wang,<sup>b</sup> Qian Wang<sup>a</sup> and Lichun Xu<sup>a</sup>\*

<sup>a</sup>Department of Public Health, Xuzhou Medical College, Xuzhou 221000, People's Republic of China., and <sup>b</sup>Out Patient Department, Xuzhou Airforce College, Xuzhou 221000, People's Republic of China. Correspondence e-mail: jsxzzjp@163.com

Received 28 June 2012; accepted 7 July 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.006 Å; R factor = 0.055; wR factor = 0.103; data-to-parameter ratio = 13.0.

In the title compound,  $C_{15}H_8Cl_4N_2O$ , the quinoxaline ring system is almost planar, with a dihedral angle between the benzene and pyrazine rings of 3.1 (2)°. The 2,4-dichlorophenyl ring is approximately perpendicular to the pyrazine ring, with a dihedral angle of 86.47 (13)° between them. The crystal packing features intermolecular N-H···O hydrogen bonds and  $\pi$ - $\pi$  stacking interactions, with centroid-centroid distances in the range 3.699 (3)-4.054 (3) Å.

#### **Related literature**

For the bioactivity of quinoxalin-2(1H)-one derivatives, see: Mensah-Osman *et al.* (2002); Perez *et al.* (2002); Quint *et al.* (2002); Seitz *et al.* (2002).



### **Experimental**

Crystal data C<sub>15</sub>H<sub>8</sub>Cl<sub>4</sub>N<sub>2</sub>O

 $M_r = 374.03$ 

| Triclinic, $P\overline{1}$           | $V = 746.79 (12) \text{ Å}^3$             |
|--------------------------------------|-------------------------------------------|
| a = 7.7150 (7)  Å                    | Z = 2                                     |
| b = 8.2058 (8) Å                     | Mo $K\alpha$ radiation                    |
| c = 11.9722 (12) Å                   | $\mu = 0.79 \text{ mm}^{-1}$              |
| $\alpha = 83.771 \ (1)^{\circ}$      | T = 298  K                                |
| $\beta = 84.362 \ (1)^{\circ}$       | $0.16 \times 0.09 \times 0.05 \text{ mm}$ |
| $\gamma = 84.298 \ (2)^{\circ}$      |                                           |
| Data collection                      |                                           |
| Bruker SMART CCD area-detector       | 3811 measured reflections                 |
| diffractometer                       | 2590 independent reflections              |
| Absorption correction: multi-scan    | 1364 reflections with $I > 2\sigma(I)$    |
| (SADABS; Sheldrick, 1996)            | $R_{\rm int} = 0.036$                     |
| $T_{\min} = 0.884, T_{\max} = 0.961$ |                                           |

Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.055$ | 199 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.103$               | H-atom parameters constrained                              |
| S = 1.01                        | $\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 2590 reflections                | $\Delta \rho_{\rm min} = -0.26 \ {\rm e} \ {\rm \AA}^{-3}$ |

#### Table 1

Hydrogen-bond geometry (Å, °).

 $\frac{D - H \cdots A}{N1 - H1 \cdots O1^{i}} \frac{D - H}{0.86} + \frac{H \cdots A}{1.93} \frac{D - H \cdots A}{2.789} \frac{D - H \cdots A}{173}$ Symmetry code: (i) -x + 2, -y + 2, -z + 1.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We thank the Foundation of Xuzhou Medical College (grant No. 201120), a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5253).

#### References

Bruker (1998). *SMART*. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (1999). *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA.

- Mensah-Osman, E. J., AL-Katib, A. M., Dandashi, M. H. & Mohammad, R. M.
- (2002). Mol. Cancer Ther. 1, 1315–1320.
   Perez, C., Lopez, de C. A. & Bello, J. (2002). Food Chem. Toxicol. 40, 1463–1467.
- Quint, C., Temmel, A. F., Hummel, T. & Ehrenberger, K. (2002). Acta Otolaryngol. 122, 877–881.

