

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[(2-{[2-(dimethylammonio)ethylliminomethyllpvridine- $\kappa^2 N.N'$)bis-(thiocyanato- κN)manganese(II)]- μ -thiocvanato- $\kappa^2 N:S$]

Jun Wang, Wubiao Zhu and Jichang Li*

Zhongshan Polytechnic, Zhongshan, Guangdong 528404, People's Republic of China

Correspondence e-mail: wangjun7203@126.com

Received 16 July 2012; accepted 19 July 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.043; wR factor = 0.098; data-to-parameter ratio = 17.4.

In the title one-dimensional coordination polymer, $[Mn(NCS)_3(C_{10}H_{16}N_3)]_n$, the Mn^{II} atom is coordinated by an N,N'-bidentate Schiff base and four thiocyanate ligands in a distorted octahedral N₅S geometry. Bridging thiocyanate ligands interconnect adjacent $[Mn(NCS)_2(C_{10}H_{16}N_3)]$ units, giving rise to helical chains extending along the b axis. The chains are further linked through $N-H \cdot \cdot \cdot S$ hydrogen bonds, leading to a three-dimensional supramolecular network.

Related literature

For the structure of Cu^{II} and Pt^I complexes of the same Schiff base, see: Hinman et al. (2000); Mukherjee et al. (2002).

Experimental

Crystal data

$[Mn(NCS)_3(C_{10}H_{16}N_3)]$	V = 3539.0 (8) A ³
$M_r = 407.44$	Z = 8
Orthorhombic, Pbca	Mo $K\alpha$ radiation
a = 8.5603 (12) Å	$\mu = 1.11 \text{ mm}^{-1}$
b = 11.0699 (15) Å	T = 296 K
c = 37.346 (5) Å	$0.25 \times 0.19 \times 0.11 \text{ mm}$

Data collection

Bruker APEXII area-detector	18847 measured reflections
diffractometer	3660 independent reflections
Absorption correction: multi-scan	2397 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.076$
$T_{\min} = 0.770, \ T_{\max} = 0.888$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	210 parameters
$vR(F^2) = 0.098$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.29 \text{ e } \text{\AA}^{-3}$
3660 reflections	$\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N3-H3\cdots S1^i$	0.87	2.47	3.294 (3)	159
Symmetry code: (i)	$-r \pm \frac{5}{2}v - \frac{1}{2}z$			

metry code: (i) $-x + \frac{5}{2}, y - \frac{1}{2}, z$.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The work was supported by Zhongshan Polytechnic.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2792).

References

- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hinman, J. G., Baar, C. R., Jennings, M. C. & Puddephatt, R. J. (2000). Organometallics, 19, 563-570.
- Mukherjee, P. S., Maji, T. K., Escuer, A., Vicente, R., Ribas, J., Rosair, G., Mautner, F. A. & Chaudhuri, N. R. (2002). Eur. J. Inorg. Chem. pp. 943-949. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, m1131 [https://doi.org/10.1107/S1600536812032874] catena-Poly[[(2-{[2-(dimethylammonio)ethyl]iminomethyl}pyridine- $\kappa^2 N, N'$)bis-(thiocyanato- κN)manganese(II)]- μ -thiocyanato- $\kappa^2 N$:S]

Jun Wang, Wubiao Zhu and Jichang Li

S1. Comment

The title compound (Fig. 1) was obtained upon complexation of the Schiff base *N*,*N*-dimethyl-*N*'-[(pyridin-2-yl)methylene]ethane-1,2-diamine with Mn(ClO₄)₂ and KNCS. Similarly to what observed in a related platinium(II) complex (Hinman *et al.*, 2000), due to the protonation of the amine nitrogen atom the Schiff base acts as a bidentate ligand instead as tridentate (Mukherjee *et al.*, 2002). The Mn(II) ion is in a distorted octahedral coordination environment, provided by an *N*,*N*'-bidentate Schiff base and four NCS ligands. The μ_2 -isothiocyanato ligands interconnect the [Mn(NCS)₂(C₁₀H₁₆N₃)] units, giving rise to one-dimensional helical chains along the *b* axis. Adjacent helical chains are further connected *via* N—H···S hydrogen bonds (Table 1) into a three-dimensional supramolecular structure.

