organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-[(4-Chlorophenyl)(phenyl)methyl]piperazin-1-ium picrate monohydrate

Yanxi Song,^a C. S. Chidan Kumar,^b S. Chandraju,^c S. Naveen^d and Hongqi Li^e*

^aSchool of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Repulic of China, ^bDepartment of Chemistry, G. Madegowda Institute of Technology, Bharathi Nagar 571 422, India, ^cDepartment of Sugar Technology, University of Mysore, Sir. M. V. PG Center, Tubinakere 571 402, India, ^dDepartment of Physics, School of Engineering and Technology, Jain University, Bangalore 562 112, India, and ^eCollege of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Repulic of China Correspondence e-mail: hongqili@dhu.edu.cn

Received 22 June 2012; accepted 13 July 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.057; wR factor = 0.175; data-to-parameter ratio = 13.2.

The asymmetric unit of the title compound, $C_{17}H_{20}ClN_2^{+}$.- $C_6H_2N_3O_7^{-}$ ·H₂O, contains a piperazin-1-ium cation, a picrate anion and one solvent water molecule. The piperazene ring is protonated at one N atom and adopts a highly distorted chair conformation with the chloropheny(phenyl)methyl substituent on the second N atom in an equatorial position. The crystal structure is stabilized by O-H···O, N-H···O and C-H···O hydrogen bonds.

Related literature

For the biological activity of 1-benzylpiperazine, see: Campbell *et al.* (1973). For related structures, see: Jasinski *et al.* (2011); Song *et al.* (2012). For bond-length data, see: Allen *et al.* (1987).

Experimental

Crystal data $C_{17}H_{20}CIN_2^+ \cdot C_6H_2N_3O_7^- \cdot H_2O$ $M_r = 533.92$

Monoclinic, C2/ca = 21.144 (2) Å b = 8.2997 (8) Å c = 28.528 (3) Å $\beta = 93.029 (1)^{\circ}$ $V = 4999.3 (8) \text{ Å}^{3}$ Z = 8

Data collection

Bruker APEXII CCD	12567 measured reflections
diffractometer	4417 independent reflections
Absorption correction: multi-scan	2996 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2005)	$R_{\rm int} = 0.026$
$T_{\min} = 0.949, \ T_{\max} = 0.985$	
Refinement	

Mo $K\alpha$ radiation

 $0.25 \times 0.22 \times 0.07 \text{ mm}$

 $\mu = 0.21 \text{ mm}^{-1}$

T = 296 K

 $R[F^{2} > 2\sigma(F^{2})] = 0.057$ $wR(F^{2}) = 0.175$ S = 1.04 $\Delta \rho_{max} = 0.63 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.46 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2A\cdotsO1W^{i}$	0.90	2.03	2.850 (4)	151
$N2 - H2B \cdot \cdot \cdot O1^{ii}$	0.90	1.96	2.819 (3)	160
$N2 - H2B \cdot \cdot \cdot O2^{ii}$	0.90	2.42	3.017 (4)	124
$O1W - H1WA \cdots O1$	0.85	1.97	2.805 (3)	168
$C16-H16B\cdots O5^{iii}$	0.97	2.34	3.166 (4)	143
Symmetry codes:	(i) $-x + \frac{3}{2}$	$, -y + \frac{1}{2}, -z + 1;$	(ii) <i>x</i> , <i>y</i>	, z - 1; (iii)

-x + 2, -y + 1, -z + 1.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported in part by the Council for the Chemical Sciences of the Netherlands Organization for Scientific Research. YS and HL acknowledge financial support by the Fundamental Research Funds for the Central Universities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5246).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Campbell, H., Cline, W., Evans, M., Lloyd, J. & Peck, A. W. (1973). *Eur. J. Clin. Pharmacol.* 6, 170–176.

Jasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Chidan Kumar, C. S. (2011). Acta Cryst. E67, o500–o501.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Song, Y., Chidan Kumar, C. S., Nethravathi, G. B., Naveen, S. & Li, H. (2012). Acta Cryst. E68, 01747.

supporting information

Acta Cryst. (2012). E68, o2486 [https://doi.org/10.1107/S1600536812031984] 4-[(4-Chlorophenyl)(phenyl)methyl]piperazin-1-ium picrate monohydrate Yanxi Song, C. S. Chidan Kumar, S. Chandraju, S. Naveen and Honggi Li

S1. Comment

1-Benzylpiperazine was originally synthesized as a potential anthelmintic (Campbell *et al.*, 1973) and its derivatives were found to possess excellent pharmacological activities. These include vasodilator, hypotensive and antiviral activity, the ability to increase cerebral blood flow and broad pharmacological action on central nervous system. In the course of our studies on the salts of piperazines (Jasinski *et al.*, 2011; Song *et al.*, 2012) and in view of the importance of piperazines, the paper reports the crystal and molecular structure of the title piperazin-1-ium salt.

The molecular structure and atom numbering scheme of the title compound are shown in Fig 1. In the title compound, the piperazine group is protonated at the N2 atom and adopts a highly distorted chair conformation with puckering parameters Q, θ and φ having values of 0.595 (3) °, 6.4 (3) ° and 342 (3) °, respectively. For an ideal chair conformation, θ has a value of 0 or 180°. The bond lengths (Allen *et al.*, 1987) and bond angles are in good agreement with standard values. The crystal structure is stabilized by intermolecular O–H…O, N–H…O and C–H…O hydrogen bonds.

S2. Experimental

1-((4-Chlorophenyl)(phenyl)methyl)piperazine (2.88 g, 0.01 mol) and picric acid (2.99 g, 0.01 mol) were dissolved separately in methanol. Both the solutions were mixed together and stirred for a few minutes at room temperature. The precipitate was collected by filtration and purified by recrystallization from methanol. On recrystallization with DMF after 15 days, good quality single crystals were obtained by the slow evaporation method. (M.P.: 441–445 K).

S3. Refinement

H atoms were placed at idealized positions and allowed to ride on their parent atoms with C—H distances in the range 0.92–0.98 Å and N—H = 0.86 Å; U_{iso} (H) values were set equal to $1.2U_{eq}$ (carrier atom).

Figure 1

A view of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

4-[(4-Chlorophenyl)(phenyl)methyl]piperazin-1-ium 2,4,6-trinitrophenolate monohydrate

Crystal data

C₁₇H₂₀ClN₂⁺·C₆H₂N₃O₇⁻·H₂O $M_r = 533.92$ Monoclinic, C2/c Hall symbol: -C 2yc a = 21.144 (2) Å b = 8.2997 (8) Å c = 28.528 (3) Å $\beta = 93.029$ (1)° V = 4999.3 (8) Å³ Z = 8

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\min} = 0.949, T_{\max} = 0.985$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.175$ S = 1.044417 reflections 334 parameters 0 restraints F(000) = 2224 $D_x = 1.419 \text{ Mg m}^{-3}$ Melting point = 441–445 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2514 reflections $\theta = 2.3-21.0^{\circ}$ $\mu = 0.21 \text{ mm}^{-1}$ T = 296 KBlock, yellow $0.25 \times 0.22 \times 0.07 \text{ mm}$

12567 measured reflections 4417 independent reflections 2996 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$ $\theta_{max} = 25.1^\circ, \theta_{min} = 2.3^\circ$ $h = -25 \rightarrow 20$ $k = -9 \rightarrow 8$ $l = -31 \rightarrow 33$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0837P)^2 + 4.3115P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta \rho_{\rm max} = 0.63 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Γ	Fractional	atomic	coordinates	and	isotropic o	r equivalent	isotropic	displacemen	t parameters	$(Å^2$)
---	------------	--------	-------------	-----	-------------	--------------	-----------	-------------	--------------	--------	---

