

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[diaqua(μ_5 -1*H*-imidazole-4,5-dicarboxylato)(μ_4 -1*H*-imidazole-4,5-dicarboxylato)trisilver(I)ytterbium(III)]

Si-Ming Zhu

School of Light Industry and Food Science, South China University of Technology, Guangzhou 510641, People's Republic of China Correspondence e-mail: simingzhu76@yahoo.com.cn

Received 6 June 2012; accepted 10 July 2012

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.007 Å; *R* factor = 0.024; *wR* factor = 0.055; data-to-parameter ratio = 10.5.

The asymmetric unit of the title compound, [Ag₃Yb(C₅H- $N_2O_4)_2(H_2O)_2]_n$, contains three Ag^I ions, one Yb^{III} ion, two imidazole-4,5-dicarboxylate ligands and two coordinating water molecules. The Yb^{III} atom is eight-coordinated, in a bicapped trigonal prismatic coordination geometry, by six O atoms from three imidazole-4,5-dicarboxylate ligands and two coordinating water molecules. The two-coordinated Ag^I ions exhibit three types of coordination environments. One Ag^I atom is bonded to two N atoms from two different imidazole-4,5-dicarboxylate ligands. The other two Ag^I atoms are each coordinated by one O atom and one N atom from two different imidazole-4,5-dicarboxylate ligands. These metal coordination units are connected by bridging imidazole-4,5dicarboxylate ligands, generating a two-dimensional heterometallic layer. These layers are stacked along the a axis via $O-H\cdots O$ hydrogen-bonding interactions to generate a three-dimensional framework.

Related literature

For the application of lanthanide–transition metal heterometallic complexes with bridging multifunctional organic ligands, see: Cheng *et al.* (2006); Kuang *et al.* (2007); Sun *et al.* (2006); Zhu *et al.* (2010). V = 3093.5 (3) Å³

Mo $K\alpha$ radiation

 $0.20 \times 0.18 \times 0.17~\mathrm{mm}$

7613 measured reflections

2794 independent reflections

2629 reflections with $I > 2\sigma(I)$

 $\mu = 9.80 \text{ mm}^{-1}$

T = 295 K

 $R_{\rm int} = 0.026$

Z = 8

Experimental

Crystal data

$$\begin{split} & [\mathrm{Ag}_3\mathrm{Yb}(\mathrm{C}_5\mathrm{HN}_2\mathrm{O}_4)_2(\mathrm{H}_2\mathrm{O})_2] \\ & M_r = 838.84 \\ & \mathrm{Monoclinic}, \ C2/c \\ & a = 12.6850 \ (7) \ \mathrm{\mathring{A}} \\ & b = 8.6643 \ (5) \ \mathrm{\mathring{A}} \\ & c = 28.4015 \ (16) \ \mathrm{\mathring{A}} \\ & \beta = 97.686 \ (1)^\circ \end{split}$$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan

(SADABS; Sheldrick, 1996) $T_{min} = 0.162, T_{max} = 0.189$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.024$	H atoms treated by a mixture of
$wR(F^2) = 0.055$	independent and constrained
S = 1.19	refinement
2794 reflections	$\Delta \rho_{\rm max} = 0.58 \text{ e } \text{\AA}^{-3}$
265 parameters	$\Delta \rho_{\rm min} = -1.29 \text{ e } \text{\AA}^{-3}$
4 restraints	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$D1W-H1W\cdots O8^{i}$ $D1W-H2W\cdots O2^{ii}$ $D2W-H4W\cdots O1^{iii}$	0.82 (2) 0.81 (2) 0.81 (2)	2.11 (5) 2.03 (3) 1.88 (4)	2.751 (5) 2.823 (5) 2.634 (5)	136 (6) 165 (6) 154 (8)
Symmetry codes: -x, -y + 1, -z + 1.	(i) $x + \frac{1}{2}, y + \frac{1}{2},$	$\frac{1}{2}, z;$ (ii)	$-x + \frac{1}{2}, -y + \frac{1}{2},$	-z + 1; (iii)

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics:

metal-organic compounds

SHELXTL (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Fundamental Research Funds for the Central Universities of South China University of Technology (grant No. 2012ZM0072).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2366).

