Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3-Acetyl-1-(3-methylphenyl)thiourea

B. Thimme Gowda, ${ }^{\text {a }}$ Sabine Foro ${ }^{\text {b }}$ and Sharatha Kumar ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and ${ }^{\mathbf{b}}$ Institute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
Correspondence e-mail: gowdabt@yahoo.com
Received 17 July 2012; accepted 19 July 2012
Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; disorder in main residue; R factor $=0.035 ; w R$ factor $=0.100$; data-to-parameter ratio $=14.7$.

In the crystal structure of the title compound, $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OS}$, the conformation of the two $\mathrm{N}-\mathrm{H}$ bonds are anti to each other. The amide $\mathrm{C}=\mathrm{O}$ and the $\mathrm{C}=\mathrm{S}$ are are also anti to each other. The $\mathrm{N}-\mathrm{H}$ bond adjacent to the benzene ring is syn to the m-methyl groups. The dihedral angle between the benzene ring and the side chain [mean plane of atoms $\mathrm{C}-\mathrm{C}(\mathrm{O}) \mathrm{N}-\mathrm{C}-$ N ; maximum deviation 0.029 (2) \AA] is $14.30(7)^{\circ}$. There is an intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond generating an $S(6)$ ring motif. In the crystal, the molecules are linked via N $\mathrm{H} \cdots$) hydrogen bonds, forming chains propagating along [001]. The S atom is disordered and was refined using a split model [occupancy ratio 0.56 (4):0.44 (4)].

Related literature

For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Alkan et al. (2011); Bhat \& Gowda (2000); Bowes et al. (2003); Gowda et al. (2000); Saeed et al. (2010); Shahwar et al. (2012), of N-(aryl)methanesulfonamides, see: Gowda et al. (2007) and of N chloroarylsulfonamides, see: Gowda \& Ramachandra (1989); Jyothi \& Gowda (2004); Shetty \& Gowda (2004).

Experimental

Crystal data
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OS}$
$a=7.6841$ (9) A
$M_{r}=208.29$
$b=14.943$ (1) A
Monoclinic, $P 2_{1} / c$
$\beta=107.49(1)^{\circ}$
$V=1044.32(18) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation

Data collection
Oxford Diffraction Xcalibur Sapphire CCD. diffractometer
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)
$T_{\text {min }}=0.878, T_{\text {max }}=0.936$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.100$
$S=1.06$
2137 reflections
145 parameters
2 restraints

$$
\mu=0.28 \mathrm{~mm}^{-1}
$$

$T=295 \mathrm{~K}$
$0.48 \times 0.44 \times 0.24 \mathrm{~mm}$

4011 measured reflections

2137 independent reflections 1789 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.011$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{O} 1$	$0.87(1)$	$1.90(2)$	$2.6536(16)$	$144(2)$
$\mathrm{N} 2-\mathrm{H} 2 N \cdots 1^{\mathrm{i}}$	$0.85(1)$	$2.12(1)$	$2.9564(16)$	$166(2)$

Symmetry code: (i) $x,-y+\frac{3}{2}, z-\frac{1}{2}$.
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under the UGCBSR one-time grant to faculty.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2375).

References

Alkan, C., Tek, Y. \& Kahraman, D. (2011). Turk. J. Chem. 35, 769-777.
Bhat, D. K. \& Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279-284.
Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. \& Wardell, J. L. (2003). Acta Cryst. C59, o1-o3.
Gowda, B. T., Foro, S. \& Fuess, H. (2007). Acta Cryst. E63, o2337.
Gowda, B. T. \& Ramachandra, P. (1989). J. Chem. Soc. Perkin Trans. 2, pp. 1067-1071.
Gowda, B. T., Svoboda, I. \& Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 779790.

Jyothi, K. \& Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64-68.
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
Saeed, A., Arshad, M. \& Simpson, J. (2010). Acta Cryst. E66, o2808-o2809.
Shahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. \& Raza, M. A. (2012). Acta Cryst. E68, o1160.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shetty, M. \& Gowda, B. T. (2004). Z. Naturforsch. Teil B, 59, 63-72.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2012). E68, o2574 [https://doi.org/10.1107/S1600536812032825]