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.4904 (2)	0.8333 (6)	0.18443 (11)	0.0783 (11)
C2	0.5527 (2)	0.8799 (4)	0.19014 (11)	0.0737 (10)
H2	0.5633	0.9873	0.1955	0.088*
C3	0.59944 (16)	0.7637 (4)	0.18770 (10)	0.0606 (8)
H3	0.6418	0.7938	0.1915	0.073*
C4	0.58414 (13)	0.6039 (4)	0.17965 (9)	0.0490 (7)
C5	0.52105 (16)	0.5623 (5)	0.17391 (12)	0.0700 (9)
Н5	0.5100	0.4553	0.1682	0.084*
C6	0.47386 (18)	0.6774 (7)	0.17651 (14)	0.0917 (13)
H6	0.4314	0.6481	0.1729	0.110*
C7	0.63529 (13)	0.4768 (3)	0.17948 (9)	0.0471 (7)
H7	0.6158	0.3740	0.1699	0.057*
C8	0.66452 (14)	0.4592 (3)	0.22959 (9)	0.0472 (7)
C9	0.63449 (16)	0.3611 (4)	0.26056 (10)	0.0609 (8)
H9	0.5991	0.3016	0.2503	0.073*
C10	0.65702 (19)	0.3512 (4)	0.30690 (11)	0.0749 (10)
H10	0.6356	0.2884	0.3279	0.090*
C11	0.7106 (2)	0.4329 (4)	0.32234 (11)	0.0766 (11)
H11	0.7259	0.4240	0.3534	0.092*
C12	0.74098 (18)	0.5272 (4)	0.29149 (11)	0.0683 (9)
H12	0.7776	0.5820	0.3015	0.082*
C13	0.71784 (15)	0.5421 (3)	0.24554 (10)	0.0572 (8)
H13	0.7385	0.6089	0.2251	0.069*
C14	0.65583 (14)	0.5363 (4)	0.09816 (9)	0.0526 (7)
H14A	0.6220	0.6154	0.0980	0.063*
H14B	0.6379	0.4345	0.0874	0.063*
C15	0.70566 (15)	0.5901 (4)	0.06551 (10)	0.0569 (8)
H15A	0.6869	0.5989	0.0338	0.068*
H15B	0.7213	0.6956	0.0750	0.068*
C16	0.78429 (15)	0.4460 (4)	0.11470 (10)	0.0624 (8)
H16A	0.8031	0.5443	0.1274	0.075*
H16B	0.8170	0.3640	0.1148	0.075*

C17	0.73229 (14)	0.3923 (4)	0.14476 (10)	0.0535 (7)
H17A	0.7135	0.2937	0.1321	0.064*
H17B	0.7495	0.3703	0.1763	0.064*
C18	0.89491 (14)	0.6145 (3)	0.98892 (9)	0.0476 (7)
C19	0.92823 (13)	0.7277 (3)	1.01969 (9)	0.0458 (6)
C20	0.98723 (13)	0.7849 (3)	1.01257 (9)	0.0478 (7)
H20	1.0065	0.8563	1.0340	0.057*
C21	1.01856 (13)	0.7372 (3)	0.97362 (9)	0.0463 (6)
C22	0.98998 (13)	0.6302 (3)	0.94120 (9)	0.0473 (7)
H22	1.0111	0.5966	0.9151	0.057*
C23	0.93097 (14)	0.5763 (3)	0.94855 (8)	0.0456 (6)
Cl1	0.43227 (7)	0.9810 (2)	0.18712 (4)	0.1402 (6)
N1	0.68382 (10)	0.5177 (2)	0.14618 (7)	0.0434 (5)
N2	0.75908 (12)	0.4746 (3)	0.06606 (8)	0.0579 (7)
H2A	0.7458	0.3808	0.0531	0.069*
H2B	0.7900	0.5140	0.0488	0.069*
N3	0.89901 (14)	0.7854 (3)	1.06134 (9)	0.0658 (7)
N4	1.08105 (12)	0.7960 (3)	0.96648 (9)	0.0631 (7)
N5	0.90198 (15)	0.4691 (3)	0.91305 (9)	0.0638 (7)
01	0.84301 (10)	0.5503 (3)	0.99573 (7)	0.0664 (6)
O2	0.84210 (16)	0.7700 (4)	1.06424 (12)	0.1309 (14)
O3	0.92957 (14)	0.8649 (4)	1.08951 (9)	0.1129 (11)
O4	1.10570 (11)	0.8886 (3)	0.99550 (9)	0.0830 (7)
05	1.10730 (11)	0.7526 (4)	0.93145 (9)	0.0903 (8)
O6	0.93478 (15)	0.3624 (3)	0.89779 (9)	0.0927 (9)
O7	0.84749 (14)	0.4966 (4)	0.89915 (9)	0.0922 (9)
O1W	0.74452 (12)	0.3604 (3)	0.95584 (11)	0.0996 (9)
H1WA	0.7756	0.4210	0.9638	0.100*
H1WB	0.7219	0.4009	0.9333	0.100*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.076 (3)	0.113 (3)	0.0465 (18)	0.037 (2)	0.0071 (17)	0.008 (2)
C2	0.104 (3)	0.069 (2)	0.0476 (18)	0.020 (2)	0.0063 (18)	-0.0020 (16)
C3	0.063 (2)	0.066 (2)	0.0534 (17)	0.0055 (16)	0.0062 (14)	-0.0042 (15)
C4	0.0517 (17)	0.0633 (19)	0.0323 (13)	-0.0009 (14)	0.0060 (11)	0.0012 (12)
C5	0.057 (2)	0.086 (2)	0.066 (2)	-0.0055 (18)	-0.0042 (16)	0.0045 (18)
C6	0.053 (2)	0.139 (4)	0.083 (3)	0.013 (2)	-0.0016 (19)	0.021 (3)
C7	0.0550 (17)	0.0479 (16)	0.0390 (14)	-0.0083 (13)	0.0066 (12)	-0.0017 (12)
C8	0.0609 (18)	0.0451 (15)	0.0362 (14)	0.0050 (13)	0.0099 (12)	0.0016 (12)
C9	0.070 (2)	0.0621 (19)	0.0514 (17)	-0.0011 (16)	0.0138 (15)	0.0072 (15)
C10	0.102 (3)	0.078 (2)	0.0464 (18)	0.010 (2)	0.0210 (18)	0.0172 (17)
C11	0.114 (3)	0.074 (2)	0.0407 (17)	0.022 (2)	-0.0060 (18)	-0.0037 (17)
C12	0.092 (3)	0.059 (2)	0.0517 (19)	0.0035 (18)	-0.0103 (17)	-0.0110 (16)
C13	0.076 (2)	0.0493 (17)	0.0459 (16)	-0.0060 (15)	0.0015 (14)	0.0000 (13)
C14	0.0597 (18)	0.0622 (18)	0.0360 (14)	-0.0025 (14)	0.0050 (12)	0.0029 (13)
C15	0.068 (2)	0.0625 (19)	0.0413 (15)	-0.0056 (15)	0.0105 (13)	0.0058 (13)