References

- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73–77.
- Kuang, D.-Z., Feng, Y.-L., Peng, Y.-L. & Deng, Y.-F. (2007). Acta Cryst. E63, m2526-m2527.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sun, Y.-Q., Zhang, J. & Yang, G.-Y. (2006). Chem. Commun. pp. 4700-4702.
- Zhu, L.-C., Zhao, Y., Yu, S.-J. & Zhao, M.-M. (2010). *Inorg. Chem. Commun.* **13**, 1299–1303.

supporting information

Acta Cryst. (2012). E68, m1073–m1074 [https://doi.org/10.1107/S1600536812031303] Poly[diaqua(μ_5 -1*H*-imidazole-4,5-dicarboxylato)(μ_4 -1*H*-imidazole-4,5-dicarboxylato)trisilver(I)ytterbium(III)]

Si-Ming Zhu

S1. Comment

In the past few years, lanthanide-transition metal heterometallic complexs with bridging multifunctionnal organic ligands are of increasing interest, not only because of their impressive topological structures, but also due to their versatile applications in ion exchange, magnetism, bimetallic catalysis and luminescent probe (Cheng *et al.*, 2006; Kuang *et al.*, 2007; Sun *et al.*, 2006; Zhu *et al.*, 2010). As an extension of this research, the structure of the title compound, a new heterometallic coordination polymer, has been determined which is presented in this artcle.

The asymmetric unit of the title compound (Fig. 1), contains three Ag¹ ions, one Yb^{III} ion, two imidazole-4,5-dicarboxylate ligands, and two coordinated water molecules. The Yb^{III} are eight-coordinated, in a bicapped trigonal prismatic coordination geometry, by six O atoms from three imidazole-4,5-dicarboxylate ligands and two coordinated water molecules. The two-coordinated Ag¹ ions exhibit three types of coordination environment. One Ag¹ ion is linear bonded to two N atoms from two different imidazole-4,5-dicarboxylate ligands with N2^{iv}-Ag3-N3 angle 176.23 (17)°. The other two Ag¹ ions are coordinated in a bow-like conformation each by one O atom and one N atom from two different imidazole-4,5-dicarboxylate ligands with N-Ag-O angle 157.45 (14)° and 159.80 (14)°, respectively. These metal coordination units are connected by bridging imidazole-4,5-dicarboxylate ligands, generating a two-dimensional heterometallic layer. The two-dimensional layers are stacked along *a* axis *via* O–H…O hydrogen-bonding interactions to generate the three-dimensional framework (Table 1 and Fig. 2). Symmetry code: (iv) -*x*, *y*, -*z*+3/2.

S2. Experimental

A mixture of AgNO₃ (0.102 g, 0.6 mmol), Yb₂O₃ (0.118 g, 0.3 mmol), imidazole-4,5-dicarboxylic acid (0.188 g, 1.2 mmol), H₂O (10 ml), and HClO₄ (0.385 mmol) was sealed in a 20 ml teflon-lined reaction vessel at 443 K for 5 days then slowly cooled to room temperature. The product was collected by filtration, washed with water and air-dried. Colourless block crystals suitable for X-ray analysis were obtained.

S3. Refinement

H atoms bonded to C atoms were positioned geometrically and refined as riding, with C-H = 0.93Å and $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms of water molecules were found from difference Fourier maps and refined isotropically with a restraint of O–H = 0.82Å and $U_{iso}(H) = 1.5U_{eq}(O)$.

Figure 1

The molecular structure showing the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius. Symmetry codes: (i) -*x*, -*y*, 1-*z*; (ii) *x*, 1+*y*, *z*; (iv) -*x*, *y*, 3/2-*z*.

Figure 2

A view of the three-dimensional structure of the title compound. The hydrogen bonding interactions showed as broken lines.

