Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3-Acetyl-1-(2,6-dimethylphenyl)thiourea

Sharatha Kumar, ${ }^{\text {a }}$ Sabine Foro ${ }^{\text {b }}$ and B. Thimme Gowda ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and ${ }^{\mathbf{b}}$ Institute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
Correspondence e-mail: gowdabt@yahoo.com

Received 12 June 2012; accepted 27 June 2012

Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.041 ; w R$ factor $=0.115$; data-to-parameter ratio $=16.3$.

In the title compound, $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OS}$, the two $\mathrm{N}-\mathrm{H}$ bonds are anti to each other and one of them is anti to the $\mathrm{C}=\mathrm{S}$ and the other is syn. Further, the amide $\mathrm{C}=\mathrm{S}$ and the $\mathrm{C}=\mathrm{O}$ groups are anti to each other. The dihedral angle between the benzene ring and the side chain is 83.74 (5) ${ }^{\circ}$. An intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond occurs. In the crystal, molecules are linked into inversion dimers by pairs of $\mathrm{N}-$ H...S interactions.

Related literature

For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Gowda et al. (2006); Shahwar et al. (2012), of N-(aryl)-methanesulfonamides, see: Gowda et al. (2007) and of N-chloroarylsulfonamides, see: Gowda et al. (2005); Shetty \& Gowda (2004).
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.26 \mathrm{~mm}^{-1}$
Data collection
Oxford Diffraction Xcalibur Sapphire CCD diffractometer
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)
$T_{\text {min }}=0.928, T_{\text {max }}=0.980$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.115$
$S=1.06$
2362 reflections
145 parameters
2 restraints
$T=295 \mathrm{~K}$
$0.30 \times 0.20 \times 0.08 \mathrm{~mm}$

independent and constrained

 refinement$\Delta \rho_{\text {max }}=0.21 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.31 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{O} 1$	$0.84(2)$	$1.97(2)$	$2.658(2)$	$138(2)$
$\mathrm{N} 2-\mathrm{H} 2 N \cdots \mathrm{~S} 1^{\mathrm{i}}$	$0.85(2)$	$2.58(2)$	$3.4012(16)$	$164(2)$

Symmetry code: (i) $-x,-y+1,-z+1$.
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under the UGCBSR one-time grant to faculty.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2369).

References

Gowda, B. T., Damodara, N. \& Jyothi, K. (2005). Int. J. Chem. Kinet. 37, 572582.

Gowda, B. T., Foro, S. \& Fuess, H. (2007). Acta Cryst. E63, o2570.
Gowda, B. T., Kožíšek, J. \& Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 588594.

Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
Shahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. \& Raza, M. A. (2012). Acta Cryst. E68, o1160.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shetty, M. \& Gowda, B. T. (2004). Z. Naturforsch. Teil B, 59, 63-72.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2012). E68, o2306 [https://doi.org/10.1107/S1600536812029248]

3-Acetyl-1-(2,6-dimethylphenyl)thiourea

Sharatha Kumar, Sabine Foro and B. Thimme Gowda

S1. Comment

Thiourea and its derivatives are widely used as precursors or intermediates in synthetic organic chemistry. They exhibit a wide variety of biological activities. As part of our studies on the substituent effects on the structures and other aspects of N -(aryl)-amides (Gowda et al., 2006; Shahwar et al., 2012); N -(aryl)-methanesulfonamides (Gowda et al., 2007) and N chloroarylsulfonamides (Gowda et al., 2005; Shetty \& Gowda, 2004), in the present work, the crystal structure of 3-acetyl-1-(2,6-dimethylphenyl)thiourea has been determined (Fig. 1).
The conformation of the two $\mathrm{N}-\mathrm{H}$ bonds are anti to each other, and one of them is anti to the $\mathrm{C}=\mathrm{S}$ and the other is syn in the urea moiety. Furthermore, the conformations of the amide $\mathrm{C}=\mathrm{S}$ and the $\mathrm{C}=\mathrm{O}$ are anti to each other, similar to the anti conformation observed in 3-acetyl-1-(2-methylphenyl)thiourea (Shahwar et al., 2012).