supporting information

C16	0.0562 (19)	0.077 (2)	0.0551 (18)	0.0061 (16)	0.0105 (14)	-0.0074 (16)
C17	0.0615 (18)	0.0558 (17)	0.0437 (15)	0.0042 (14)	0.0074 (13)	-0.0004 (13)
C18	0.0596 (18)	0.0456 (15)	0.0377 (14)	-0.0050 (13)	0.0036 (12)	0.0050 (12)
C19	0.0569 (18)	0.0463 (15)	0.0349 (13)	-0.0004 (13)	0.0105 (12)	-0.0017 (11)
C20	0.0556 (18)	0.0469 (15)	0.0407 (14)	0.0011 (13)	0.0000 (12)	-0.0056 (12)
C21	0.0450 (16)	0.0524 (16)	0.0416 (14)	0.0024 (12)	0.0037 (12)	-0.0032 (12)
C22	0.0587 (18)	0.0481 (16)	0.0357 (14)	0.0051 (13)	0.0066 (12)	0.0004 (12)
C23	0.0615 (18)	0.0420 (15)	0.0332 (13)	-0.0034 (13)	0.0002 (12)	-0.0011 (11)
Cl1	0.1339 (11)	0.1911 (15)	0.0945 (9)	0.1027 (11)	-0.0038 (7)	0.0031 (8)
N1	0.0497 (13)	0.0483 (13)	0.0329 (11)	0.0007 (10)	0.0079 (9)	0.0009 (9)
N2	0.0628 (16)	0.0653 (16)	0.0474 (14)	-0.0124 (13)	0.0204 (11)	-0.0090 (12)
N3	0.073 (2)	0.0739 (18)	0.0525 (15)	-0.0172 (15)	0.0207 (14)	-0.0167 (13)
N4	0.0517 (16)	0.0783 (18)	0.0599 (16)	-0.0023 (13)	0.0082 (13)	-0.0124 (14)
N5	0.083 (2)	0.0657 (18)	0.0430 (14)	-0.0191 (16)	0.0051 (14)	-0.0043 (13)
01	0.0707 (15)	0.0780 (15)	0.0518 (12)	-0.0294 (12)	0.0165 (10)	-0.0060 (10)
O2	0.110 (2)	0.157 (3)	0.134 (3)	-0.068 (2)	0.080 (2)	-0.084 (2)
O3	0.096 (2)	0.176 (3)	0.0682 (16)	-0.019 (2)	0.0176 (14)	-0.0608 (19)
O4	0.0640 (15)	0.1024 (19)	0.0827 (16)	-0.0237 (14)	0.0053 (12)	-0.0275 (15)
05	0.0620 (15)	0.131 (2)	0.0809 (17)	-0.0089 (15)	0.0277 (13)	-0.0341 (16)
O6	0.142 (3)	0.0651 (15)	0.0704 (16)	-0.0023 (16)	0.0001 (16)	-0.0268 (13)
07	0.0768 (18)	0.135 (2)	0.0642 (16)	-0.0288 (17)	-0.0021 (13)	-0.0199 (15)
O1W	0.0735 (17)	0.0920 (19)	0.133 (2)	-0.0152 (14)	0.0024 (16)	-0.0241 (17)

