Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Boron carbide, $\mathrm{B}_{13-x} \mathrm{C}_{2-y}(x=0.12, y=$ 0.01)

Oksana Sologub, Yuichi Michiue and Takao Mori*
National Institute for Materials Science, Namiki 1-1, 305-0044 Tsukuba, Japan
Correspondence e-mail: solohub.oksana@nims.go.jp

Received 10 July 2012; accepted 21 July 2012

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{B}-\mathrm{B})=0.002 \AA$; disorder in main residue; R factor $=0.046 ; w R$ factor $=0.109$; data-to-parameter ratio $=12.9$.

Boron carbide phases exist over a widely varying compositional range $\mathrm{B}_{12+x} \mathrm{C}_{3-x}(0.06<x<1.7)$. One idealized structure corresponds to the $\mathrm{B}_{13} \mathrm{C}_{2}$ composition (space group $R \overline{3} m$) and contains one icosahedral B_{12} unit and one linear $\mathrm{C}-\mathrm{B}-\mathrm{C}$ chain. The B_{12} units are composed of crystallographically distinct B atoms B_{P} (polar, B 1) and B_{Eq} (equatorial, B 2). Boron icosahedra are interconnected by C atoms via their B_{Eq} atoms, forming layers parallel to (001), while the B_{12} units of the adjacent layers are linked through intericosahedral $B_{P}-$ B_{P} bonds. The unique B atom $\left(B_{C}\right)$ connects the two C atoms of adjacent layers, forming a $\mathrm{C}-\mathrm{B}-\mathrm{C}$ chain along [001]. Depending on the carbon concentration, the carbon and B_{P} sites exhibit mixed B / C occupancies to varying degrees; besides, the B_{C} site shows partial occupancy. The decrease in carbon content was reported to be realized via an increasing number of chainless unit cells. On the basis of X-ray singlecrystal refinement, we have concluded that the unit cell of the given boron-rich crystal contains following structural units: $\left[B_{12}\right]$ and $\left[B_{11} C\right]$ icosahedra (about 96 and 4%, respectively) and $\mathrm{C}-\mathrm{B}-\mathrm{C}$ chains (87%). Besides, there is a fraction of unit cells (13%) with the B atom located against the triangular face of a neighboring icosahedron formed by B_{Eq} (B2) thus rendering the formula $\mathrm{B}_{0.87}\left(\mathrm{~B}_{0.98} \mathrm{C}_{0.02}\right)_{12}\left(\mathrm{~B}_{0.13} \mathrm{C}_{0.87}\right)_{2}$ for the current boron carbide crystal.

Related literature

For X-ray/neutron diffraction studies on boron carbide, see: Yakel (1975); Will et al. (1979); Larson (1986); Kwei \& Morosin (1996). For the boron carbide homogeneity field, see: Bouchacourt \& Thevenot (1985); Gosset \& Colin (1991). For electronic structure and bonding properties, see: Domnich et al. (2011); Balakrishnarajan et al. (2007). For electronic properties and charge transport, see: Werheit (2009).

Experimental

Crystal data
$\mathrm{C}_{1.99} \mathrm{~B}_{12.88}$
$M_{r}=163.14$
Trigonal, $R \overline{3} m$
$a=5.6530(8) \AA$
$c=12.156$ (4) A
$V=336.42(17) \AA^{3}$
Data collection
Rigaku AFC 7R diffractometer 1489 measured reflections 284 independent reflections
184 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& Z=3 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.10 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& 0.45 \times 0.30 \times 0.21 \mathrm{~mm}
\end{aligned}
$$

$R_{\text {int }}=0.151$
3 standard reflections every 150 reflections intensity decay: none

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046 \quad 22$ parameters
$w R\left(F^{2}\right)=0.109$
$S=1.03$
284 reflections
$\Delta \rho_{\max }=0.55 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.37 \mathrm{e}^{-3}$

Data collection: Rigaku/AFC Diffractometer Control Software (Rigaku, 1998); cell refinement: Rigaku/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 1999); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999).