Seitz, L. E., Suling, W. J. & Reynolds, R. C. (2002). J. Med. Chem. 45, 5604– 5606.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

# supporting information

*Acta Cryst.* (2012). E68, o2481 [https://doi.org/10.1107/S160053681203098X] 6,7-Dichloro-3-(2,4-dichlorobenzyl)quinoxalin-2(1*H*)-one

## Jinpeng Zhang, Yinan Wang, Qian Wang and Lichun Xu

## S1. Comment

Quinoxalin-2(1*H*)-one derivatives have attracted much attention in the pharmaceutical field due to their diverse bioactivities. These include use as a glutamate blocker (Perez *et al.* 2002), in the treatment of sensorineural smell disorders (Quint *et al.* 2002) and as a DNA topoisomerase (Topo) II beta-inhibitor (Mensah-Osman *et al.* 2002). They also exhibit antimycobacterial activity (Seitz *et al.* 2002). These reports inspired us to study the relationship between their structures and activities. During the synthesis of some quinoxalin derivatives, the title compound, (I) was isolated and its structure was confirmed by X-ray diffraction. Herein we report this structure.

In the molecular structure (Fig. 1), the quinoxaline ring system is nearly planar with a dihedral angle between the phenyl and pyrazine rings of  $3.12(0.22)^{\circ}$  and rms deviations of 0.0135 Å and 0.0210 Å, respectively. The largest deviations from the planes of the two rings are 0.020 (3) Å for C3 and 0.031 (3) Å for C1. The 2,4-dichlorophenyl and pyrazine rings are approximately orthogonal with a dihedral angle of 86.47 (13)  $^{\circ}$  between them.

The crystal packing is stabilized by intermolecular N—H···O hydrogen bonds that form inversion dimers. In addition  $\pi$ – $\pi$  stacking interactions are also found involving the C3–C8 and C10–C15 phenyl rings (Fig. 2). The centroid-to-centroid distances, plane-plane distances and displacement distances are as follows: 4.054 (3), 3.404 (2) and 2.201 Å (C3–C8 to C3–C8; symmetry code: 1-*X*,1-Y,1-*Z*); 3.699 (3), 3.415 (2) and 1.421 Å (C3–C8 to C3–C8; symmetry code: 2-*X*,1-Y,1-*Z*); 3.964 (3), 3.615 (2) and 1.626 Å (C10–C15 to C10–C15; symmetry code: 1-*X*,2-Y, 2-*Z*).

## **S2.** Experimental

In a 10 ml Emrys reaction vial, 4-(2,4-dichlorobenzylidene)-2-phenyloxazol -5(4*H*)-one (0.32 g, 1 mmol), 4,5-dichlorobenzene-1,2-diamine (0.18 g, 1 mmol), TFA (0.23 g, 2 mmol) and ethylene glycol (1.5 ml) were mixed and then capped (The automatic mode stirring helped the mixing and uniform heating of the reactants). The mixture was heated for 16 min at 393 K under microwave irradiation. Upon completion, monitored by TLC, the reaction mixture was cooled to room temperature. The solid product was poured into water and neutralized with 10% NaOH, and then collected by filtration, subsequently washed with ethanol and ethylether in sequence to give a pure yellow solid. A single-crystal suitable for Xray diffraction was obtained from the evaporation of a solution of the title compound in ethanol.

### **S3. Refinement**

All H atoms were placed in calculated positions, with N—H = 0.86 Å, and C—H=0.93 Å or 0.97 Å and included in the final cycles of refinement using a riding model, with Uĩso~(H) = 1.2U~eq~(parent atom).





The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.



