

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Amino-4-(4-methylphenyl)-5-oxo-5,6,7,8-tetrahydro-4*H*-chromene-3carbonitrile

Shaaban K. Mohamed,^a Mehmet Akkurt,^b* Muhammad N. Tahir,^c Antar A. Abdelhamid^a and Mustafa R. Albayati^a

^aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, ^bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and ^cUniversity of Sargodha, Department of Physics, Sargodha, Pakistan

Correspondence e-mail: akkurt@erciyes.edu.tr

Received 26 June 2012; accepted 28 June 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.045; wR factor = 0.115; data-to-parameter ratio = 15.3.

The 4*H*-pyran ring of the title compound, $C_{17}H_{16}N_2O_2$, is nearly planar [maximum deviation = 0.077 (2) Å] and the cyclohexene ring adopts a flattened chair conformation [puckering parameters: $Q_T = 0.435$ (2) Å, $\theta = 122.0$ (3)° and $\varphi = 53.5$ (3)°]. The 4*H*-pyran ring is almost perpendicular to the benzene ring [dihedral angle = 87.23 (8)°] and is almost coplanar with the mean plane of the cyclohexene ring [dihedral angle = 8.01 (8)°]. In the crystal, inversion-related molecules are linked by pairs of intermolecular N-H···N hydrogen bonds, forming inversion dimers with $R_2^2(12)$ ring motifs. These dimers are further connected by N-H···O and C-H···N hydrogen bonds, forming a layer structure extending parallel to (012). Molecules within the layers interact with each other *via* C-H··· π interactions.

Related literature

For the biological background to tetrahydro-4-chromene and fused tetrahydro-4-chromene compounds, see: Alvey *et al.* (2009); Symeonidis *et al.* (2009); Narender & Gupta (2009). For the synthesis of similar chromene compounds, see: Yadav *et al.* (2009); Mohamed *et al.* (2012*a,b,c*). For puckering parameters, see: Cremer & Pople (1975). For standard bond lengths, *see*: Allen *et al.* (1987). For hydrogen-bond motifs, see: Bernstein *et al.* (1995).

 $\gamma = 80.035 \ (6)^{\circ}$

Z = 2

V = 743.71 (19) Å³

Mo $K\alpha$ radiation

 $0.30 \times 0.23 \times 0.20$ mm

8982 measured reflections

2916 independent reflections 1704 reflections with $I > 2\sigma(I)$

 $\mu = 0.08 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.075$

Experimental

Crystal data

 $\begin{array}{l} C_{17}H_{16}N_2O_2\\ M_r = 280.32\\ \text{Triclinic, } P\overline{1}\\ a = 8.5931 \ (9) \ \text{\AA}\\ b = 8.7409 \ (14) \ \text{\AA}\\ c = 11.0695 \ (19) \ \text{\AA}\\ a = 72.626 \ (4)^\circ\\ \beta = 70.088 \ (3)^\circ \end{array}$

Data collection

Bruker Kappa APEXII CCD	
diffractometer	
Absorption correction: multi-scan	
(SADABS; Bruker, 2005)	
$T_{\min} = 0.975, T_{\max} = 0.984$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ 191 parameters $wR(F^2) = 0.115$ H-atom parameters constrainedS = 0.91 $\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$ 2916 reflections $\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the 4H-pyran ring (O1/C8/C9/C11–C13) and the benzene ring (C1–C6), respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2A\cdots N1^{i}$	0.86	2.31	3.168 (2)	175
$N2-H2B\cdots O2^{ii}$	0.86	2.18	3.017 (2)	164
$C2-H2\cdots N1^{iii}$	0.93	2.53	3.277 (2)	138
$C6-H6\cdots Cg1$	0.93	2.79	3.128 (2)	102
$C7 - H7A \cdots Cg2^{iv}$	0.96	2.87	3.640 (2)	138

Symmetry codes: (i) -x, -y, -z + 1; (ii) x - 1, y, z; (iii) -x + 1, -y, -z + 1; (iv) -x + 1, -y, -z + 2.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON*.

This project was supported financially by the Higher Education Ministry of Egypt in collaboration with Manchester Metropolitan University. We thank Sargodha and Erciyes Universities for providing X-ray analysis and data refinement facilities. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5250).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Alvey, L., Prado, S., Saint-Joanis, B., Michel, S., Koch, M., Cole, S. T., Tillequin, F. & Janin, Y. L. (2009). Eur. J. Med. Chem. 44, 2497–2505.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Mohamed, S. K., Akkurt, M., Abdelhamid, A. A., Singh, K. & Allahverdiyev, M. A. (2012a). Acta Cryst. E68, 01414–01415.
- Mohamed, S. K., Akkurt, M., Tahir, M. N., Abdelhamid, A. A. & Albayati, M. R. (2012b). Acta Cryst. E68, 01965–01966.
- Mohamed, S. K., Akkurt, M., Tahir, M. N., Abdelhamid, A. A. & Younes, S. H. H. (2012c). Acta Cryst. E68, 02178–02179.
- Narender, T. & Gupta, S. (2009). Bioorg. Med. Chem. Lett. 14, 3913-3916.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Symeonidis, T., Chamilos, M., Hadjipavlou-Litina, D. J., Kallitsakis, M. & Litinas, K. E. (2009). Bioorg. Med. Chem. Lett. 19, 1139–1142.
- Yadav, J. S., Subba Reddy, B. V., Biswas, S. K. & Sengupta, S. (2009). Tetrahedron Lett. 50, 5798–5801.