This work was partly supported by grants from the Thermal and Electric Energy Technology Foundation and AOARD.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RU2039).

References

Balakrishnarajan, M. M., Pancharatna, P. D. \& Hoffmann, R. (2007). New J. Chem. 31, 473-485.
Bouchacourt, M. \& Thevenot, F. (1985). J. Mater. Sci. 20, 1237-1247.
Domnich, V., Reynaud, S., Haber, R. A. \& Chhowalla, M. (2011). J. Am. Ceram. Soc. 94, 3605-3628.
Dowty, E. (1999). ATOMS. Shape Software, Kingsport, Tennessee, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gosset, D. \& Colin, M. (1991). J. Nucl. Mater. 183, 161-173.
Kwei, G. H. \& Morosin, B. (1996). J. Phys. Chem. 100, 8031-8039.
Larson, A. C. (1986). AIP Conf. Proc. 140, 109-113.
Molecular Structure Corporation (1998). TEXSAN. MSC, The Woodlands, Texas, USA.
Rigaku (1998). Rigaku/AFC Diffractometer Control Software. Rigaku Corporation, Akishima, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Werheit, H. (2009). J. Phys. Conf. Ser. 176, 012019.
Will, G., Kirfel, A., Gupta, A. \& Amberger, E. (1979). J. Less Common Met. 67, 19-29.
Yakel, H. L. (1975). Acta Cryst. B31, 1797-1806.

supporting information

Acta Cryst. (2012). E68, i67 [https://doi.org/10.1107/S1600536812033132]
Boron carbide, $\mathrm{B}_{13-\mathrm{x}} \mathrm{C}_{2-y}(x=0.12, y=0.01)$

Oksana Sologub, Yuichi Michiue and Takao Mori

S1. Comment

The positioning the C 1 and B 11 atoms on two adjacent $6 \mathrm{c}(0,0, z)$ sites is in good agreement with observations reported from powder neutron diffraction studies of boron-rich boron carbides by Kwei and Morosin (1996). No atom in the 36i site claimed by Yakel (1975) has been found.

S2. Experimental

Boron carbide single-crystal has been obtained as a co-product of the yttrium boron carbide phase synthesized via solid state reaction of yttrium tetraboride, amorphous boron and carbon. The reaction process was performed from compacted powders in the BN crucible inserted into a graphite susceptor using the RF furnace under a flow of Ar at a temperature of about 1973 K and holding time 8 h ; afterwards the setup was cooled down in 1 h to room temperature. The sample contained crystals of the title compound, in the presence of $\mathrm{YB}_{28.5} \mathrm{C}_{4}$ and binary yttrium borides, as revealed by powder X-ray diffraction analysis.

S3. Refinement

The crystal structure refinement was performed starting from the atomic coordinates reported for α-rh B . The chain atoms were located from the difference Fourier synthesis. The refinement on boron icosahedral polar site-occupancy factors led to reliability factors $\mathrm{R} 1=0.0517$ and $\mathrm{w} 22=0.1519$ revealing the remaining electron density of 1.42 e \AA^{-3} in 6 c Wyckoff position ($0,0, z ; z=0.07$) at close distance from chain atom C 1 . Further refinement on occupancy parameters of the B3 $\left(\mathrm{B}_{\mathrm{C}}\right)$ chain atom and refining the $\mathrm{C} 1 / \mathrm{B} 11$ in split 6 c atom site reduced the highest Fourier difference peak to 0.55 e \AA^{-3} at $(0,0,0.1663)$ located $0.6 \AA$ away from C1 and decreased the reliability factors to R1=0.0455 and wR2=0.1087. The ADPs of B1 and B2 have comparable values, while the thermal ellipsoids of C1/B11 chain atoms slightly extend parallel to the chain direction. The B3 in the center of a chain shows rather large ADP values. Data collection and cell refinement:

Figure 1
The idealized structure of boron carbide and the distances for B and C atoms of the $\mathrm{C}-\mathrm{B}-\mathrm{C}$ and $\mathrm{B}-\mathrm{B}$ chains as obtained from structure refinement. Thermal ellipsoids depict the 80% probability level.