**Figure 2** Crystal packing of (I), with hydrogen bonds drawn as dashed lines.

6,7-Dichloro-3-(2,4-dichlorobenzyl)quinoxalin-2(1H)-one

Crystal data

C<sub>15</sub>H<sub>8</sub>Cl<sub>4</sub>N<sub>2</sub>O  $M_r = 374.03$ Triclinic, *P*1 Hall symbol: -P 1 a = 7.7150 (7) Å b = 8.2058 (8) Å c = 11.9722 (12) Å a = 83.771 (1)°  $\beta = 84.362$  (1)°  $\gamma = 84.298$  (2)° V = 746.79 (12) Å<sup>3</sup>

## Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator  $\varphi$  and  $\omega$  scans Z = 2 F(000) = 376  $D_x = 1.663 \text{ Mg m}^{-3}$ Mo Ka radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 742 reflections  $\theta = 2.9-26.1^{\circ}$   $\mu = 0.79 \text{ mm}^{-1}$ T = 298 K Prism, colorless  $0.16 \times 0.09 \times 0.05 \text{ mm}$ 

Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996)  $T_{min} = 0.884$ ,  $T_{max} = 0.961$ 3811 measured reflections 2590 independent reflections 1364 reflections with  $I > 2\sigma(I)$ 

| $R_{\rm int} = 0.036$                                              | $k = -9 \rightarrow 9$   |
|--------------------------------------------------------------------|--------------------------|
| $\theta_{\rm max} = 25.0^{\circ},  \theta_{\rm min} = 2.5^{\circ}$ | $l = -13 \rightarrow 14$ |
| $h = -9 \rightarrow 5$                                             |                          |

| Кејтетет                                        |                                                        |
|-------------------------------------------------|--------------------------------------------------------|
| Refinement on $F^2$                             | Secondary atom site location: difference Fourier       |
| Least-squares matrix: full                      | map                                                    |
| $R[F^2 > 2\sigma(F^2)] = 0.055$                 | Hydrogen site location: inferred from                  |
| $wR(F^2) = 0.103$                               | neighbouring sites                                     |
| <i>S</i> = 1.01                                 | H-atom parameters constrained                          |
| 2590 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0247P)^2]$                |
| 199 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                         |
| 0 restraints                                    | $(\Delta/\sigma)_{ m max} < 0.001$                     |
| Primary atom site location: structure-invariant | $\Delta  ho_{ m max} = 0.27 \ { m e} \ { m \AA}^{-3}$  |
| direct methods                                  | $\Delta  ho_{ m min} = -0.26 \ { m e} \ { m \AA}^{-3}$ |

## Special details

Experimental. The data was obtained at Xuzhou Medical College collected by Jinpeng Zhang.

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|     | x            | v            | Z            | $U_{\rm iso}^*/U_{\rm eq}$ |
|-----|--------------|--------------|--------------|----------------------------|
| Cl1 | 0.77372 (19) | 0.40780 (15) | 0.26074 (9)  | 0.0645 (4)                 |
| Cl2 | 0.62590 (18) | 0.18395 (14) | 0.47312(10)  | 0.0575 (4)                 |
| Cl3 | 0.4357 (2)   | 1.04383 (15) | 0.75266 (10) | 0.0745 (5)                 |
| Cl4 | 0.0594 (2)   | 0.7248 (2)   | 1.09562 (11) | 0.0880 (5)                 |
| N1  | 0.8827 (5)   | 0.8183 (4)   | 0.5316 (3)   | 0.0447 (10)                |
| H1  | 0.9289       | 0.8757       | 0.4739       | 0.054*                     |
| N2  | 0.7257 (5)   | 0.6358 (4)   | 0.7161 (3)   | 0.0431 (10)                |
| 01  | 0.9408 (4)   | 1.0040 (4)   | 0.6487 (2)   | 0.0540 (9)                 |
| C1  | 0.8754 (6)   | 0.8778 (5)   | 0.6340 (3)   | 0.0406 (12)                |
| C2  | 0.7819 (6)   | 0.7756 (5)   | 0.7279 (3)   | 0.0418 (12)                |
| C3  | 0.7456 (6)   | 0.5778 (5)   | 0.6094 (3)   | 0.0374 (11)                |
| C4  | 0.8206 (6)   | 0.6717 (5)   | 0.5149 (3)   | 0.0356 (11)                |
| C5  | 0.8302 (6)   | 0.6185 (5)   | 0.4072 (3)   | 0.0416 (12)                |
| Н5  | 0.8779       | 0.6820       | 0.3448       | 0.050*                     |
| C6  | 0.7680 (6)   | 0.4710 (5)   | 0.3953 (3)   | 0.0420 (12)                |
| C7  | 0.6994 (6)   | 0.3725 (5)   | 0.4901 (4)   | 0.0399 (11)                |
| C8  | 0.6891 (6)   | 0.4266 (5)   | 0.5954 (3)   | 0.0419 (12)                |
| H8  | 0.6440       | 0.3613       | 0.6578       | 0.050*                     |
| С9  | 0.7583 (7)   | 0.8441 (6)   | 0.8411 (3)   | 0.0584 (14)                |
| H9A | 0.8507       | 0.7934       | 0.8862       | 0.070*                     |
| H9B | 0.7706       | 0.9614       | 0.8296       | 0.070*                     |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