S2. Experimental

A mixture of 2-pyridinecarboxaldehyde (0.107 g, 1 mmol) and *N*,*N*-dimethylethyldiamine (0.088 g, 1 mmol) in ethanol (5 ml) was refluxed for 2 h followed by addition of a solution of $Mn(ClO_4)_2.6H_2O$ (0.362 g, 1 mmol) and KNCS (0.291, 3 mmol) in a minimum amount of water. The resulting solution was refluxed for 30 min, then set aside at room temperature. Crystals of the title compound suitable for X-ray analysis were obtained after few days on slow evaporation of the solvent.

S3. Refinement

Hydrogen atoms were located in a difference Fourier map or placed at calculated positions (C—H = 0.95–0.99 Å; N—H = 0.87 Å), and were treated as riding on their parent atoms, with $U_{iso}(H) = 1.2 U_{eq}(C)$ or 1.5 $U_{eq}(C, N)$ for amine and methyl H atoms.

The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level. Symmetry code: (i) 2.5-x, 0.5+y, z.

catena-Poly[[(2-{[2-(dimethylammonio)ethyl]iminomethyl}pyridine- $\kappa^2 N, N'$)bis(thiocyanato- κN)manganese(II)]- μ -thiocyanato- $\kappa^2 N:S$]

Crystal data	
$[Mn(NCS)_3(C_{10}H_{16}N_3)]$	F(000) = 1672
$M_r = 407.44$	$D_{\rm x} = 1.529 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, Pbca	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 3600 reflections
a = 8.5603 (12) Å	$\theta = 1.2 - 28.0^{\circ}$
b = 11.0699(15) Å	$\mu = 1.11 \text{ mm}^{-1}$
c = 37.346(5) Å	T = 296 K
$V = 3539.0(8) \text{ Å}^3$	Block, yellow
Z = 8	$0.25 \times 0.19 \times 0.11 \text{ mm}$

Data collection

Bruker APEXII area-detector	18847 measured reflections
diffractometer	3660 independent reflections
Radiation source: fine-focus sealed tube	2397 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.076$
φ and ω scan	$\theta_{max} = 26.5^{\circ}, \ \theta_{min} = 2.2^{\circ}$
Absorption correction: multi-scan	$h = -10 \rightarrow 10$
(<i>SADABS</i> ; Sheldrick, 1996)	$k = -13 \rightarrow 12$
$T_{\min} = 0.770, T_{\max} = 0.888$	$l = -46 \rightarrow 44$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: inferred from
$wR(F^2) = 0.098$	neighbouring sites
S = 1.04	H-atom parameters constrained
3660 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0371P)^2 + 0.1816P]$
210 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.29$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.35$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used

only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.8026 (4)	1.0515 (3)	0.29186 (7)	0.0365 (7)	
H1	0.8775	1.1075	0.2848	0.044*	
C2	0.6523 (4)	1.0652 (3)	0.27924 (8)	0.0427 (8)	
H2	0.6263	1.1293	0.2643	0.051*	
C3	0.5419 (4)	0.9820 (3)	0.28924 (8)	0.0470 (9)	
H3A	0.4396	0.9885	0.2811	0.056*	
C4	0.5847 (4)	0.8885 (3)	0.31150 (8)	0.0390 (8)	
H4	0.5115	0.8311	0.3185	0.047*	
C5	0.7368 (4)	0.8806 (3)	0.32342 (7)	0.0328 (7)	
C6	0.7882 (4)	0.7845 (3)	0.34732 (8)	0.0365 (8)	
H6	0.7188	0.7237	0.3539	0.044*	
C7	0.9714 (4)	0.6847 (3)	0.38312 (8)	0.0400 (8)	
H7A	1.0726	0.6528	0.3762	0.048*	
H7B	0.8954	0.6198	0.3818	0.048*	
C8	0.9784 (4)	0.7345 (3)	0.42070 (8)	0.0381 (8)	
H8A	1.0409	0.8076	0.4207	0.046*	