3-Acetyl-1-(3-methylphenyl)thiourea

B. Thimme Gowda, Sabine Foro and Sharatha Kumar

S1. Comment

Thiourea and its derivatives are known to exhibit a wide variety of biological activities. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Alkan et al., 2011; Bhat \& Gowda, 2000; Bowes et al., 2003; Gowda et al., 2000; Saeed et al., 2010; Shahwar et al., 2012); N-(aryl)-methanesulfonamides (Gowda et al., 2007) and N-chloroarylamides (Gowda \& Ramachandra, 1989; Jyothi \& Gowda, 2004; Shetty \& Gowda, 2004), in the present work, the crystal structure of 3-acetyl-1-(3-methylphenyl)thiourea, has been determined (Fig. 1).
The conformation of the two $\mathrm{N}-\mathrm{H}$ bonds are anti to each other. The adjacent $\mathrm{N}-\mathrm{H}$ bond is $s y n$ to the m-methyl group in the benzene ring, compared to the anti conformation observed between the $\mathrm{N}-\mathrm{H}$ bond and the o-methyl group in the benzene ring in 3-acetyl-1-(2-methylphenyl)thiourea, I, (Shahwar et al., 2012). Furthermore, the conformation of the amide $\mathrm{C}=\mathrm{O}$ and the $\mathrm{C}=\mathrm{S}$ are anti to each other, similar to that observed in \mathbf{I}.
The side chain is oriented itself with respect to the phenyl ring with the torsion angles of $\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7=$ $-168.76(14)^{\circ}$ and $\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7=14.71(24)^{\circ}$. The dihedral angle between the phenyl ring and the side chain ($\mathrm{N} 1 / \mathrm{C} 7 / \mathrm{N} 2 / \mathrm{C} 8 / \mathrm{O} 1 / \mathrm{C} 9$) is $14.30(7)^{\circ}$.

The amide oxygen exhibits a bifurcated hydrogen bonding by showing the simultaneous intra- and intermolecular hydrogen bonding generating $S(6)$ and $C(4)$ motifs. In the crystal of the title compound, the molecules are linked via N $\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds with an $R_{2}{ }^{2}(12)$ motif and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with a $C(4)$ motif into a layered structure (Table 1, Fig. 2).

S2. Experimental

3-Acetyl-1-(3-methylphenyl)thiourea was synthesized by adding a solution of acetyl chloride (0.10 mol) in acetone (30 $\mathrm{ml})$ dropwise to a suspension of ammonium thiocyanate $(0.10 \mathrm{~mol})$ in acetone $(30 \mathrm{ml})$. The reaction mixture was refluxed for 30 min . After cooling to room temperature, a solution of 3-methylaniline (0.10 mol) in acetone (10 ml) was added and refluxed for 3 h . The reaction mixture was poured into acidified cold water. The precipitated title compound was recrystallized to constant melting point from acetonitrile. The purity of the compound was checked and characterized by its infrared spectrum. The characteristic absorptions observed are $3163.7 \mathrm{~cm}^{-1}, 1690.0 \mathrm{~cm}^{-1}, 1269.5 \mathrm{~cm}^{-1}$ and $693.3 \mathrm{~cm}^{-1}$ for the stretching bands of $\mathrm{N}-\mathrm{H}, \mathrm{C}=\mathrm{O}, \mathrm{C}-\mathrm{N}$ and $\mathrm{C}=\mathrm{S}$, respectively.
Prism like yellow single crystals used in X-ray diffraction studies were grown in acetonitrile solution by slow evaporation of the solvent at room temperature.

S3. Refinement

H atoms bonded to C were positioned with idealized geometry using a riding model with the aromatic $\mathrm{C}-\mathrm{H}=0.93 \AA$, methyl $\mathrm{C}-\mathrm{H}=0.96 \AA$. The amino H atoms were freely refined with the $\mathrm{N}-\mathrm{H}$ distances restrained to 0.86 (2) \AA. All H atoms were refined with isotropic displacement parameters set at $1.2 U_{\text {eq }}(\mathrm{C}$-aromatic, N$)$ and $1.5 U_{\text {eq }}(C$-methyl) of the
parent atom.
The S atom is disordered and was refined using a split model. The corresponding s.o.f.'s were refined so that their sum was unity: 0.56 (4) and 0.44 .

Figure 1
Molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. Only major moiety (S1A) are presented.

Figure 2
Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

3-Acetyl-1-(3-methylphenyl)thiourea

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OS}$
$M_{r}=208.29$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=7.6841$ (9) \AA
$b=14.943$ (1) \AA
$c=9.5358$ (9) \AA
$\beta=107.49(1)^{\circ}$
$V=1044.32(18) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& F(000)=440 \\
& D_{\mathrm{x}}=1.325 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 1948 \text { reflections } \\
& \theta=2.6-27.9^{\circ} \\
& \mu=0.28 \mathrm{~mm}^{-1} \\
& T=295 \mathrm{~K} \\
& \text { Prism, yellow } \\
& 0.48 \times 0.44 \times 0.24 \mathrm{~mm}
\end{aligned}
$$