# supporting information

| C10 | 0.5845 (7) | 0.8167 (5) | 0.9056 (3) | 0.0426 (12) |  |
|-----|------------|------------|------------|-------------|--|
| C11 | 0.4300 (8) | 0.9005 (5) | 0.8721 (3) | 0.0507 (14) |  |
| C12 | 0.2672 (7) | 0.8752 (5) | 0.9292 (4) | 0.0544 (14) |  |
| H12 | 0.1657     | 0.9328     | 0.9045     | 0.065*      |  |
| C13 | 0.2608 (7) | 0.7620 (6) | 1.0233 (4) | 0.0562 (14) |  |
| C14 | 0.4100 (7) | 0.6797 (6) | 1.0607 (4) | 0.0549 (14) |  |
| H14 | 0.4037     | 0.6059     | 1.1253     | 0.066*      |  |
| C15 | 0.5711 (7) | 0.7057 (5) | 1.0027 (3) | 0.0517 (14) |  |
| H15 | 0.6717     | 0.6485     | 1.0288     | 0.062*      |  |
|     |            |            |            |             |  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | <i>U</i> <sup>22</sup> | <i>U</i> <sup>33</sup> | <i>U</i> <sup>12</sup> | U <sup>13</sup> | <i>U</i> <sup>23</sup> |
|-----|-------------|------------------------|------------------------|------------------------|-----------------|------------------------|
| C11 | 0.0842 (11) | 0.0672 (9)             | 0.0442 (7)             | -0.0149 (8)            | 0.0021 (7)      | -0.0150 (6)            |
| Cl2 | 0.0672 (10) | 0.0447 (7)             | 0.0626 (8)             | -0.0132(7)             | -0.0054(7)      | -0.0079(6)             |
| Cl3 | 0.1159 (14) | 0.0603 (8)             | 0.0459 (7)             | -0.0194(9)             | -0.0035(8)      | 0.0086 (6)             |
| Cl4 | 0.0741 (12) | 0.1161 (13)            | 0.0705 (9)             | -0.0285 (10)           | 0.0238 (8)      | -0.0039 (8)            |
| N1  | 0.059 (3)   | 0.042 (2)              | 0.031 (2)              | -0.014 (2)             | 0.0130 (18)     | 0.0019 (17)            |
| N2  | 0.050 (3)   | 0.050 (2)              | 0.030 (2)              | -0.012 (2)             | 0.0019 (19)     | -0.0031 (18)           |
| 01  | 0.070 (3)   | 0.0498 (19)            | 0.0455 (18)            | -0.0295 (19)           | 0.0063 (17)     | -0.0050 (15)           |
| C1  | 0.041 (3)   | 0.045 (3)              | 0.035 (3)              | -0.009 (2)             | 0.001 (2)       | 0.001 (2)              |
| C2  | 0.045 (3)   | 0.049 (3)              | 0.031 (2)              | -0.012 (3)             | 0.003 (2)       | -0.004 (2)             |
| C3  | 0.039 (3)   | 0.037 (2)              | 0.035 (2)              | -0.005 (2)             | 0.005 (2)       | 0.000 (2)              |
| C4  | 0.034 (3)   | 0.032 (2)              | 0.038 (2)              | -0.004 (2)             | 0.002 (2)       | 0.003 (2)              |
| C5  | 0.049 (3)   | 0.038 (3)              | 0.035 (2)              | -0.008(2)              | 0.003 (2)       | 0.004 (2)              |
| C6  | 0.039 (3)   | 0.049 (3)              | 0.038 (2)              | -0.003 (2)             | -0.003 (2)      | -0.004 (2)             |
| C7  | 0.041 (3)   | 0.032 (2)              | 0.046 (3)              | -0.004 (2)             | 0.000 (2)       | -0.005 (2)             |
| C8  | 0.046 (3)   | 0.039 (3)              | 0.037 (3)              | -0.009 (2)             | 0.004 (2)       | 0.007 (2)              |
| C9  | 0.072 (4)   | 0.069 (3)              | 0.041 (3)              | -0.036 (3)             | 0.002 (3)       | -0.013 (2)             |
| C10 | 0.057 (4)   | 0.043 (3)              | 0.032 (3)              | -0.022 (3)             | 0.006 (3)       | -0.009 (2)             |
| C11 | 0.087 (5)   | 0.037 (3)              | 0.030 (3)              | -0.014 (3)             | -0.002 (3)      | -0.004(2)              |
| C12 | 0.061 (4)   | 0.055 (3)              | 0.048 (3)              | -0.011 (3)             | 0.003 (3)       | -0.013 (3)             |
| C13 | 0.068 (4)   | 0.056 (3)              | 0.046 (3)              | -0.018 (3)             | 0.014 (3)       | -0.017 (3)             |
| C14 | 0.069 (4)   | 0.060 (3)              | 0.037 (3)              | -0.024 (3)             | 0.007 (3)       | -0.003 (2)             |
| C15 | 0.067 (4)   | 0.053 (3)              | 0.036 (3)              | -0.012(3)              | -0.001(3)       | -0.004(2)              |