The side chain is oriented itself with respect to the phenyl ring with the torsion angles of C2-C1-N1-C7 = 94.77 (22) ${ }^{\circ}$ and C6-C1-N1-C7 $=-87.11(23)^{\circ}$. The dihedral angle between the phenyl ring and the side chain is $83.74(5)^{\circ}$.

The structure shows intramolecular hydrogen bonding between the hydrogen atom of the NH attached to the phenyl ring and the amide oxygen. In the crystal, the molecules form inversion type dimers through $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ intermolecular classical hydrogen bonds (Table 1, Fig. 2).

S2. Experimental

The 3-acetyl-1-(2,6-dimethylphenyl)-thiourea was synthesized by adding a solution of acetyl chloride (0.10 mol) in acetone (30 ml) dropwise to a suspension of ammonium thiocyanate (0.10 mol) in acetone (30 ml). The reaction mixture was refluxed for 30 min . After cooling to room temperature, a solution of 2,6-dimethylaniline (0.10 mol) in acetone (10 ml) was added and refluxed for 3 h . The reaction mixture was poured into acidified cold water. The precipitated title compound was recrystallized to constant melting point from acetonitrile. The purity of the compound was checked and characterized by its IR spectrum. The characteristic absorptions observed are $3156.1 \mathrm{~cm}^{-1}, 1698.1 \mathrm{~cm}^{-1}, 1365.7 \mathrm{~cm}^{-1}$ and $710.4 \mathrm{~cm}^{-1}$ for the stretching bands of $-\mathrm{N}-\mathrm{H},-\mathrm{C}=\mathrm{O},-\mathrm{C}-\mathrm{N}-$ and $-\mathrm{C}=\mathrm{S}$, respectively.

Prism like light yellow single crystals used in X-ray diffraction studies were grown in acetonitrile solution by slow evaporation of the solvent at room temperature.

S3. Refinement

The amino H atoms were freely refined with the $\mathrm{N}-\mathrm{H}$ distances restrained to 0.86 (2) $\AA . \mathrm{H}$ atoms bonded to C were positioned with idealized geometry using a riding model with the aromatic $\mathrm{C}-\mathrm{H}=0.93 \AA$, methyl $\mathrm{C}-\mathrm{H}=0.96 \AA$. All H atoms were refined with isotropic displacement parameters set at $1.2 U_{\text {eq }}(\mathrm{C}$-aromatic, N$)$ and $1.5 U_{\mathrm{eq}}(C$-methyl $)$ of the parent atom.

Figure 1
Molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atom are presented as a small spheres of arbitrary radius.

Figure 2
Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

3-Acetyl-1-(2,6-dimethylphenyl)thiourea

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OS}$
$M_{r}=222.31$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=8.008$ (1) \AA
$b=8.211$ (1) \AA
$c=10.037$ (1) \AA
$\alpha=89.39(1)^{\circ}$
$\beta=77.65(1)^{\circ}$
$\gamma=64.71(1)^{\circ}$
$V=580.47(13) \AA^{3}$
$Z=2$
$F(000)=236$
$D_{\mathrm{x}}=1.272 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1747 reflections
$\theta=2.8-27.6^{\circ}$
$\mu=0.26 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Prism, light yellow
$0.30 \times 0.20 \times 0.08 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur Sapphire CCD diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Rotation method data acquisition using ω and φ scans
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
$T_{\min }=0.928, T_{\text {max }}=0.980$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.115$
$S=1.06$
2362 reflections
145 parameters
2 restraints
Primary atom site location: structure-invariant direct methods