Data collection

Oxford Diffraction Xcalibur Sapphire CCD. diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Rotation method data acquisition using ω and φ scans
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
$T_{\min }=0.878, T_{\text {max }}=0.936$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.100$
$S=1.06$
2137 reflections
145 parameters
2 restraints
Primary atom site location: structure-invariant
direct methods

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
C1	$0.20722(18)$	$1.01499(9)$	$0.39974(15)$	$0.0337(3)$	

C2	$0.23877(19)$	$1.03395(10)$
H2	0.3113	0.9953
C3	$0.1649(2)$	$1.10903(10)$
C4	$0.0590(2)$	$1.16622(11)$
H4	0.0085	1.2171
C5	$0.0282(2)$	$1.14793(11)$
H5	-0.0429	1.1871
C6	$0.1008(2)$	$1.07243(10)$
H6	0.0785	1.0607
C7	$0.30263(18)$	$0.89953(9)$
C8	$0.4388(2)$	$0.76042(10)$
C9	$0.5236(3)$	$0.67388(11)$
H9A	0.6484	0.6724
H9B	0.5190	0.6685
H9C	0.4580	0.6251
C10	$0.1971(2)$	$1.12586(13)$
H10A	0.2948	1.0885
H10B	0.0880	1.1123
H10C	0.2289	1.1875
N1	$0.28202(17)$	$0.93305(8)$
H1N	$0.323(2)$	$0.8973(10)$
N2	$0.37949(17)$	$0.81347(8)$
H2N	$0.391(2)$	$0.7951(11)$
O1	$0.42351(17)$	$0.78202(7)$
S1A	$0.2654(12)$	$0.9501(3)$
S1B	$0.234(2)$	$0.9416(8)$

$0.54780(17)$	$0.0364(3)$
0.6178	0.044^{*}
$0.59419(18)$	$0.0413(4)$
$0.4881(2)$	$0.0494(4)$
0.5163	0.059^{*}
$0.3408(2)$	$0.0506(4)$
0.2710	0.061^{*}
$0.29439(18)$	$0.0428(4)$
0.1948	0.051^{*}
$0.24567(15)$	$0.0334(3)$
$0.38195(15)$	$0.0361(3)$
$0.35913(18)$	$0.0520(4)$
0.4198	0.078^{*}
0.2577	0.078^{*}
0.3851	0.078^{*}
$0.7555(2)$	$0.0539(4)$
0.8117	0.081^{*}
0.7807	0.081^{*}
0.7772	0.081^{*}
$0.36952(13)$	$0.0354(3)$
$0.4440(16)$	0.042^{*}
$0.26055(13)$	$0.0344(3)$
$0.1792(16)$	0.041^{*}
$0.50180(11)$	$0.0483(3)$
$0.0852(7)$	$0.0498(10)$
$0.0776(9)$	$0.0656(16)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0337(7)$	$0.0314(7)$	$0.0377(8)$	$-0.0023(6)$	$0.0131(6)$	$-0.0005(6)$
C2	$0.0353(7)$	$0.0366(8)$	$0.0373(7)$	$-0.0019(6)$	$0.0106(6)$	$-0.0014(6)$
C3	$0.0392(8)$	$0.0389(8)$	$0.0495(9)$	$-0.0076(6)$	$0.0191(7)$	$-0.0089(7)$
C4	$0.0506(9)$	$0.0353(8)$	$0.0676(11)$	$0.0024(7)$	$0.0256(8)$	$-0.0049(8)$
C5	$0.0517(9)$	$0.0398(9)$	$0.0612(11)$	$0.0092(7)$	$0.0182(8)$	$0.0120(8)$
C6	$0.0461(8)$	$0.0421(8)$	$0.0402(8)$	$0.0039(7)$	$0.0129(7)$	$0.0052(7)$
C7	$0.0344(7)$	$0.0363(7)$	$0.0299(7)$	$-0.0020(6)$	$0.0103(5)$	$0.0014(6)$
C8	$0.0471(8)$	$0.0337(7)$	$0.0297(7)$	$-0.0007(6)$	$0.0150(6)$	$0.0016(6)$
C9	$0.0795(12)$	$0.0421(9)$	$0.0397(9)$	$0.0143(8)$	$0.0256(8)$	$0.0051(7)$
C10	$0.0549(10)$	$0.0569(11)$	$0.0547(10)$	$-0.0057(8)$	$0.0238(8)$	$-0.0196(8)$
N1	$0.0451(7)$	$0.0337(6)$	$0.0273(6)$	$0.0047(5)$	$0.0108(5)$	$0.0027(5)$
N2	$0.0456(7)$	$0.0344(6)$	$0.0254(6)$	$0.0008(5)$	$0.0140(5)$	$-0.0008(5)$
O1	$0.0791(8)$	$0.0417(6)$	$0.0292(6)$	$0.0119(5)$	$0.0242(5)$	$0.0047(4)$
S1A	$0.078(2)$	$0.043(2)$	$0.0358(14)$	$0.0165(11)$	$0.0274(16)$	$0.0155(6)$
S1B	$0.076(3)$	$0.091(4)$	$0.0285(11)$	$0.031(2)$	$0.0134(15)$	$0.0141(17)$