Geometric parameters (Å, °)

| Cl1—C6  | 1.740 (4) | С5—Н5   | 0.9300    |
|---------|-----------|---------|-----------|
| Cl2—C7  | 1.738 (4) | C6—C7   | 1.411 (5) |
| Cl3—C11 | 1.750 (4) | C7—C8   | 1.374 (5) |
| Cl4—C13 | 1.740 (5) | C8—H8   | 0.9300    |
| N1-C1   | 1.362 (5) | C9—C10  | 1.505 (6) |
| N1-C4   | 1.380 (5) | C9—H9A  | 0.9700    |
| N1—H1   | 0.8600    | C9—H9B  | 0.9700    |
| N2—C2   | 1.292 (5) | C10—C11 | 1.388 (6) |
| N2—C3   | 1.401 (5) | C10—C15 | 1.399 (5) |
| 01—C1   | 1.233 (5) | C11—C12 | 1.393 (6) |
|         |           |         |           |

# supporting information

| C1—C2                                  | 1.498 (5)             | C12—C13                            | 1.380(6)             |
|----------------------------------------|-----------------------|------------------------------------|----------------------|
| С2—С9                                  | 1.511 (5)             | C12—H12                            | 0.9300               |
| C3—C8                                  | 1.387 (5)             | C13—C14                            | 1.365 (6)            |
| C3—C4                                  | 1.407 (5)             | C14—C15                            | 1.386 (6)            |
| C4—C5                                  | 1.398 (5)             | C14—H14                            | 0.9300               |
| C5—C6                                  | 1.371 (5)             | C15—H15                            | 0.9300               |
|                                        |                       |                                    |                      |
| C1—N1—C4                               | 124.0 (3)             | С7—С8—Н8                           | 119.8                |
| C1—N1—H1                               | 118.0                 | С3—С8—Н8                           | 119.8                |
| C4—N1—H1                               | 118.0                 | C10—C9—C2                          | 113.7 (4)            |
| $C^2 - N^2 - C^3$                      | 119.1 (3)             | C10—C9—H9A                         | 108.8                |
| 01-C1-N1                               | 123.2 (4)             | С2—С9—Н9А                          | 108.8                |
| 01 - C1 - C2                           | 123.2(1)<br>122.7(4)  | C10—C9—H9B                         | 108.8                |
| N1-C1-C2                               | 122.7(1)<br>114 1 (4) | $C^2 - C^9 - H^9B$                 | 108.8                |
| $N^2 - C^2 - C^1$                      | 1236(4)               | H9A - C9 - H9B                     | 107.7                |
| $N_2 = C_2 = C_9$                      | 120.6(4)              | C11 - C10 - C15                    | 116.8 (4)            |
| C1 - C2 - C9                           | 120.0(1)<br>115 8 (4) | $C_{11} - C_{10} - C_{9}$          | 121.7(4)             |
| C8-C3-N2                               | 110.0(4)<br>120.0(3)  | C15 - C10 - C9                     | 121.7(4)<br>121.5(5) |
| C8 - C3 - C4                           | 120.0(3)<br>119.0(4)  | C10-C11-C12                        | 121.3(3)<br>122.8(4) |
| $N_{2} - C_{3} - C_{4}$                | 119.0(4)<br>121.0(4)  | C10 $C11$ $C12$                    | 122.0(4)<br>1196(4)  |
| $N_2 = C_3 = C_4$<br>$N_1 = C_4 = C_5$ | 121.0(4)<br>121.1(3)  | C12 - C11 - C13                    | 117.0(4)<br>117.5(4) |
| N1 - C4 - C3                           | 121.1(3)<br>118.0(3)  | C12 - C11 - C13                    | 117.5(4)<br>1181(5)  |