supporting information

Acta Cryst. (2012). E68, o2315–o2316 [https://doi.org/10.1107/S1600536812029480]

2-Amino-4-(4-methylphenyl)-5-oxo-5,6,7,8-tetrahydro-4*H*-chromene-3-carbonitrile

Shaaban K. Mohamed, Mehmet Akkurt, Muhammad N. Tahir, Antar A. Abdelhamid and Mustafa R. Albayati

S1. Comment

Tetrahydro-4-chromene are an extensive class of bioactive compounds with antimicrobial, antifungal and antioxident properties (Symeonidis *et al.*, 2009; Narender & Gupta, 2009; Alvey, *et al.*, 2009). In a continuation to our on-going study of the synthesis and biological characterization of a new series of tetrahydro-4-chromenes (Mohamed *et al.*, 2012a,b,c), we report here the synthesis and crystal structure of the title compound (I).

As seen in Fig. 1, the C12–C17 cyclohexene ring of (I) is in a flattened chair conformation [puckering parameters (Cremer & Pople, 1975) are $Q_T = 0.435$ (2) Å, $\theta = 122.0$ (3) ° and $\varphi = 53.5$ (3) °]. The O1/C8/C9/C11—C13 4*H*-pyran ring is nearly planar with a maximum deviation of 0.077 (2) Å for C8 and is almost perpendicular to the C1–C6 benzene ring [dihedral angle = 87.23 (8)°] and is almost co-planar with the mean plane of the cyclohexene ring [dihedral angle = 8.01 (8) °]. All bond lengths (Allen *et al.*, 1987) and angles of (I) are within normal ranges and are comparable to similar structures (Yadav *et al.*, 2009; Mohamed *et al.*, 2012*a,b,c*).

In the crystal, a pair of intermolecular N—H···N hydrogen bonds link the main molecules into an inversion dimer, generating an $R_2^2(12)$ graph-set motif (Bernstein *et al.*, 1995; Table 1, Fig. 2). The dimers are further connected by N—H···O and C—H···N hydrogen bonds, forming a layer of molecules parallel to (0 - 1 2) (Table 1, Fig. 2). In addition, the layers are interconnected by weak C—H··· π interactions.

S2. Experimental

A mixture of 168 mg (1 mmol) (4-methybenzylidene)propanedinitrile, 112 mg (1 mmol) cyclohexane-1,3-dione in presence of 61 mg ethanolamine as catalyst was refluxed in 40 ml ethanol. The reaction mixture was monitored by TLC till completion after 6 h. A solid product was deposited on cooling at room temperature and collected by filtration. The crude product was recrystallized from ethanol in excellent yield (89%). Single crystals suitable for X-ray analysis were grown upon slow evaporation of the solution of (I) in ethanol over two days [*M*.p.: 477 K].

S3. Refinement

H atoms were positioned geometrically and refined by using a riding model, with N—H = 0.86 Å and C—H = 0.93 Å (aromatic), 0.96 Å (methyl), 0.97 Å (methylene) and 0.98 Å (methine), with $U_{iso}(H) = 1.5U_{eq}(O)$ for methyl groups and $U_{iso}(H) = 1.2U_{eq}(C, N)$ for others.

Figure 1

The molecular structure of the title compound showing the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Figure 2

A view of the dimers formed by pairs of N—H···N hydrogen bonds, with an $R^2_2(12)$ motif and the N—H···O and C— H···N hydrogen bonds connecting the dimers with each other, to form a two dimensional network. H atoms not involved in hydrogen bonds have been omitted for clarity. 2-Amino-4-(4-methylphenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3- carbonitrile

Z = 2

F(000) = 296

 $\theta = 3.2 - 18^{\circ}$

T = 296 K

Prism, white

 $R_{\rm int} = 0.075$

 $h = -10 \rightarrow 10$

 $k = -10 \rightarrow 10$

 $l = -13 \rightarrow 13$

 $0.30 \times 0.23 \times 0.20$ mm

8982 measured reflections

 $\theta_{\rm max} = 26.0^\circ, \ \theta_{\rm min} = 2.0^\circ$

2916 independent reflections

1704 reflections with $I > 2\sigma(I)$

 $\mu = 0.08 \text{ mm}^{-1}$

 $D_{\rm x} = 1.252 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 245 reflections

Crystal data

 $\begin{array}{l} C_{17}H_{16}N_{2}O_{2} \\ M_{r} = 280.32 \\ \text{Triclinic, } P\overline{1} \\ \text{Hall symbol: -P 1} \\ a = 8.5931 \ (9) \text{ Å} \\ b = 8.7409 \ (14) \text{ Å} \\ c = 11.0695 \ (19) \text{ Å} \\ a = 72.626 \ (4)^{\circ} \\ \beta = 70.088 \ (3)^{\circ} \\ \gamma = 80.035 \ (6)^{\circ} \\ V = 743.71 \ (19) \text{ Å}^{3} \end{array}$