Geometric parameters (Å, °)

C1—C6	1.356 (6)	C15—H15B	0.9700
C1—C2	1.376 (5)	C16—N2	1.479 (4)
C1—Cl1	1.740 (4)	C16—C17	1.497 (4)
C2—C3	1.384 (5)	C16—H16A	0.9700
С2—Н2	0.9300	C16—H16B	0.9700
C3—C4	1.382 (4)	C17—N1	1.463 (3)
С3—Н3	0.9300	C17—H17A	0.9700
C4—C5	1.379 (4)	C17—H17B	0.9700
C4—C7	1.511 (4)	C18—O1	1.244 (3)
C5—C6	1.386 (5)	C18—C19	1.444 (4)
С5—Н5	0.9300	C18—C23	1.449 (4)
С6—Н6	0.9300	C19—C20	1.360 (4)
C7—N1	1.474 (3)	C19—N3	1.449 (4)
С7—С8	1.534 (4)	C20—C21	1.381 (4)
С7—Н7	0.9800	C20—H20	0.9300
C8—C13	1.378 (4)	C21—C22	1.397 (4)
С8—С9	1.381 (4)	C21—N4	1.433 (4)
C9—C10	1.384 (4)	C22—C23	1.352 (4)
С9—Н9	0.9300	C22—H22	0.9300
C10-C11	1.372 (5)	C23—N5	1.459 (4)
С10—Н10	0.9300	N2—H2A	0.9000
C11—C12	1.364 (5)	N2—H2B	0.9000
C11—H11	0.9300	N3—O3	1.202 (3)