Figure 2
Observed Fourier maps projected onto xy plane at $z=0 ;-1.5$ e $\AA^{-3}<\Delta \rho<28.4$ e \AA^{-3}.

Boron carbide

Crystal data

$\mathrm{C}_{1.99} \mathrm{~B}_{12.88}$
$M_{r}=163.14$
Trigonal, $R \overline{3} m$
Hall symbol: -R 3 2"
$a=5.6530$ (8) \AA
$c=12.156$ (4) \AA
$V=336.42(17) \AA^{3}$
$Z=3$
$F(000)=229$

Data collection

Rigaku AFC 7R diffractometer
$\omega-2 \theta$ scans
1489 measured reflections
284 independent reflections
184 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.151$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.109$
$S=1.03$
284 reflections
22 parameters

$$
\begin{aligned}
& D_{\mathrm{x}}=2.416 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 20 \text { reflections } \\
& \theta=8-50^{\circ} \\
& \begin{array}{l}
\mu=0.10 \mathrm{~mm}^{-1} \\
T=293 \mathrm{~K} \\
\text { Prism, black } \\
0.45 \times 0.3 \times 0.21 \mathrm{~mm}
\end{array}
\end{aligned}
$$

$\theta_{\text {max }}=39.8^{\circ}, \theta_{\text {min }}=4.5^{\circ}$
$h=-10 \rightarrow 8$
$k=0 \rightarrow 10$
$l=-21 \rightarrow 21$
3 standard reflections every 150 reflections
intensity decay: none

$$
\begin{aligned}
& 1 \text { restraint } \\
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0481 P)^{2}+0.3407 P\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=0.55 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.37 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
B1	$0.44092(16)$	$0.55908(16)$	$0.05298(12)$	$0.0053(3)$	$0.958(4)$
C11	$0.44092(16)$	$0.55908(16)$	$0.05298(12)$	$0.0053(3)$	$0.042(4)$
B2	$0.50336(16)$	$0.49664(16)$	$0.19232(11)$	$0.0054(3)$	
B3	0	0	0	$0.0118(8)$	0.87
C1	0	0	$0.1177(5)$	$0.0071(8)$	$0.87(2)$
B11	0	0	$0.079(4)$	$0.0071(8)$	$0.13(2)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
B1	$0.0056(4)$	$0.0056(4)$	$0.0047(5)$	$0.0028(5)$	$-0.0001(2)$	$0.0001(2)$
C11	$0.0056(4)$	$0.0056(4)$	$0.0047(5)$	$0.0028(5)$	$-0.0001(2)$	$0.0001(2)$
B2	$0.0046(4)$	$0.0046(4)$	$0.0059(5)$	$0.0015(4)$	$-0.0003(2)$	$0.0003(2)$
B3	$0.0099(11)$	$0.0099(11)$	$0.016(2)$	$0.0049(6)$	0	0
C1	$0.0041(6)$	$0.0041(6)$	$0.013(2)$	$0.0021(3)$	0	0
B11	$0.0041(6)$	$0.0041(6)$	$0.013(2)$	$0.0021(3)$	0	0