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 0.81 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\min} = 0.975, T_{\max} = 0.984$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.045$	Hydrogen site location: inferred from
$wR(F^2) = 0.115$	neighbouring sites
<i>S</i> = 0.91	H-atom parameters constrained
2916 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0535P)^2]$
191 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	-0.07181 (12)	0.43638 (14)	0.69952 (11)	0.0628 (4)
O2	0.48905 (15)	0.45532 (14)	0.66064 (13)	0.0747 (5)
N1	0.17338 (17)	0.0029 (2)	0.50277 (16)	0.0766 (7)

N2	-0.17035 (15)	0.27899 (18)	0.62146 (15)	0.0698 (6)
C1	0.31349 (18)	0.13607 (18)	0.74881 (16)	0.0458 (6)
C2	0.46472 (18)	0.04982 (19)	0.71440 (17)	0.0543 (6)
C3	0.5138 (2)	-0.0768(2)	0.8064 (2)	0.0625 (7)
C4	0.4143 (2)	-0.1234 (2)	0.93584 (19)	0.0590 (7)
C5	0.2636 (2)	-0.0370 (2)	0.97073 (18)	0.0657 (7)
C6	0.2129 (2)	0.0905 (2)	0.87951 (18)	0.0600(7)
C7	0.4678 (3)	-0.2645 (2)	1.0359 (2)	0.0882 (9)
C8	0.25982 (17)	0.27363 (18)	0.64590 (16)	0.0469 (5)
C9	0.11699 (18)	0.23365 (18)	0.61288 (15)	0.0478 (6)
C10	0.14572 (18)	0.1067 (2)	0.55221 (17)	0.0546 (6)
C11	-0.03611 (19)	0.3100 (2)	0.64164 (16)	0.0510 (6)
C12	0.0570 (2)	0.49540 (19)	0.71581 (16)	0.0532 (6)
C13	0.21195 (19)	0.42714 (18)	0.68865 (16)	0.0501 (6)
C14	0.3443 (2)	0.5090 (2)	0.69385 (17)	0.0606 (7)
C15	0.2972 (3)	0.6633 (2)	0.7339 (2)	0.0896 (10)
C16	0.1214 (3)	0.6772 (3)	0.8221 (2)	0.0916 (10)
C17	-0.0012 (2)	0.6426 (2)	0.7642 (2)	0.0730 (8)
H2	0.53500	0.07760	0.62750	0.0650*
H2A	-0.16480	0.20220	0.58610	0.0840*
H2B	-0.26260	0.33580	0.64380	0.0840*
H3	0.61690	-0.13230	0.78020	0.0750*
H5	0.19410	-0.06510	1.05790	0.0790*
H6	0.11000	0.14640	0.90610	0.0720*
H7A	0.46800	-0.22940	1.11020	0.1320*
H7B	0.57750	-0.30710	0.99470	0.1320*
H7C	0.39190	-0.34660	1.06630	0.1320*
H8	0.35430	0.29220	0.56420	0.0560*
H15A	0.31220	0.75200	0.65440	0.1080*
H15B	0.37140	0.67300	0.78000	0.1080*
H16A	0.09460	0.78500	0.83470	0.1100*
H16B	0.11120	0.60230	0.90860	0.1100*
H17A	-0.10870	0.62860	0.83160	0.0880*
H17B	-0.01380	0.73320	0.69100	0.0880*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0490 (6)	0.0667 (8)	0.0832 (9)	0.0047 (6)	-0.0251 (6)	-0.0344 (7)
02	0.0619 (8)	0.0720 (9)	0.0993 (11)	-0.0152 (7)	-0.0439 (7)	-0.0076 (8)
N1	0.0584 (9)	0.0903 (12)	0.1034 (14)	0.0059 (8)	-0.0308 (9)	-0.0570 (11)
N2	0.0474 (8)	0.0865 (11)	0.0946 (12)	0.0048 (7)	-0.0334 (8)	-0.0434 (10)
C1	0.0436 (8)	0.0481 (10)	0.0555 (11)	-0.0082(7)	-0.0234 (8)	-0.0154 (8)
C2	0.0481 (9)	0.0560 (11)	0.0611 (12)	-0.0029 (8)	-0.0190 (8)	-0.0165 (9)
C3	0.0561 (10)	0.0559 (11)	0.0830 (15)	0.0054 (8)	-0.0338 (10)	-0.0200 (11)
C4	0.0720 (12)	0.0509 (11)	0.0668 (14)	-0.0103 (9)	-0.0387 (11)	-0.0105 (10)
C5	0.0681 (12)	0.0726 (13)	0.0562 (12)	-0.0116 (10)	-0.0232 (9)	-0.0085 (10)
C6	0.0503 (9)	0.0679 (12)	0.0623 (13)	-0.0004 (8)	-0.0202 (9)	-0.0166 (10)