Geometric parameters (A, ${ }^{\circ}$)

C1-C6	1.386 (2)	C7-S1A	1.653 (5)
C1-C2	1.388 (2)	C7-S1B	1.654 (7)
$\mathrm{C} 1-\mathrm{N} 1$	1.4186 (18)	C8-O1	1.2268 (17)
C2-C3	1.388 (2)	C8-N2	1.3636 (18)
$\mathrm{C} 2-\mathrm{H} 2$	0.9300	C8-C9	1.493 (2)
C3-C4	1.386 (2)	C9-H9A	0.9600
C3-C10	1.504 (2)	C9-H9B	0.9600
C4-C5	1.379 (3)	C9-H9C	0.9600
C4-H4	0.9300	C10-H10A	0.9600
C5-C6	1.389 (2)	C10-H10B	0.9600
C5-H5	0.9300	C10-H10C	0.9600
C6-H6	0.9300	N1-H1N	0.868 (13)
C7-N1	1.3354 (18)	N2—H2N	0.853 (14)
C7-N2	1.4044 (19)		
C6- $\mathrm{C} 1-\mathrm{C} 2$	119.71 (14)	S1A-C7-S1B	9.2 (7)
C6- $\mathrm{C} 1-\mathrm{N} 1$	125.04 (13)	O1-C8-N2	122.46 (13)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	115.17 (13)	O1-C8-C9	122.14 (13)
C3-C2-C1	121.73 (14)	N2-C8-C9	115.40 (13)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.1	C8-C9-H9A	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.1	C8-C9-H9B	109.5
C4-C3-C2	118.18 (15)	H9A-C9-H9B	109.5
C4-C3-C10	121.56 (15)	C8-C9- H 9 C	109.5
C2-C3-C10	120.25 (15)	H9A-C9-H9C	109.5
C5-C4-C3	120.29 (15)	H9B-C9-H9C	109.5
C5-C4-H4	119.9	C3-C10-H10A	109.5
C3-C4-H4	119.9	C3-C10-H10B	109.5
C4-C5-C6	121.54 (16)	H10A-C10-H10B	109.5
C4-C5-H5	119.2	C3-C10-H10C	109.5
C6-C5-H5	119.2	H10A-C10-H10C	109.5
C1-C6-C5	118.55 (15)	H10B-C10-H10C	109.5
C1-C6-H6	120.7	C7-N1-C1	131.79 (12)
C5-C6-H6	120.7	C7-N1-H1N	112.6 (11)
N1-C7-N2	114.34 (12)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	115.7 (11)
N1-C7-S1A	127.9 (2)	C8-N2-C7	129.89 (12)
N2-C7-S1A	117.58 (19)	$\mathrm{C} 8-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	119.0 (11)
N1-C7-S1B	128.8 (3)	$\mathrm{C} 7-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	111.0 (11)
N2-C7-S1B	116.6 (3)		
C6- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	0.6 (2)	N2-C7-N1-C1	-178.23 (13)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-176.12 (12)	S1A-C7-N1-C1	7.4 (5)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-0.8 (2)	S1B-C7-N1-C1	-4.2 (10)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 10$	178.03 (14)	C6- $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7$	14.7 (2)
C2-C3-C4-C5	0.3 (2)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7$	-168.76 (14)
C10-C3-C4-C5	-178.41 (16)	$\mathrm{O} 1-\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 7$	3.5 (2)
C3-C4-C5-C6	0.2 (3)	C9-C8-N2-C7	-176.63 (14)

$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-0.1(2)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 8$	$-1.4(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$176.32(14)$	$\mathrm{S} 1 \mathrm{~A}-\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 8$	$173.5(4)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$-0.3(2)$	$\mathrm{S} 1 \mathrm{~B}-\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 8$	$-176.3(8)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 N \cdots \mathrm{O} 1$	$0.87(1)$	$1.90(2)$	$2.6536(16)$	$144(2)$
$\mathrm{N} 2 — \mathrm{H} 2 N \cdots 1^{\mathrm{i}}$	$0.85(1)$	$2.12(1)$	$2.9564(16)$	$166(2)$

Symmetry code: (i) $x,-y+3 / 2, z-1 / 2$.