| $C_{5} - C_{4} - C_{3}$                | 120.9(4)              | C13 - C12 - C11<br>C13 - C12 - H12 | 121.0                |
| $C_{5}$                                | 120.9(4)<br>118.8(4)  | C11 - C12 - H12                    | 121.0                |
| C6 C5 H5                               | 120.6                 | C14 C13 C12                        | 121.0<br>120.9(5)    |
| C4 C5 H5                               | 120.0                 | C14 - C13 - C12                    | 120.9(3)             |
| $C_{4}$                                | 120.0<br>120.7(4)     | C12 $C13$ $C14$                    | 119.0(4)             |
| $C_{5} = C_{6} = C_{7}$                | 120.7(4)<br>118.8(2)  | C12 - C13 - C14                    | 119.4(3)<br>120.3(5) |
| $C_{3}$                                | 110.0(3)              | C13 - C14 - C13                    | 120.3 (3)            |
| $C^{\circ} = C^{\circ} = C^{\circ}$    | 120.4(3)              | C15 - C14 - H14                    | 119.8                |
| $C_{0} = C_{1} = C_{0}$                | 119.9 (4)             | C13 - C14 - H14                    | 119.0                |
| $C_{0} = C_{1} = C_{12}$               | 120.2(3)              | C14 $C15$ $U15$                    | 121.0 (3)            |
| $C_{0} - C_{1} - C_{12}$               | 119.9 (5)             | C14— $C15$ — $H15$                 | 119.5                |
| U/U8US                                 | 120.5 (4)             | C10—C15—H15                        | 119.5                |
| C4 N1 C1 O1                            | 175 5 (4)             |                                    | 10(5)                |
| C4 - N1 - C1 - C2                      | -10.6                 | CII = C0 = C / = CI2               | 1.9(3)               |
| C4 - N1 - C1 - C2                      | -4.0(0)<br>-2.8(7)    | $C_0 - C_7 - C_8 - C_3$            | 0.1(7)               |
| $C_3 = N_2 = C_2 = C_1$                | -2.0(7)               | $C_{12} - C_{7} - C_{8} - C_{7}$   | -1/9.2(3)            |
| $C_{3}$ $N_{2}$ $C_{2}$ $C_{9}$        | 1/8.4(4)<br>172 8 (5) | $N_2 - C_3 - C_6 - C_7$            | 1/0.3(4)             |
| OI - CI - C2 - N2                      | -1/3.8(3)             | C4 - C3 - C6 - C7                  | -2.8(7)              |
| NI - CI - C2 - N2                      | 5.7(7)                | $N_2 = C_2 = C_9 = C_{10}$         | -39.4(6)             |
| 01 - 01 - 02 - 09                      | 5.1 (/)               | C1 = C2 = C9 = C10                 | 141.7 (4)            |
| N1 - U1 - U2 - U9                      | -1/5.4(4)             | $C_2 = C_2 = C_{10} = C_{11}$      | -/0./(6)             |
| $C_2 = N_2 = C_3 = C_4$                | 1/8.8 (4)             | $C_2 - C_9 - C_{10} - C_{15}$      | 109.5 (5)            |
| C2 - N2 - C3 - C4                      | -2.0 (6)              | C15—C10—C11—C12                    | -1.5(7)              |
| CI - NI - C4 - C5                      | 179.2 (4)             | C9—C10—C11—C12                     | 178.8 (4)            |
| C1 - N1 - C4 - C3                      | -0.2 (7)              | C15—C10—C11—C13                    | 1/9.1 (3)            |
| C8—C3—C4—N1                            | -177.2 (4)            | C9—C10—C11—Cl3                     | -0.7 (6)             |
| N2-C3-C4-N1                            | 3.5 (6)               | C10-C11-C12-C13                    | 0.3 (7)              |