Geometric parameters $\left({ }_{A},{ }^{\circ}\right)$

$\mathrm{B} 1-\mathrm{C} 11^{\mathrm{i}}$	1.731 (3)	$\mathrm{B} 2-\mathrm{B} 1^{\text {ii }}$	1.8091 (15)
$\mathrm{B} 1-\mathrm{B} 1^{\mathrm{i}}$	1.731 (3)	$\mathrm{B} 2-\mathrm{C} 11^{\text {iii }}$	1.8091 (15)
$\mathrm{B} 1-\mathrm{B} 2$	1.801 (2)	B2-B1 ${ }^{\text {iii }}$	1.8091 (15)
$\mathrm{B} 1-\mathrm{B} 2^{\text {ii }}$	1.8091 (15)	B3-B11	0.96 (5)
$\mathrm{B} 1-\mathrm{B} 2^{\text {iii }}$	1.8091 (15)	B3-B11 ${ }^{\text {vii }}$	0.96 (5)
$\mathrm{B} 1-\mathrm{B} 1^{\text {iv }}$	1.825 (3)	B3-C1 ${ }^{\text {vii }}$	1.430 (6)
$\mathrm{B} 1-\mathrm{C} 11^{\text {iv }}$	1.825 (3)	B3-C1	1.430 (6)
$\mathrm{B} 1-\mathrm{C} 11^{\text {v }}$	1.825 (3)	$\mathrm{C} 1-\mathrm{B} 2{ }^{\text {vi }}$	1.6239 (19)
$\mathrm{B} 1-\mathrm{B} 1^{v}$	1.825 (3)	$\mathrm{C} 1-\mathrm{B} 2{ }^{\text {iii }}$	1.6239 (19)
$\mathrm{B} 2-\mathrm{C} 1^{\text {vi }}$	1.6239 (19)	$\mathrm{C} 1-\mathrm{B} 2^{\text {viii }}$	1.6239 (19)
B2-B11 ${ }^{\text {vi }}$	1.77 (2)	B11-B2 ${ }^{\text {vi }}$	1.77 (2)
$\mathrm{B} 2-\mathrm{B}{ }^{\text {iii }}$	1.7778 (17)	B11-B2 ${ }^{\text {iii }}$	1.77 (2)
$\mathrm{B} 2-\mathrm{B} 2^{\text {ii }}$	1.7778 (17)	B11-B2 ${ }^{\text {viii }}$	1.77 (2)
$\mathrm{B} 2-\mathrm{C} 11^{\text {ii }}$	1.8091 (15)	B11-B11 ${ }^{\text {vii }}$	1.92 (9)
C11-B1-B1 ${ }^{\text {i }}$	0.00 (8)	B11 ${ }^{\text {vi}}-\mathrm{B} 2-\mathrm{C} 11^{\text {ii }}$	108.5 (11)
$\mathrm{C} 11^{\mathrm{i}}-\mathrm{B} 1-\mathrm{B} 2$	118.22 (14)	B2 ${ }^{\text {iiii }}$ - $\mathrm{B} 2-\mathrm{C} 11^{\mathrm{ii}}$	108.78 (7)
$\mathrm{B} 1-\mathrm{B} 1-\mathrm{B} 2$	118.22 (14)	$\mathrm{B} 2{ }^{\text {ii }}-\mathrm{B} 2-\mathrm{C} 11^{\text {ii }}$	60.26 (7)
$\mathrm{C} 11^{\mathrm{i}}-\mathrm{B} 1-\mathrm{B} 2^{\text {ii }}$	121.45 (8)	$\mathrm{B} 1-\mathrm{B} 2-\mathrm{C} 11^{\text {ii }}$	110.05 (9)
$\mathrm{B} 1^{\mathrm{i}}-\mathrm{B} 1-\mathrm{B} 2^{\mathrm{ii}}$	121.45 (8)	$\mathrm{C} 1{ }^{\text {vi}}-\mathrm{B} 2-\mathrm{B} 1^{\text {ii }}$	121.07 (19)
$\mathrm{B} 2-\mathrm{B} 1-\mathrm{B} 2^{\mathrm{ii}}$	59.01 (5)	$\mathrm{B} 11^{\text {vi}}-\mathrm{B} 2-\mathrm{B} 1^{\mathrm{ii}}$	108.5 (11)