> 3904 measured reflections
> 2362 independent reflections
> 1858 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.012$
> $\theta_{\max }=26.4^{\circ}, \theta_{\min }=2.8^{\circ}$
> $h=-9 \rightarrow 6$
> $k=-10 \rightarrow 10$
> $l=-12 \rightarrow 9$

```
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from
neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
\[
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0515 P)^{2}+0.2097 P\right]
\]
\[
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3
\]
\((\Delta / \sigma)_{\text {max }}=0.016\)
\(\Delta \rho_{\text {max }}=0.21\) e \(\AA^{-3}\)
\(\Delta \rho_{\text {min }}=-0.31 \mathrm{e} \AA^{-3}\)
```


Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.0904(2)$	$0.0786(2)$	$0.13742(17)$	$0.0388(4)$
C2	$0.1028(3)$	$-0.0846(3)$	$0.1866(2)$	$0.0467(5)$
C3	$0.2402(3)$	$-0.2433(3)$	$0.1110(2)$	$0.0583(6)$
H3	0.2520	-0.3542	0.1415	0.070^{*}
C4	$0.3592(3)$	$-0.2388(3)$	$-0.0087(2)$	$0.0605(6)$
H4	0.4507	-0.3463	-0.0584	0.073^{*}
C5	$0.3434(3)$	$-0.0761(3)$	$-0.0552(2)$	$0.0553(6)$
H5	0.4246	-0.0751	-0.1364	0.066^{*}
C6	$0.2081(3)$	$0.0875(3)$	$0.01660(19)$	$0.0441(4)$
C7	$-0.0262(2)$	$0.3365(2)$	$0.30688(17)$	$0.0401(4)$
C8	$-0.3639(3)$	$0.5655(3)$	$0.35392(19)$	$0.0476(5)$
C9	$-0.4949(3)$	$0.7457(3)$	$0.4319(3)$	$0.0671(7)$
H9A	-0.4325	0.8237	0.4212	0.080^{*}
H9B	-0.5285	0.7297	0.5272	0.080^{*}
H9C	-0.6077	0.7989	0.3972	0.080^{*}

C10	$-0.0265(4)$	$-0.0907(4)$	$0.3167(3)$	$0.0736(7)$
H10A	-0.1540	-0.0437	0.3048	0.088^{*}
H10B	-0.0218	-0.0189	0.3894	0.088^{*}
H10C	0.0136	-0.2135	0.3393	0.088^{*}
C11	$0.1920(3)$	$0.2635(3)$	$-0.0344(2)$	$0.0621(6)$
H11A	0.1901	0.3396	0.0385	0.075^{*}
H11B	0.0768	0.3217	-0.0656	0.075^{*}
H11C	0.2987	0.2425	-0.1087	0.075^{*}
N1	$-0.0546(2)$	$0.2439(2)$	$0.21360(16)$	$0.0434(4)$
H1N	$-0.166(2)$	$0.286(3)$	$0.203(2)$	0.052^{*}
N2	$-0.1819(2)$	$0.4932(2)$	$0.37213(16)$	$0.0446(4)$
H2N	$-0.158(3)$	$0.546(3)$	$0.4329(19)$	0.054^{*}
O1	$-0.4147(2)$	$0.4896(2)$	$0.27946(18)$	$0.0697(5)$
S1	$0.18238(7)$	$0.27758(8)$	$0.34744(6)$	$0.0605(2)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0349(9)$	$0.0356(9)$	$0.0395(9)$	$-0.0070(7)$	$-0.0135(7)$	$-0.0102(7)$
C2	$0.0511(11)$	$0.0436(11)$	$0.0458(10)$	$-0.0171(9)$	$-0.0189(8)$	$-0.0028(8)$
C3	$0.0619(13)$	$0.0365(11)$	$0.0731(14)$	$-0.0107(10)$	$-0.0315(12)$	$-0.0045(10)$
C4	$0.0471(11)$	$0.0438(12)$	$0.0716(15)$	$0.0030(9)$	$-0.0233(11)$	$-0.0238(10)$
C5	$0.0383(10)$	$0.0656(14)$	$0.0449(11)$	$-0.0080(9)$	$-0.0061(8)$	$-0.0163(10)$
C6	$0.0399(9)$	$0.0452(10)$	$0.0420(10)$	$-0.0120(8)$	$-0.0129(8)$	$-0.0060(8)$
C7	$0.0387(9)$	$0.0384(9)$	$0.0366(9)$	$-0.0122(8)$	$-0.0048(7)$	$-0.0075(7)$
C8	$0.0425(10)$	$0.0437(11)$	$0.0444(10)$	$-0.0086(8)$	$-0.0068(8)$	$-0.0076(8)$
C9	$0.0521(12)$	$0.0519(13)$	$0.0708(15)$	$0.0008(10)$	$-0.0109(11)$	$-0.0173(11)$
C10	$0.0924(19)$	$0.0756(17)$	$0.0596(14)$	$-0.0442(15)$	$-0.0147(13)$	$0.0097(12)$
C11	$0.0633(14)$	$0.0621(14)$	$0.0605(13)$	$-0.0273(11)$	$-0.0133(11)$	$0.0067(11)$
N1	$0.0352(8)$	$0.0397(9)$	$0.0463(9)$	$-0.0069(7)$	$-0.0106(7)$	$-0.0145(7)$
N2	$0.0404(8)$	$0.0405(8)$	$0.0437(9)$	$-0.0100(7)$	$-0.0068(7)$	$-0.0148(7)$
O1	$0.0475(8)$	$0.0647(10)$	$0.0810(11)$	$-0.0048(7)$	$-0.0238(8)$	$-0.0261(8)$
S1	$0.0389(3)$	$0.0689(4)$	$0.0590(3)$	$-0.0087(2)$	$-0.0118(2)$	$-0.0315(3)$