H8B	0.8736	0.7561	0.4283	0.046*
C9	1.2174 (4)	0.6312 (3)	0.44276 (10)	0.0601 (11)
H9A	1.2693	0.7068	0.4469	0.090*
H9B	1.2399	0.6036	0.4189	0.090*
H9C	1.2538	0.5726	0.4598	0.090*
C10	1.0076 (5)	0.6853 (4)	0.48428 (8)	0.0679 (12)
H10A	1.0542	0.6297	0.5009	0.102*
H10B	0.8963	0.6854	0.4874	0.102*
H10C	1.0477	0.7650	0.4885	0.102*
C11	1.3790 (4)	0.8798 (3)	0.39279 (8)	0.0358 (7)
C12	0.9167 (4)	1.0407 (3)	0.41865 (10)	0.0411 (8)
C13	1.2401 (4)	1.1848 (3)	0.30617 (8)	0.0351 (7)
Mn1	1.07355 (5)	0.94723 (4)	0.344285 (12)	0.03482 (15)
N1	0.8468 (3)	0.9621 (2)	0.31373 (6)	0.0312 (6)
N2	0.9266 (3)	0.7830(2)	0.35923 (6)	0.0335 (6)
N3	1.0459 (3)	0.6475 (2)	0.44693 (7)	0.0398 (7)
N4	1.2709 (3)	0.8875 (2)	0.37436 (7)	0.0469 (7)
N5	0.9625 (4)	1.0375 (2)	0.38952 (8)	0.0500 (8)
N6	1.1752 (3)	1.1042 (2)	0.31952 (7)	0.0447 (7)
H3	0.9996	0.5806	0.4412	0.067*
S1	1.53139 (11)	0.87179 (8)	0.41894 (2)	0.0482 (3)
S2	0.85784 (14)	1.04061 (10)	0.46007 (2)	0.0646 (3)
S3	1.32720 (10)	1.29615 (7)	0.28601 (2)	0.0427 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.040(2)	0.0343 (18)	0.0352 (17)	0.0006 (15)	0.0050 (15)	0.0024 (15)
C2	0.045 (2)	0.042 (2)	0.0411 (19)	0.0111 (17)	-0.0011 (17)	0.0056 (16)
C3	0.037 (2)	0.060(2)	0.044 (2)	0.0059 (18)	-0.0041 (17)	0.0013 (18)
C4	0.0304 (19)	0.044 (2)	0.0424 (19)	-0.0054 (15)	0.0004 (15)	0.0008 (16)
C5	0.0332 (19)	0.0328 (18)	0.0325 (17)	-0.0029 (14)	0.0030 (14)	-0.0017 (14)
C6	0.044 (2)	0.0306 (18)	0.0350 (17)	-0.0069 (14)	0.0037 (16)	0.0018 (14)
C7	0.050(2)	0.0276 (17)	0.0426 (19)	0.0029 (15)	-0.0033 (16)	0.0048 (15)
C8	0.047 (2)	0.0307 (18)	0.0366 (18)	0.0059 (15)	-0.0006 (16)	0.0037 (14)
C9	0.048 (2)	0.067 (3)	0.065 (3)	0.003 (2)	-0.009 (2)	0.005 (2)
C10	0.094 (3)	0.078 (3)	0.032 (2)	-0.003 (2)	0.002 (2)	-0.006 (2)
C11	0.0377 (19)	0.0300 (18)	0.0398 (19)	-0.0024 (14)	0.0013 (16)	-0.0002 (15)
C12	0.038 (2)	0.0301 (18)	0.055 (2)	-0.0001 (15)	-0.0126 (18)	-0.0077 (17)
C13	0.0318 (19)	0.0372 (19)	0.0362 (17)	-0.0002 (14)	-0.0020 (15)	-0.0036 (15)
Mn1	0.0324 (3)	0.0317 (3)	0.0404 (3)	-0.0035 (2)	-0.0037 (2)	0.0040 (2)
N1	0.0315 (15)	0.0291 (14)	0.0328 (14)	0.0003 (11)	0.0012 (11)	0.0017 (12)
N2	0.0421 (17)	0.0280 (14)	0.0304 (14)	0.0007 (12)	-0.0001 (12)	0.0023 (11)
N3	0.0482 (19)	0.0363 (15)	0.0349 (14)	-0.0042 (13)	-0.0040 (13)	0.0010 (12)
N4	0.0424 (18)	0.0521 (18)	0.0463 (17)	-0.0019 (14)	-0.0078 (15)	-0.0031 (14)
N5	0.058 (2)	0.0441 (18)	0.0483 (18)	-0.0010 (14)	0.0039 (16)	-0.0054 (15)
N6	0.0447 (18)	0.0370 (16)	0.0525 (18)	-0.0050 (14)	0.0026 (14)	0.0029 (14)
S 1	0.0476 (6)	0.0432 (5)	0.0538 (5)	0.0057 (4)	-0.0176 (4)	-0.0027 (4)