$\mathrm{C} 11^{\mathrm{i}}$ - ${\mathrm{B} 1-\mathrm{B} 2{ }^{\text {iii }}}^{\text {a }}$	121.45 (8)	$\mathrm{B} 2^{\text {iiii }}-\mathrm{B} 2-\mathrm{B} 1^{\text {ii }}$	108.78 (7)
$\mathrm{B} 1^{\mathrm{i}}-\mathrm{B} 1-\mathrm{B} 2^{\mathrm{iii}}$	121.45 (8)	$\mathrm{B} 2^{\mathrm{ii}}-\mathrm{B} 2-\mathrm{B} 1^{\text {ii }}$	60.26 (7)
$\mathrm{B} 2-\mathrm{B} 1-\mathrm{B} 2{ }^{\text {iii }}$	59.01 (5)	$\mathrm{B} 1-\mathrm{B} 2-\mathrm{B} 1^{\mathrm{ii}}$	110.05 (9)
$\mathrm{B} 2^{\mathrm{ii}}-\mathrm{B} 1-\mathrm{B} 2{ }^{\text {iii }}$	105.68 (11)	$\mathrm{C} 11^{\text {ii }}-\mathrm{B} 2-\mathrm{B} 1^{\text {ii }}$	0.00 (11)
$\mathrm{C} 11^{\mathrm{i}}-\mathrm{B} 1-\mathrm{B} 1^{\text {iv }}$	125.36 (8)	$\mathrm{C} 1{ }^{\text {vi}}-\mathrm{B} 2-\mathrm{C} 11^{\text {iii }}$	121.07 (19)
$\mathrm{B} 1-\mathrm{B} 1-\mathrm{B} 1^{\mathrm{iv}}$	125.36 (8)	B11 vi- B2-C11 ${ }^{\text {iii }}$	108.5 (11)
$\mathrm{B} 2-\mathrm{B} 1-\mathrm{B} 1^{\text {iv }}$	107.10 (6)	$\mathrm{B} 2{ }^{\text {iii- }}$ - $2-\mathrm{C} 11^{\text {iii }}$	60.26 (7)
$\mathrm{B} 2{ }^{\text {ii }}-\mathrm{B} 1-\mathrm{B} 1^{\text {iv }}$	107.02 (6)	$\mathrm{B} 2{ }^{\text {iii }}$ - $22-\mathrm{C} 11^{\text {iii }}$	108.78 (7)
$\mathrm{B} 2{ }^{\text {iii }}-\mathrm{B} 1-\mathrm{B} 1^{\text {iv }}$	59.72 (5)	$\mathrm{B} 1-\mathrm{B} 2-\mathrm{C} 11^{\text {iii }}$	110.05 (9)
$\mathrm{C} 11-\mathrm{B} 1-\mathrm{C} 11^{\mathrm{iv}}$	125.36 (8)	$\mathrm{C} 11{ }^{\text {iii- }}$ - $2-\mathrm{C} 11^{\text {iii }}$	60.56 (11)
$\mathrm{B} 1-\mathrm{B} 1-\mathrm{C} 11^{\mathrm{iv}}$	125.36 (8)	B1 ${ }^{\text {iii }}$ - $22-\mathrm{C} 11^{\text {iii }}$	60.56 (11)
$\mathrm{B} 2-\mathrm{B} 1-\mathrm{C} 11^{\text {iv }}$	107.10 (6)	$\mathrm{C} 1{ }^{\text {vi }}-\mathrm{B} 2-\mathrm{B} 1^{\text {iii }}$	121.07 (19)
$\mathrm{B} 2 \mathrm{ii}-\mathrm{B} 1-\mathrm{C} 11^{\mathrm{iv}}$	107.02 (6)	$\mathrm{B} 11^{\text {vi }}$ - $\mathrm{B} 2-\mathrm{B} 1^{\text {iii }}$	108.5 (11)
$\mathrm{B} 2 \mathrm{iii}-\mathrm{B} 1-\mathrm{C} 11^{\text {iv }}$	59.72 (5)	$\mathrm{B} 2^{\text {iii }}-\mathrm{B} 2-\mathrm{B} 1^{\text {iii }}$	60.26 (7)
$\mathrm{B} 1^{\mathrm{iv}}-\mathrm{B} 1-\mathrm{C} 11^{\text {iv }}$	0.00 (9)	$\mathrm{B} 2{ }^{\text {ii }}-\mathrm{B} 2-\mathrm{B} 1^{\text {iii }}$	108.78 (7)