Geometric parameters $\left(A,{ }^{\circ}\right)$

$\mathrm{C} 1-\mathrm{C} 6$	$1.390(3)$	$\mathrm{C} 8-\mathrm{O} 1$	$1.212(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.394(3)$	$\mathrm{C} 8-\mathrm{N} 2$	$1.372(3)$
$\mathrm{C} 1-\mathrm{N} 1$	$1.439(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.500(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.387(3)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	0.9600
$\mathrm{C} 2-\mathrm{C} 10$	$1.498(3)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	0.9600
$\mathrm{C} 3-\mathrm{C} 4$	$1.376(3)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{C}$	0.9600
$\mathrm{C} 3-\mathrm{H} 3$	0.9300	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	0.9600
$\mathrm{C} 4-\mathrm{C} 5$	$1.373(3)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	0.9600
$\mathrm{C} 4-\mathrm{H} 4$	0.9300	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	0.9600
$\mathrm{C} 5-\mathrm{C} 6$	$1.393(3)$	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	0.9600
$\mathrm{C} 5-\mathrm{H} 5$	0.9300	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	0.9600
$\mathrm{C} 6-\mathrm{C} 11$	$1.490(3)$	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{C}$	0.9600

C7-N1	1.327 (2)
C7-N2	1.392 (2)
C7-S1	1.6694 (19)
C6-C1-C2	122.75 (16)
C6- $\mathrm{C} 1-\mathrm{N} 1$	119.14 (17)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	118.08 (16)
C3-C2-C1	117.73 (19)
C3-C2-C10	120.5 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 10$	121.76 (18)
C4-C3-C2	120.8 (2)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.6
C2-C3-H3	119.6
C5-C4-C3	120.25 (18)
C5-C4-H4	119.9
C3-C4-H4	119.9
C4-C5-C6	121.4 (2)
C4-C5-H5	119.3
C6-C5-H5	119.3
C1-C6-C5	117.06 (19)
C1-C6-C11	121.87 (17)
C5-C6-C11	121.07 (19)
N1-C7-N2	116.66 (16)
N1-C7-S1	124.10 (13)
N2-C7-S1	119.24 (13)
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{N} 2$	122.32 (17)
O1-C8-C9	122.46 (19)
N2-C8-C9	115.22 (18)
C6-C1-C2-C3	0.5 (3)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	178.56 (16)
C6-C1-C2-C10	-179.58 (19)
N1-C1-C2-C10	-1.5 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-0.2 (3)
C10-C2-C3-C4	179.9 (2)
C2-C3-C4-C5	-0.1 (3)
C3-C4-C5-C6	0.1 (3)
C2-C1-C6-C5	-0.5 (3)
N1-C1-C6-C5	-178.51 (15)
C2-C1-C6-C11	179.82 (18)