supporting information

S2	0.0818 (8)	0.0664 (7)	0.0455 (6)	-0.0123 (6)	0.0038 (5)	-0.0092(5)	
S3	0.0478 (6)	0.0360 (5)	0.0442 (5)	-0.0086 (4)	0.0037 (4)	0.0034 (4)	

Geometric parameters (Å, °)

C1—N1	1.337 (3)	С9—Н9А	0.9600
C1—C2	1.379 (4)	С9—Н9В	0.9600
C1—H1	0.9300	С9—Н9С	0.9600
C2—C3	1.371 (5)	C10—N3	1.492 (4)
C2—H2	0.9300	C10—H10A	0.9600
C3—C4	1.377 (4)	C10—H10B	0.9600
С3—НЗА	0.9300	C10—H10C	0.9600
C4—C5	1.379 (4)	C11—N4	1.157 (4)
C4—H4	0.9300	C11—S1	1.632 (3)
C5—N1	1.354 (4)	C12—N5	1.157 (4)
C5—C6	1.457 (4)	C12—S2	1.627 (4)
C6—N2	1.266 (4)	C13—N6	1.162 (4)
С6—Н6	0.9300	C13—S3	1.626 (3)
C7—N2	1.459 (3)	Mn1—N4	2.133 (3)
С7—С8	1.509 (4)	Mn1—N6	2.153 (3)
С7—Н7А	0.9700	Mn1—N5	2.181 (3)
С7—Н7В	0.9700	Mn1—N1	2.257 (2)
C8—N3	1.490 (4)	Mn1—N2	2.280 (2)
C8—H8A	0.9700	Mn1—S3 ⁱ	2.8731 (10)
C8—H8B	0.9700	N3—H3	0.8675
C9—N3	1.487 (4)	S3—Mn1 ⁱⁱ	2.8732 (10)
N1—C1—C2	123.6 (3)	H10A—C10—H10B	109.5
N1—C1—H1	118.2	N3—C10—H10C	109.5
С2—С1—Н1	118.2	H10A—C10—H10C	109.5
C3—C2—C1	118.4 (3)	H10B—C10—H10C	109.5
С3—С2—Н2	120.8	N4—C11—S1	178.9 (3)
C1—C2—H2	120.8	N5—C12—S2	177.5 (3)
C2—C3—C4	119.0 (3)	N6—C13—S3	177.7 (3)
С2—С3—Н3А	120.5	N4—Mn1—N6	98.99 (11)
С4—С3—Н3А	120.5	N4—Mn1—N5	94.55 (11)
C3—C4—C5	119.6 (3)	N6—Mn1—N5	98.00 (10)
C3—C4—H4	120.2	N4—Mn1—N1	165.80 (10)
C5—C4—H4	120.2	N6—Mn1—N1	94.10 (9)
N1-C5-C4	121.9 (3)	N5—Mn1—N1	89.04 (10)
N1-C5-C6	116.1 (3)	N4—Mn1—N2	93.50 (10)
C4—C5—C6	122.0 (3)	N6—Mn1—N2	166.41 (10)
N2—C6—C5	120.5 (3)	N5—Mn1—N2	86.27 (10)
N2—C6—H6	119.8	N1—Mn1—N2	72.99 (9)
С5—С6—Н6	119.8	N4—Mn1—S3 ⁱ	89.10 (8)
N2—C7—C8	107.8 (2)	N6—Mn1—S3 ⁱ	91.43 (7)
N2—C7—H7A	110.1	N5—Mn1—S3 ⁱ	169.22 (8)
С8—С7—Н7А	110.1	$N1$ — $Mn1$ — $S3^i$	85.06 (6)