$\mathrm{C} 11^{\mathrm{i}}-\mathrm{B} 1-\mathrm{C} 11^{\text {v }}$	125.36 (8)	$\mathrm{B} 1-\mathrm{B} 2-\mathrm{B} 1^{\text {iii }}$	110.05 (9)
$\mathrm{B} 1-\mathrm{B} 1-\mathrm{C} 11^{\mathrm{v}}$	125.36 (8)	$\mathrm{C} 11^{\mathrm{iii}}-\mathrm{B} 2-\mathrm{B} 1^{\text {iii }}$	60.56 (11)
$\mathrm{B} 2-\mathrm{B} 1-\mathrm{C} 11^{\text {v }}$	107.10 (6)	$\mathrm{B} 1^{\mathrm{ii}}-\mathrm{B} 2-\mathrm{B} 1^{\text {iii }}$	60.56 (11)
$\mathrm{B} 2^{\text {ii }}-\mathrm{B} 1-\mathrm{C} 11^{v}$	59.72 (5)	$\mathrm{C} 11^{\text {iii }}$ - $\mathrm{B} 2-\mathrm{B} 1^{\text {iii }}$	0.00 (4)
$\mathrm{B} 2^{\text {iii }}-\mathrm{B} 1-\mathrm{C} 11^{v}$	107.02 (6)	B11-B3-B11 ${ }^{\text {vii }}$	180.0000 (10)
$\mathrm{B} 1^{\mathrm{iv}}-\mathrm{B} 1-\mathrm{C} 11^{v}$	60	B11-B3-C1 $1^{\text {vii }}$	180.0000 (10)
$\mathrm{C} 11^{\mathrm{iv}}-\mathrm{B} 1-\mathrm{C} 11^{\text {v }}$	60	B11 $1^{\text {vii }}$ - B3-C1 ${ }^{\text {vii }}$	0.0000 (10)
C11--B1-B1 ${ }^{\text {v }}$	125.36 (8)	B11-B3-C1	0.0000 (10)
$\mathrm{B} 1{ }^{\mathrm{i}}-\mathrm{B} 1-\mathrm{B} 1^{v}$	125.36 (8)	B11 ${ }^{\text {vii- }}$ - $3-\mathrm{C} 1$	180.0000 (10)
$\mathrm{B} 2-\mathrm{B} 1-\mathrm{B} 1^{v}$	107.10 (6)	C1 ${ }^{\text {vii }}-\mathrm{B} 3-\mathrm{C} 1$	180
$\mathrm{B} 2^{\text {ii }}-\mathrm{B} 1-\mathrm{B} 1^{v}$	59.72 (5)	B3-C1-B2 ${ }^{\text {vi }}$	100.1 (2)
$\mathrm{B} 2{ }^{\text {iii }}-\mathrm{B} 1-\mathrm{B} 1^{v}$	107.02 (6)	$\mathrm{B} 3-\mathrm{C} 1-\mathrm{B} 2{ }^{\text {iii }}$	100.1 (2)
$\mathrm{B} 1^{\mathrm{iv}}-\mathrm{B} 1-\mathrm{B} 1^{v}$	60	$\mathrm{B} 2{ }^{\text {vi }}-\mathrm{C} 1-\mathrm{B} 2{ }^{\text {iii }}$	117.01 (13)
$\mathrm{C} 11^{\text {iv }}-\mathrm{B} 1-\mathrm{B} 1^{v}$	60	$\mathrm{B} 3-\mathrm{C} 1-\mathrm{B} 2^{\text {viii }}$	100.1 (2)
$\mathrm{C} 11^{v}-\mathrm{B} 1-\mathrm{B} 1^{v}$	0.00 (10)	$\mathrm{B} 2^{\text {vi }}-\mathrm{C} 1-\mathrm{B} 2^{\text {viii }}$	117.01 (13)