$$
\begin{aligned}
& \mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} \\
& \mathrm{~N} 2-\mathrm{H} 2 \mathrm{~N}
\end{aligned}
$$

$$
\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}
$$

$$
\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}
$$

H9A-C9—H9B

$$
\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9 \mathrm{C}
$$

$$
\mathrm{H} 9 \mathrm{~A}-\mathrm{C} 9-\mathrm{H} 9 \mathrm{C}
$$

$$
\begin{array}{ll}
\mathrm{H} 9 \mathrm{~B}-\mathrm{C} 9-\mathrm{H} 9 \mathrm{C} & 109.5 \\
\mathrm{C} 2-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A} & 109.5
\end{array}
$$

$$
\mathrm{C} 2-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A} \quad 109.5
$$

$$
\mathrm{C} 2-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B} \quad 109.5
$$

$$
\mathrm{H} 10 \mathrm{~A}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B} \quad 109.5
$$

$$
\begin{array}{ll}
\mathrm{C} 2-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C} & 109.5
\end{array}
$$

$$
\mathrm{H} 10 \mathrm{~A}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C} \quad 109.5
$$

$$
\mathrm{H} 10 \mathrm{~B}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C} \quad 109.5
$$

$$
\mathrm{C} 6-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A} \quad 109.5
$$

$$
\mathrm{C} 6-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B} \quad 109.5
$$

$$
\mathrm{H} 11 \mathrm{~A}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B} \quad 109.5
$$

$$
\mathrm{C} 6-\mathrm{C} 11-\mathrm{H} 11 \mathrm{C} \quad 109.5
$$

$$
\mathrm{H} 11 \mathrm{~A}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{C}
$$

$$
\mathrm{H} 11 \mathrm{~B}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{C} \quad 109.5
$$

$$
\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1 \quad 123.82(15)
$$

$$
\mathrm{C} 7-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}
$$

$$
\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}
$$

$$
\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 7
$$

$$
\mathrm{C} 8-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}
$$

$$
\mathrm{C} 7-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}
$$

$$
\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 11
$$

$$
\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1
$$

$$
\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 11
$$

$$
\mathrm{N} 2-\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1
$$

$$
\mathrm{S} 1-\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1
$$

$$
\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7
$$

$$
\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7
$$

$$
\mathrm{O} 1-\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 7
$$

$$
\mathrm{C} 9-\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 7
$$

$$
\mathrm{N} 1-\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 8
$$

$$
\mathrm{S} 1-\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 8
$$

0.839 (15)
0.848 (15)
109.5
109.5
109.5
109.5
109.5
128.57 (16)
118.1 (15)
113.3 (15)
1.8 (3)
0.2 (3)
179.9 (2)
-179.56 (17)
1.3 (3)
-87.1 (2)
94.8 (2)
4.7 (3)
-174.9 (2)
0.6 (3)
179.79 (17)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 N \cdots \mathrm{O} 1$	$0.84(2)$	$1.97(2)$	$2.658(2)$	$138(2)$
$\mathrm{N} 2 — \mathrm{H} 2 N \cdots \mathrm{~S} 1^{\mathrm{i}}$	$0.85(2)$	$2.58(2)$	$3.4012(16)$	$164(2)$

Symmetry code: (i) $-x,-y+1,-z+1$.