supporting information

~·•			
C12—C13	1.380 (4)	N3—O2	1.217 (4)
C12—H12	0.9300	N4—O5	1.223 (3)
С13—Н13	0.9300	N4—O4	1.226 (3)
C14—N1	1.471 (3)	N5—O6	1.219 (4)
C14—C15	1 510 (4)	N5—07	1 220 (4)
C14 $H14A$	0.9700	O1W $H1WA$	0.8501
C_{14} H_{14}	0.9700		0.8501
C14—H14B	0.9700		0.0501
CI5—N2	1.481 (4)	OIW—HIWB	0.8502
С15—Н15А	0.9700		
C6—C1—C2	121.6 (3)	H15A—C15—H15B	108.0
C6-C1-Cl1	120.2 (4)	N2-C16-C17	110.2 (2)
C2—C1—C11	118.2 (4)	N2—C16—H16A	109.6
C1—C2—C3	118.7 (4)	C17—C16—H16A	109.6
C1 - C2 - H2	120.6	N2-C16-H16B	109.6
$C_3 - C_2 - H_2$	120.6	C17— $C16$ — $H16B$	109.6
$C_1 = C_2 = C_2$	120.0		109.0
C4 - C3 - C2	121.0 (5)		100.1
C4—C3—H3	119.5		109.9 (2)
С2—С3—Н3	119.5	NI—CI/—HI/A	109.7
C5—C4—C3	118.5 (3)	C16—C17—H17A	109.7
C5—C4—C7	120.9 (3)	N1—C17—H17B	109.7
C3—C4—C7	120.6 (3)	C16—C17—H17B	109.7
C4—C5—C6	121.0 (4)	H17A—C17—H17B	108.2
С4—С5—Н5	119.5	O1—C18—C19	126.1 (3)
С6—С5—Н5	119.5	O1—C18—C23	122.4 (2)
C1—C6—C5	119.2 (4)	C19—C18—C23	111.4 (2)
С1—С6—Н6	120.4	C20-C19-C18	123.9 (2)
C5—C6—H6	120.4	C_{20} C_{19} N_{3}	1162(2)
N1-C7-C4	1114(2)	C18 - C19 - N3	110.2(2) 110.9(3)
N1 C7 C8	111.7(2) 111.2(2)	C_{10} C_{20} C_{21}	117.7(3) 120.2(2)
11 - 07 - 08	111.5(2) 108 5(2)	$C_{10} = C_{20} = C_{21}$	120.2(2)
$U_4 - U_7 - U_8$	108.5 (2)	C19 - C20 - H20	119.9
NI - C / - H /	108.6	C21—C20—H20	119.9
C4—C/—H/	108.6	C20—C21—C22	120.4 (3)
С8—С7—Н7	108.6	C20—C21—N4	120.1 (2)
C13—C8—C9	118.6 (3)	C22—C21—N4	119.5 (2)
C13—C8—C7	122.8 (2)	C23—C22—C21	118.6 (2)
C9—C8—C7	118.5 (3)	C23—C22—H22	120.7
C8—C9—C10	120.0 (3)	С21—С22—Н22	120.7
С8—С9—Н9	120.0	C22—C23—C18	125.4 (2)
С10—С9—Н9	120.0	C22—C23—N5	116.8 (2)
C11—C10—C9	120.9 (3)	C18—C23—N5	117.7 (3)
C11—C10—H10	119.5	C17—N1—C14	107.3 (2)
C9-C10-H10	119.5	C17 $N1$ $C7$	1115(2)
C_{12} C_{11} C_{10}	119.1 (3)	C14 - N1 - C7	111.3(2)
C12 C11 H11	120.5	C_{16} N2 C_{15}	110.5(2)
$C_{12} - C_{11} - H_{11}$	120.5	$C_{10} = N_2 = C_{13}$	100.5 (2)
	120.3	C10 $N2$ $H2A$	109.5
	120.6 (3)	U_{10} N_2 H_2A	109.5
C11—C12—H12	119.7	C16—N2—H2B	109.5

C13—C12—H12	119.7	C15—N2—H2B	109.5
C8—C13—C12	120.8 (3)	H2A—N2—H2B	108.1
С8—С13—Н13	119.6	O3—N3—O2	120.7 (3)
C12—C13—H13	119.6	O3—N3—C19	119.5 (3)
N1-C14-C15	110.2 (2)	O2—N3—C19	119.1 (3)
N1-C14-H14A	109.6	O5—N4—O4	122.8 (3)
C15—C14—H14A	109.6	O5—N4—C21	118.5 (3)
N1-C14-H14B	109.6	O4—N4—C21	118.7 (2)
C15—C14—H14B	109.6	O6—N5—O7	124.4 (3)
H14A—C14—H14B	108.1	O6—N5—C23	117.7 (3)
N2-C15-C14	111.0 (2)	O7—N5—C23	117.8 (3)
N2—C15—H15A	109.4	H1WA—O1W—H1WA	0.0
C14—C15—H15A	109.4	H1WA—O1W—H1WB	111.4
N2—C15—H15B	109.4	H1WA—O1W—H1WB	111.4
C14—C15—H15B	109.4		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A
N2—H2 A ···O1 W^{i}	0.90	2.03	2.850 (4)	151
N2—H2 <i>B</i> ···O1 ⁱⁱ	0.90	1.96	2.819 (3)	160
N2—H2 <i>B</i> ···O2 ⁱⁱ	0.90	2.42	3.017 (4)	124
O1 <i>W</i> —H1 <i>WA</i> ···O1	0.85	1.97	2.805 (3)	168
C16—H16 <i>B</i> ···O5 ⁱⁱⁱ	0.97	2.34	3.166 (4)	143

Symmetry codes: (i) -*x*+3/2, -*y*+1/2, -*z*+1; (ii) *x*, *y*, *z*-1; (iii) -*x*+2, -*y*+1, -*z*+1.