$\mathrm{C} 1{ }^{\text {vi}}-\mathrm{B} 2-\mathrm{B} 11^{\text {vi }}$	15.1 (12)	$\mathrm{B} 2^{\text {iiii }}-\mathrm{C} 1-\mathrm{B} 2^{\text {viii }}$	117.01 (13)
$\mathrm{C} 1{ }^{\text {vi }}-\mathrm{B} 2-\mathrm{B} 2{ }^{\text {iii }}$	121.49 (7)	B3-B11-B2 ${ }^{\text {vi }}$	115.2 (13)
$\mathrm{B} 11^{\mathrm{vi}}-\mathrm{B} 2-\mathrm{B} 2{ }^{\text {iii }}$	125.0 (2)	$\mathrm{B} 3-\mathrm{B} 11-\mathrm{B} 2^{\text {iii }}$	115.2 (13)
$\mathrm{C} 1{ }^{\text {vi }}-\mathrm{B} 2-\mathrm{B} 2{ }^{\text {ii }}$	121.49 (7)	$\mathrm{B} 2{ }^{\text {vi }}-\mathrm{B} 11-\mathrm{B} 2^{\text {iii }}$	103.2 (16)
$\mathrm{B} 11^{\mathrm{vi}}-\mathrm{B} 2-\mathrm{B} 2{ }^{\text {ii }}$	125.0 (2)	B3-B11-B2 ${ }^{\text {viii }}$	115.2 (13)
$\mathrm{B} 2{ }^{\text {iii }}-\mathrm{B} 2-\mathrm{B} 2{ }^{\text {ii }}$	108.39 (8)	B2 ${ }^{\text {vi}}-\mathrm{B} 11-\mathrm{B} 2^{\text {viii }}$	103.2 (16)
$\mathrm{C} 1{ }^{\text {vi }}-\mathrm{B} 2-\mathrm{B} 1$	119.9 (2)	B2 ${ }^{\text {iii }}-\mathrm{B} 11-\mathrm{B} 2^{\text {viii }}$	103.2 (16)
B11 ${ }^{\text {vi}}-\mathrm{B} 2-\mathrm{B} 1$	135.0 (14)	B3-B11-B11 ${ }^{\text {vii }}$	0.0000 (10)
$\mathrm{B} 2{ }^{\text {iii }}-\mathrm{B} 2-\mathrm{B} 1$	60.73 (7)	$\mathrm{B} 2{ }^{\text {vi }}-\mathrm{B} 11-\mathrm{B} 11^{\text {vii }}$	115.2 (13)
B2ii $-\mathrm{B} 2-\mathrm{B} 1$	60.73 (7)	$\mathrm{B} 2{ }^{\text {iii }}-\mathrm{B} 11-\mathrm{B} 11^{\text {vii }}$	115.2 (13)
$\mathrm{C} 1{ }^{\text {vi}}-\mathrm{B} 2-\mathrm{C} 11^{\text {ii }}$	121.07 (19)	B2 ${ }^{\text {viii }}$ - $111-\mathrm{B} 11^{\text {vii }}$	115.2 (13)

Symmetry codes: (i) $-x+1,-y+1,-z$; (ii) $x-y+2 / 3, x+1 / 3,-z+1 / 3$; (iii) $y-1 / 3,-x+y+1 / 3,-z+1 / 3$; (iv) $-x+y,-x+1, z$; (v) $-y+1, x-y+1, z$; (vi) $-x+2 / 3$, $-y+1 / 3,-z+1 / 3$; (vii) $-x,-y,-z$; (viii) $x-y-1 / 3, x-2 / 3,-z+1 / 3$.