supporting information

C7	0.1123 (17)	0.0642 (13)	0.0970 (16)	-0.0023 (12)	-0.0601 (13)	-0.0042 (12)
C8	0.0406 (8)	0.0533 (10)	0.0510 (10)	-0.0051 (7)	-0.0192 (7)	-0.0128 (8)
C9	0.0471 (9)	0.0521 (10)	0.0512 (10)	-0.0020 (7)	-0.0218 (7)	-0.0168 (9)
C10	0.0412 (9)	0.0674 (12)	0.0648 (12)	0.0009 (8)	-0.0240 (8)	-0.0252 (10)
C11	0.0471 (9)	0.0579 (11)	0.0553 (11)	-0.0020 (8)	-0.0227 (8)	-0.0184 (9)
C12	0.0593 (10)	0.0506 (10)	0.0574 (11)	-0.0043 (8)	-0.0262 (8)	-0.0154 (9)
C13	0.0554 (10)	0.0466 (10)	0.0542 (11)	-0.0068 (8)	-0.0278 (8)	-0.0072 (8)
C14	0.0668 (12)	0.0536 (11)	0.0692 (13)	-0.0112 (9)	-0.0391 (10)	-0.0027 (9)
C15	0.1010 (16)	0.0667 (14)	0.129 (2)	-0.0138 (12)	-0.0598 (15)	-0.0332 (14)
C16	0.1157 (19)	0.0743 (15)	0.1070 (18)	-0.0041 (13)	-0.0471 (15)	-0.0426 (14)
C17	0.0797 (13)	0.0606 (12)	0.0857 (15)	0.0013 (10)	-0.0297 (11)	-0.0281 (11)

Geometric parameters (Å, °)

01—C11	1.377 (2)	C12—C13	1.334 (2)	
O1—C12	1.383 (2)	C13—C14	1.470 (3)	
O2—C14	1.222 (2)	C14—C15	1.492 (3)	
N1-C10	1.146 (2)	C15—C16	1.501 (3)	
N2-C11	1.332 (2)	C16—C17	1.516 (3)	
N2—H2A	0.8600	C2—H2	0.9300	
N2—H2B	0.8600	С3—Н3	0.9300	
C1—C8	1.518 (2)	С5—Н5	0.9300	
C1—C2	1.378 (2)	С6—Н6	0.9300	
C1—C6	1.386 (2)	С7—Н7А	0.9600	
С2—С3	1.378 (3)	С7—Н7В	0.9600	
C3—C4	1.374 (3)	С7—Н7С	0.9600	
C4—C7	1.515 (3)	C8—H8	0.9800	
C4—C5	1.375 (3)	C15—H15A	0.9700	
С5—С6	1.382 (3)	C15—H15B	0.9700	
С8—С9	1.514 (2)	C16—H16A	0.9700	
C8—C13	1.500 (2)	C16—H16B	0.9700	
C9—C10	1.407 (2)	C17—H17A	0.9700	
C9—C11	1.347 (2)	C17—H17B	0.9700	
C12—C17	1.483 (2)			
C11—O1—C12	118.57 (13)	C15—C16—C17	112.04 (18)	
H2A—N2—H2B	120.00	C12—C17—C16	110.62 (17)	
C11—N2—H2A	120.00	C1—C2—H2	119.00	
C11—N2—H2B	120.00	C3—C2—H2	119.00	
C2-C1-C6	117.40 (15)	С2—С3—Н3	119.00	
C6—C1—C8	121.94 (15)	C4—C3—H3	119.00	
C2—C1—C8	120.65 (15)	C4—C5—H5	119.00	
C1—C2—C3	121.21 (16)	C6—C5—H5	119.00	
C2—C3—C4	121.73 (17)	C1—C6—H6	120.00	
C3—C4—C7	121.45 (17)	С5—С6—Н6	120.00	
C3—C4—C5	117.22 (17)	C4—C7—H7A	109.00	
C5—C4—C7	121.33 (18)	C4—C7—H7B	110.00	
C4—C5—C6	121.66 (17)	C4—C7—H7C	110.00	