N2—C7—H7B	110.1	$N2$ — $Mn1$ — $S3^{i}$	83.38 (6)
С8—С7—Н7В	110.1	C1—N1—C5	117.3 (3)
H7A—C7—H7B	108.5	C1—N1—Mn1	127.3 (2)
N3—C8—C7	113.0 (2)	C5—N1—Mn1	114.49 (19)
N3—C8—H8A	109.0	C6—N2—C7	118.1 (3)
С7—С8—Н8А	109.0	C6—N2—Mn1	114.85 (19)
N3—C8—H8B	109.0	C7—N2—Mn1	126.8 (2)
С7—С8—Н8В	109.0	C9—N3—C10	110.4 (3)
H8A—C8—H8B	107.8	C9—N3—C8	113.1 (3)
N3—C9—H9A	109.5	C10—N3—C8	110.4 (3)
N3—C9—H9B	109.5	C9—N3—H3	108.7
Н9А—С9—Н9В	109.5	C10—N3—H3	111.8
N3—C9—H9C	109.5	C8—N3—H3	102.2
Н9А—С9—Н9С	109.5	C11—N4—Mn1	165.9 (3)
Н9В—С9—Н9С	109.5	C12—N5—Mn1	152.9 (3)
N3—C10—H10A	109.5	C13—N6—Mn1	175.2 (3)
N3—C10—H10B	109.5	C13—S3—Mn1 ⁱⁱ	103.08 (11)
N1—C1—C2—C3	-0.8(5)	C5-C6-N2-Mn1	5.0 (4)
C1—C2—C3—C4	0.3 (5)	C8—C7—N2—C6	-104.8 (3)
C2—C3—C4—C5	0.3 (5)	C8—C7—N2—Mn1	69.3 (3)
C3—C4—C5—N1	-0.3 (5)	N4—Mn1—N2—C6	177.1 (2)
C3—C4—C5—C6	179.3 (3)	N6—Mn1—N2—C6	-26.1 (5)
N1-C5-C6-N2	3.2 (4)	N5—Mn1—N2—C6	82.8 (2)
C4—C5—C6—N2	-176.4 (3)	N1—Mn1—N2—C6	-7.4 (2)
N2-C7-C8-N3	-171.4 (3)	S3 ⁱ —Mn1—N2—C6	-94.2 (2)
C2-C1-N1-C5	0.8 (4)	N4—Mn1—N2—C7	2.8 (2)
C2-C1-N1-Mn1	-167.9 (2)	N6—Mn1—N2—C7	159.5 (4)
C4—C5—N1—C1	-0.2 (4)	N5—Mn1—N2—C7	-91.6 (2)
C6-C5-N1-C1	-179.9 (2)	N1—Mn1—N2—C7	178.3 (2)
C4—C5—N1—Mn1	169.9 (2)	$S3^{i}$ —Mn1—N2—C7	91.4 (2)
C6—C5—N1—Mn1	-9.8 (3)	C7—C8—N3—C9	72.4 (4)
N4—Mn1—N1—C1	-163.6 (4)	C7—C8—N3—C10	-163.3 (3)
N6—Mn1—N1—C1	-6.4 (2)	N6—Mn1—N4—C11	48.5 (11)
N5—Mn1—N1—C1	91.5 (2)	N5—Mn1—N4—C11	-50.4 (11)
N2—Mn1—N1—C1	177.9 (2)	N1—Mn1—N4—C11	-154.6 (9)
$S3^{i}$ —Mn1—N1—C1	-97.5 (2)	N2—Mn1—N4—C11	-136.9 (11)
N4—Mn1—N1—C5	27.5 (5)	$S3^{i}$ —Mn1—N4—C11	139.8 (11)
N6—Mn1—N1—C5	-175.4 (2)	N4—Mn1—N5—C12	-50.7 (6)
N5—Mn1—N1—C5	-77.4 (2)	N6—Mn1—N5—C12	-150.4 (6)
N2—Mn1—N1—C5	8.97 (19)	N1—Mn1—N5—C12	115.6 (6)
S3 ⁱ —Mn1—N1—C5	93.54 (19)	N2—Mn1—N5—C12	42.5 (6)
C5—C6—N2—C7	179.9 (2)	S3 ⁱ —Mn1—N5—C12	58.8 (9)

Symmetry codes: (i) -*x*+5/2, *y*-1/2, *z*; (ii) -*x*+5/2, *y*+1/2, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H…A
N3—H3···S1 ⁱ	0.87	2.47	3.294 (3)	159

Symmetry code: (i) -x+5/2, y-1/2, z.