| C8—C3—C4—C5                  | 3.4 (7)                | Cl3—C11—C12—C13                                                       | 179.8 (3)  |
|------------------------------|------------------------|-----------------------------------------------------------------------|------------|
| N2—C3—C4—C5                  | -175.9 (4)             | C11—C12—C13—C14                                                       | 1.2 (7)    |
| N1C4C5C6                     | 179.4 (4)              | C11—C12—C13—Cl4                                                       | -179.1 (3) |
| C3C4C5C6                     | -1.2 (7)               | C12—C13—Cl4—C15                                                       | -1.6 (8)   |
| C4—C5—C6—C7                  | -1.5(7)                | C14 $C13$ $C14$ $C15$ $C13$ $C14$ $C15$ $C10$ $C11$ $C10$ $C15$ $C14$ | 1/8./(3)   |
| C4—C5—C6—C11                 | 178.0(3)               |                                                                       | 0.3(7)     |
| C5—C6—C7—C8                  | 2.1(7)                 |                                                                       | 1.1(6)     |
| Cl1—C6—C7—C8<br>C5—C6—C7—C12 | -177.4(3)<br>-178.6(4) | C9—C10—C15—C14                                                        | -179.1 (4) |
|                              |                        |                                                                       |            |

## Hydrogen-bond geometry (Å, °)

| D—H···A                 | <i>D</i> —Н | H···A | D····A    | <i>D</i> —H··· <i>A</i> |
|-------------------------|-------------|-------|-----------|-------------------------|
| N1—H1···O1 <sup>i</sup> | 0.86        | 1.93  | 2.789 (4) | 173                     |

Symmetry code: (i) -x+2, -y+2, -z+1.