C1—C6—C5	120.78 (17)	H7A—C7—H7B	109.00
C9—C8—C13	109.01 (13)	H7A—C7—H7C	109.00
C1—C8—C9	111.87 (13)	H7B—C7—H7C	109.00
C1—C8—C13	112.47 (13)	C1—C8—H8	108.00
C8—C9—C10	117.75 (14)	С9—С8—Н8	108.00
C8—C9—C11	123.56 (15)	С13—С8—Н8	108.00
C10—C9—C11	118.67 (16)	C14—C15—H15A	109.00
N1—C10—C9	178.20 (19)	C14—C15—H15B	109.00
N2—C11—C9	127.76 (17)	C16—C15—H15A	109.00
O1—C11—N2	110.71 (15)	C16—C15—H15B	109.00
O1—C11—C9	121.53 (15)	H15A—C15—H15B	108.00
O1—C12—C17	110.90 (15)	C15—C16—H16A	109.00
O1—C12—C13	123.06 (15)	C15—C16—H16B	109.00
C13—C12—C17	126.03 (17)	C17—C16—H16A	109.00
C8—C13—C12	122.92 (16)	C17—C16—H16B	109.00
C8—C13—C14	117.92 (15)	H16A—C16—H16B	108.00
C12—C13—C14	119.08 (15)	С12—С17—Н17А	110.00
C13—C14—C15	117.94 (17)	C12—C17—H17B	109.00
O2—C14—C13	120.64 (16)	С16—С17—Н17А	110.00
O2—C14—C15	121.34 (18)	C16—C17—H17B	109.00
C14—C15—C16	113.52 (19)	H17A—C17—H17B	108.00
C11—O1—C12—C17	173.14 (14)	C1—C8—C9—C10	-64.06 (19)
C11—O1—C12—C17 C12—O1—C11—N2	173.14 (14) -173.77 (14)	C1—C8—C9—C10 C1—C8—C13—C14	-64.06 (19) 70.02 (19)
C11—O1—C12—C17 C12—O1—C11—N2 C12—O1—C11—C9	173.14 (14) -173.77 (14) 6.5 (2)	C1—C8—C9—C10 C1—C8—C13—C14 C9—C8—C13—C12	-64.06 (19) 70.02 (19) 11.5 (2)
C11—O1—C12—C17 C12—O1—C11—N2 C12—O1—C11—C9 C11—O1—C12—C13	173.14 (14) -173.77 (14) 6.5 (2) -5.9 (2)	C1C8C10 C1C8C13C14 C9C8C13C12 C9C8C13C14	-64.06 (19) 70.02 (19) 11.5 (2) -165.32 (14)
C11-O1-C12-C17 C12-O1-C11-N2 C12-O1-C11-C9 C11-O1-C12-C13 C8-C1-C2-C3	173.14 (14) -173.77 (14) 6.5 (2) -5.9 (2) -179.03 (16)	C1C8C10 C1C8C13C14 C9C8C13C12 C9C8C13C14 C8C9C11N2	-64.06 (19) 70.02 (19) 11.5 (2) -165.32 (14) -177.03 (16)
C11-O1-C12-C17 C12-O1-C11-N2 C12-O1-C11-C9 C11-O1-C12-C13 C8-C1-C2-C3 C2-C1-C6-C5	173.14 (14) -173.77 (14) 6.5 (2) -5.9 (2) -179.03 (16) -0.2 (3)	C1C8C10 C1C8C13C14 C9C8C13C12 C9C8C13C14 C8C9C11N2 C10C9C11O1	-64.06 (19) 70.02 (19) 11.5 (2) -165.32 (14) -177.03 (16) -179.21 (15)
C11-O1-C12-C17 C12-O1-C11-N2 C12-O1-C11-C9 C11-O1-C12-C13 C8-C1-C2-C3 C2-C1-C6-C5 C8-C1-C6-C5	173.14 (14) -173.77 (14) 6.5 (2) -5.9 (2) -179.03 (16) -0.2 (3) 178.89 (16)	C1C8C10 C1C8C13C14 C9C8C13C12 C9C8C13C14 C8C9C11N2 C10C9C11N2	-64.06 (19) 70.02 (19) 11.5 (2) -165.32 (14) -177.03 (16) -179.21 (15) 1.1 (3)
C11-O1-C12-C17 C12-O1-C11-N2 C12-O1-C11-C9 C11-O1-C12-C13 C8-C1-C2-C3 C2-C1-C6-C5 C8-C1-C6-C5 C6-C1-C2-C3	173.14 (14) -173.77 (14) 6.5 (2) -5.9 (2) -179.03 (16) -0.2 (3) 178.89 (16) 0.0 (3)	C1C8C10 C1C8C13C14 C9C8C13C12 C9C8C13C14 C8C9C11N2 C10C9C11N2 C8C9C11O1	-64.06 (19) 70.02 (19) 11.5 (2) -165.32 (14) -177.03 (16) -179.21 (15) 1.1 (3) 2.6 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	173.14 (14) -173.77 (14) 6.5 (2) -5.9 (2) -179.03 (16) -0.2 (3) 178.89 (16) 0.0 (3) 110.95 (17)	C1C8C10 C1C8C13C14 C9C8C13C12 C9C8C13C14 C8C9C11N2 C10C9C11N2 C8C9C11N2 C8C9C11O1 O1C12C13C8	-64.06 (19) 70.02 (19) 11.5 (2) -165.32 (14) -177.03 (16) -179.21 (15) 1.1 (3) 2.6 (2) -4.0 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	173.14 (14) -173.77 (14) 6.5 (2) -5.9 (2) -179.03 (16) -0.2 (3) 178.89 (16) 0.0 (3) 110.95 (17) -125.98 (17)	C1C8C10 C1C8C13C14 C9C8C13C12 C9C8C13C14 C8C9C11N2 C10C9C11N2 C8C9C11N2 C8C9C11O1 O1C12C13C8 O1C12C13C14	-64.06 (19) 70.02 (19) 11.5 (2) -165.32 (14) -177.03 (16) -179.21 (15) 1.1 (3) 2.6 (2) -4.0 (3) 172.80 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	173.14 (14) -173.77 (14) 6.5 (2) -5.9 (2) -179.03 (16) -0.2 (3) 178.89 (16) 0.0 (3) 110.95 (17) -125.98 (17) -68.1 (2)	C1C8C9C10 $C1C8C13C14$ $C9C8C13C12$ $C9C8C13C14$ $C8C9C11N2$ $C10C9C11N2$ $C8C9C11N2$ $C8C9C11O1$ $O1C12C13C8$ $O1C12C13C14$ $C17C12C13C8$	-64.06 (19) 70.02 (19) 11.5 (2) -165.32 (14) -177.03 (16) -179.21 (15) 1.1 (3) 2.6 (2) -4.0 (3) 172.80 (14) 177.11 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	173.14 (14) -173.77 (14) 6.5 (2) -5.9 (2) -179.03 (16) -0.2 (3) 178.89 (16) 0.0 (3) 110.95 (17) -125.98 (17) -68.1 (2) 55.0 (2)	C1C8C9C10 $C1C8C13C14$ $C9C8C13C12$ $C9C8C13C14$ $C8C9C11N2$ $C10C9C11N2$ $C8C9C11N2$ $C8C9C11O1$ $O1C12C13C14$ $C17C12C13C14$ $C17C12C13C14$	$\begin{array}{c} -64.06 (19) \\ 70.02 (19) \\ 11.5 (2) \\ -165.32 (14) \\ -177.03 (16) \\ -179.21 (15) \\ 1.1 (3) \\ 2.6 (2) \\ -4.0 (3) \\ 172.80 (14) \\ 177.11 (16) \\ -6.1 (3) \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	173.14 (14) -173.77 (14) 6.5 (2) -5.9 (2) -179.03 (16) -0.2 (3) 178.89 (16) 0.0 (3) 110.95 (17) -125.98 (17) -68.1 (2) 55.0 (2) 0.4 (3)	C1C8C9C10 $C1C8C13C14$ $C9C8C13C12$ $C9C8C13C14$ $C8C9C11N2$ $C10C9C11N2$ $C8C9C11N2$ $C8C9C11O1$ $O1C12C13C8$ $O1C12C13C14$ $C17C12C13C14$ $O1C12C13C14$ $O1C12C13C14$	$\begin{array}{c} -64.06 (19) \\ 70.02 (19) \\ 11.5 (2) \\ -165.32 (14) \\ -177.03 (16) \\ -179.21 (15) \\ 1.1 (3) \\ 2.6 (2) \\ -4.0 (3) \\ 172.80 (14) \\ 177.11 (16) \\ -6.1 (3) \\ 162.42 (15) \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 173.14 \ (14) \\ -173.77 \ (14) \\ 6.5 \ (2) \\ -5.9 \ (2) \\ -179.03 \ (16) \\ -0.2 \ (3) \\ 178.89 \ (16) \\ 0.0 \ (3) \\ 110.95 \ (17) \\ -125.98 \ (17) \\ -68.1 \ (2) \\ 55.0 \ (2) \\ 0.4 \ (3) \\ -0.8 \ (3) \end{array}$	C1C8C9C10 $C1C8C13C14$ $C9C8C13C12$ $C9C8C13C14$ $C8C9C11N2$ $C10C9C11N2$ $C8C9C11N2$ $C8C9C11N2$ $C8C9C11N2$ $C8C9C11N2$ $C8C9C11N2$ $C8C9C11N2$ $C8C9C11N2$ $C8C9C11N2$ $C8C9C11N2$ $C12C13C14$ $C17C12C13C14$ $O1C12C13C14$ $O1C12C17C16$ $C13C12C17C16$	$\begin{array}{c} -64.06 (19) \\ 70.02 (19) \\ 11.5 (2) \\ -165.32 (14) \\ -177.03 (16) \\ -179.21 (15) \\ 1.1 (3) \\ 2.6 (2) \\ -4.0 (3) \\ 172.80 (14) \\ 177.11 (16) \\ -6.1 (3) \\ 162.42 (15) \\ -18.6 (3) \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 173.14 \ (14) \\ -173.77 \ (14) \\ 6.5 \ (2) \\ -5.9 \ (2) \\ -179.03 \ (16) \\ -0.2 \ (3) \\ 178.89 \ (16) \\ 0.0 \ (3) \\ 110.95 \ (17) \\ -125.98 \ (17) \\ -68.1 \ (2) \\ 55.0 \ (2) \\ 0.4 \ (3) \\ -0.8 \ (3) \\ 178.95 \ (18) \end{array}$	C1C8C9C10 $C1C8C13C14$ $C9C8C13C12$ $C9C8C13C14$ $C8C9C11N2$ $C10C9C11O1$ $C10C9C11N2$ $C8C9C11O1$ $O1C12C13C8$ $O1C12C13C14$ $O1C12C13C14$ $O1C12C13C14$ $O1C12C13C14$ $O1C12C13C14$ $O1C12C17C16$ $C13C12C17C16$ $C8C13C14O2$	$\begin{array}{c} -64.06 (19) \\ 70.02 (19) \\ 11.5 (2) \\ -165.32 (14) \\ -177.03 (16) \\ -179.21 (15) \\ 1.1 (3) \\ 2.6 (2) \\ -4.0 (3) \\ 172.80 (14) \\ 177.11 (16) \\ -6.1 (3) \\ 162.42 (15) \\ -18.6 (3) \\ 2.0 (2) \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	173.14 (14) -173.77 (14) 6.5 (2) -5.9 (2) -179.03 (16) -0.2 (3) 178.89 (16) 0.0 (3) 110.95 (17) -125.98 (17) -68.1 (2) 55.0 (2) 0.4 (3) -0.8 (3) 178.95 (18) 0.6 (3)	C1C8C9C10 $C1C8C13C14$ $C9C8C13C12$ $C9C8C13C14$ $C8C9C11N2$ $C10C9C11N2$ $C8C9C11N2$ $C8C9C11O1$ $O1C12C13C14$ $O1C12C13C14$ $O1C12C13C14$ $O1C12C13C14$ $O1C12C13C14$ $O1C12C13C16$ $C13C12C17C16$ $C13C12C17C16$ $C8C13C14O2$ $C8C13C14O2$ $C8C13C14C15$	$\begin{array}{c} -64.06 (19) \\ 70.02 (19) \\ 11.5 (2) \\ -165.32 (14) \\ -177.03 (16) \\ -179.21 (15) \\ 1.1 (3) \\ 2.6 (2) \\ -4.0 (3) \\ 172.80 (14) \\ 177.11 (16) \\ -6.1 (3) \\ 162.42 (15) \\ -18.6 (3) \\ 2.0 (2) \\ 178.87 (15) \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	173.14 (14) -173.77 (14) 6.5 (2) -5.9 (2) -179.03 (16) -0.2 (3) 178.89 (16) 0.0 (3) 110.95 (17) -125.98 (17) -68.1 (2) 55.0 (2) 0.4 (3) -0.8 (3) 178.95 (18) 0.6 (3) -179.08 (18)	C1C8C9C10 $C1C8C13C14$ $C9C8C13C12$ $C9C8C13C14$ $C8C9C11N2$ $C10C9C11N2$ $C8C9C11N2$ $C8C9C11O1$ $O1C12C13C14$ $O1C12C13C14$ $O1C12C13C14$ $O1C12C13C14$ $O1C12C13C14$ $O1C12C17C16$ $C13C12C17C16$ $C8C13C14O2$ $C8C13C14O2$ $C8C13C14O2$	$\begin{array}{c} -64.06 (19) \\ 70.02 (19) \\ 11.5 (2) \\ -165.32 (14) \\ -177.03 (16) \\ -179.21 (15) \\ 1.1 (3) \\ 2.6 (2) \\ -4.0 (3) \\ 172.80 (14) \\ 177.11 (16) \\ -6.1 (3) \\ 162.42 (15) \\ -18.6 (3) \\ 2.0 (2) \\ 178.87 (15) \\ -174.91 (16) \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 173.14 \ (14) \\ -173.77 \ (14) \\ 6.5 \ (2) \\ -5.9 \ (2) \\ -179.03 \ (16) \\ -0.2 \ (3) \\ 178.89 \ (16) \\ 0.0 \ (3) \\ 110.95 \ (17) \\ -125.98 \ (17) \\ -68.1 \ (2) \\ 55.0 \ (2) \\ 0.4 \ (3) \\ -0.8 \ (3) \\ 178.95 \ (18) \\ 0.6 \ (3) \\ -179.08 \ (18) \\ -0.2 \ (3) \end{array}$	C1C8C9C10 $C1C8C13C14$ $C9C8C13C12$ $C9C8C13C14$ $C8C9C11N2$ $C10C9C11N2$ $C8C9C11N2$ $C8C9C11N2$ $C8C9C11N2$ $C8C9C11N2$ $C8C12C13C14$ $C17C12C13C14$ $C17C12C13C14$ $O1C12C13C14$ $O1C12C13C16$ $C13C12C17C16$ $C8C13C14O2$ $C8C13C14O2$ $C12C13C14O2$ $C12C13C14O2$ $C12C13C14O2$ $C12C13C14O2$ $C12C13C14O2$ $C12C13C14O2$ $C12C13C14O2$	$\begin{array}{c} -64.06 (19) \\ 70.02 (19) \\ 11.5 (2) \\ -165.32 (14) \\ -177.03 (16) \\ -179.21 (15) \\ 1.1 (3) \\ 2.6 (2) \\ -4.0 (3) \\ 172.80 (14) \\ 177.11 (16) \\ -6.1 (3) \\ 162.42 (15) \\ -18.6 (3) \\ 2.0 (2) \\ 178.87 (15) \\ -174.91 (16) \\ 1.9 (2) \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 173.14\ (14)\\ -173.77\ (14)\\ 6.5\ (2)\\ -5.9\ (2)\\ -179.03\ (16)\\ -0.2\ (3)\\ 178.89\ (16)\\ 0.0\ (3)\\ 110.95\ (17)\\ -125.98\ (17)\\ -68.1\ (2)\\ 55.0\ (2)\\ 0.4\ (3)\\ -0.8\ (3)\\ 178.95\ (18)\\ 0.6\ (3)\\ -179.08\ (18)\\ -0.2\ (3)\\ 114.11\ (17)\end{array}$	C1C8C9C10 $C1C8C13C14$ $C9C8C13C12$ $C9C8C13C14$ $C8C9C11N2$ $C10C9C11N2$ $C8C9C11O1$ $O1C12C13C8$ $O1C12C13C14$ $O1C12C13C14$ $O1C12C13C14$ $O1C12C13C14$ $O1C12C13C16$ $C13C12C17C16$ $C8C13C14O2$ $C8C13C14O2$ $C8C13C14O2$ $C12C13C14O2$ $C12C13C14O2$ $C12C13C14O2$ $C12C13C14O2$ $C12C13C14O2$ $C12C13C14O2$ $C12C13C14C15$ $O2C14C15C16$	$\begin{array}{c} -64.06 (19) \\ 70.02 (19) \\ 11.5 (2) \\ -165.32 (14) \\ -177.03 (16) \\ -179.21 (15) \\ 1.1 (3) \\ 2.6 (2) \\ -4.0 (3) \\ 172.80 (14) \\ 177.11 (16) \\ -6.1 (3) \\ 162.42 (15) \\ -18.6 (3) \\ 2.0 (2) \\ 178.87 (15) \\ -174.91 (16) \\ 1.9 (2) \\ -156.13 (19) \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 173.14\ (14)\\ -173.77\ (14)\\ 6.5\ (2)\\ -5.9\ (2)\\ -179.03\ (16)\\ -0.2\ (3)\\ 178.89\ (16)\\ 0.0\ (3)\\ 110.95\ (17)\\ -125.98\ (17)\\ -125.98\ (17)\\ -68.1\ (2)\\ 55.0\ (2)\\ 0.4\ (3)\\ -0.8\ (3)\\ 178.95\ (18)\\ 0.6\ (3)\\ -179.08\ (18)\\ -0.2\ (3)\\ 114.11\ (17)\\ 170.93\ (14)\\ \end{array}$	C1C8C9C10 $C1C8C13C14$ $C9C8C13C12$ $C9C8C13C14$ $C8C9C11N2$ $C10C9C11N2$ $C8C9C11N2$ $C8C9C11O1$ $O1C12C13C14$ $O1C12C13C14$ $O1C12C13C14$ $O1C12C13C14$ $O1C12C13C14$ $O1C12C13C14$ $O1C12C17C16$ $C13C12C17C16$ $C8C13C14O2$ $C8C13C14O2$ $C12C13C14O2$ $C12C13C14O2$ $C12C13C14C15$ $O2C14C15C16$ $C13C14C15C16$	$\begin{array}{c} -64.06 (19) \\ 70.02 (19) \\ 11.5 (2) \\ -165.32 (14) \\ -177.03 (16) \\ -179.21 (15) \\ 1.1 (3) \\ 2.6 (2) \\ -4.0 (3) \\ 172.80 (14) \\ 177.11 (16) \\ -6.1 (3) \\ 162.42 (15) \\ -18.6 (3) \\ 2.0 (2) \\ 178.87 (15) \\ -174.91 (16) \\ 1.9 (2) \\ -156.13 (19) \\ 27.0 (2) \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 173.14\ (14)\\ -173.77\ (14)\\ 6.5\ (2)\\ -5.9\ (2)\\ -179.03\ (16)\\ -0.2\ (3)\\ 178.89\ (16)\\ 0.0\ (3)\\ 110.95\ (17)\\ -125.98\ (17)\\ -68.1\ (2)\\ 55.0\ (2)\\ 0.4\ (3)\\ -0.8\ (3)\\ 178.95\ (18)\\ 0.6\ (3)\\ -179.08\ (18)\\ -0.2\ (3)\\ 114.11\ (17)\\ 170.93\ (14)\\ -10.9\ (2)\\ \end{array}$	C1C8C9C10 $C1C8C13C14$ $C9C8C13C12$ $C9C8C13C14$ $C8C9C11N2$ $C10C9C11N2$ $C8C9C11N2$ $C8C9C11O1$ $O1C12C13C8$ $O1C12C13C14$ $O1C12C13C14$ $O1C12C13C14$ $O1C12C13C14$ $O1C12C13C16$ $C13C12C17C16$ $C8C13C14O2$ $C13C14O2$ $C12C13C14O2$ $C12C13C14O2$ $C12C13C14O2$ $C12C13C14O2$ $C12C13C14C15$ $O2C14C15C16$ $C13C14C15C16$ $C13C14C15C16$ $C14C15C16$ $C14C15C16$	$\begin{array}{c} -64.06 (19) \\ 70.02 (19) \\ 11.5 (2) \\ -165.32 (14) \\ -177.03 (16) \\ -179.21 (15) \\ 1.1 (3) \\ 2.6 (2) \\ -4.0 (3) \\ 172.80 (14) \\ 177.11 (16) \\ -6.1 (3) \\ 162.42 (15) \\ -18.6 (3) \\ 2.0 (2) \\ 178.87 (15) \\ -174.91 (16) \\ 1.9 (2) \\ -156.13 (19) \\ 27.0 (2) \\ -51.4 (2) \end{array}$

Hydrogen-bond geometry (Å, °)

C = 1 and $C = 2$ and the constant description	$11 \dots 10^{10} = (01)(00)(01)(01)$	2) and the homeone $\dim \mathcal{L}(C1, CC)$	
Ug_1 and Ug_2 are the centrolds of the 4	H -nyran ring (U)/(λ/U)/(λ/U)/(λ/U)	s) and the penzene ring (C1-C6) re	specificery
			peen erj.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N2—H2A···N1 ⁱ	0.86	2.31	3.168 (2)	175
N2—H2 B ···O2 ⁱⁱ	0.86	2.18	3.017 (2)	164
C2—H2···N1 ⁱⁱⁱ	0.93	2.53	3.277 (2)	138
C6—H6…Cg1	0.93	2.79	3.128 (2)	102
$C7$ — $H7A$ ···· $Cg2^{iv}$	0.96	2.87	3.640 (2)	138

Symmetry codes: (i) -*x*, -*y*, -*z*+1; (ii) *x*-1, *y*, *z*; (iii) -*x*+1, -*y*, -*z*+1; (iv) -*x*+1, -*y*, -*z*+2.