Poly[diaqua(μ_5 -1*H*-imidazole-4,5-dicarboxylato)(μ_4 -1*H*-imidazole-4,5-dicarboxylato)trisilver(I)ytterbium(III)]

F(000) = 3080

 $\theta = 2.9 - 28.1^{\circ}$

 $\mu = 9.80 \text{ mm}^{-1}$ T = 295 K

Block. colourless

 $0.20 \times 0.18 \times 0.17 \text{ mm}$

 $D_{\rm x} = 3.602 {\rm Mg} {\rm m}^{-3}$

Mo K α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4947 reflections

Crystal data

 $[Ag_{3}Yb(C_{5}HN_{2}O_{4})_{2}(H_{2}O)_{2}]$ $M_{r} = 838.84$ Monoclinic, C2/c Hall symbol: -C 2yc a = 12.6850 (7) Å b = 8.6643 (5) Å c = 28.4015 (16) Å $\beta = 97.686$ (1)° V = 3093.5 (3) Å³ Z = 8

Data collection

Bruker APEXII CCD	7613 measured reflections
diffractometer	2794 independent reflections
Radiation source: fine-focus sealed tube	2629 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.026$
φ and ω scan	$\theta_{\rm max} = 25.2^{\circ}, \ \theta_{\rm min} = 1.5^{\circ}$
Absorption correction: multi-scan	$h = -13 \rightarrow 15$
(SADABS; Sheldrick, 1996)	$k = -10 \rightarrow 8$
$T_{\min} = 0.162, \ T_{\max} = 0.189$	$l = -34 \rightarrow 34$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.024$	Hydrogen site location: inferred from
$wR(F^2) = 0.055$	neighbouring sites
<i>S</i> = 1.19	H atoms treated by a mixture of independent
2794 reflections	and constrained refinement
265 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0213P)^2 + 8.4063P]$
4 restraints	where $P = (F_0^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.58 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\min} = -1.29 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Yb1	0.062585 (17)	0.17662 (3)	0.534835 (7)	0.01157 (8)
Ag1	-0.08531 (4)	0.52086 (5)	0.638040 (16)	0.02463 (12)
Ag2	0.18074 (4)	0.78628 (5)	0.663984 (15)	0.02278 (12)

Ag3	-0.12303 (3)	0.14446 (5)	0.739965 (13)	0.02025 (11)
C1	0.1656 (4)	0.4861 (6)	0.59111 (17)	0.0128 (11)
C2	0.1594 (4)	0.4326 (6)	0.64091 (16)	0.0114 (10)
C3	0.1486 (4)	0.4663 (6)	0.71522 (17)	0.0163 (11)
H3	0.1434	0.5143	0.7441	0.020*
C4	0.1601 (4)	0.2898 (6)	0.66262 (17)	0.0119 (10)
C5	0.1733 (4)	0.1266 (6)	0.64641 (17)	0.0120 (11)
C6	-0.0760 (4)	0.1879 (6)	0.62733 (17)	0.0121 (11)
C7	-0.0744 (4)	0.0214 (6)	0.64145 (16)	0.0124 (11)
C8	-0.0872 (4)	-0.1680 (6)	0.68906 (18)	0.0173 (12)
H8	-0.0933	-0.2230	0.7167	0.021*
C9	-0.0685 (4)	-0.1163 (6)	0.61662 (17)	0.0114 (10)
C10	-0.0598 (4)	-0.1506 (6)	0.56693 (17)	0.0121 (11)
01	0.1765 (3)	0.6248 (4)	0.58442 (12)	0.0255 (10)
O2	0.1559 (3)	0.3874 (4)	0.55739 (12)	0.0172 (8)
O3	0.1588 (3)	0.0949 (4)	0.60304 (12)	0.0169 (8)
O4	0.1991 (3)	0.0300 (4)	0.67886 (12)	0.0196 (8)
05	-0.1075 (3)	0.2825 (4)	0.65620 (13)	0.0200 (8)
06	-0.0463 (3)	0.2298 (4)	0.58910 (12)	0.0171 (8)
07	-0.0256 (3)	-0.0485 (4)	0.54003 (11)	0.0164 (8)
08	-0.0893 (3)	-0.2776 (4)	0.54873 (12)	0.0193 (8)
N1	0.1517 (3)	0.5441 (5)	0.67471 (14)	0.0148 (9)
N2	0.1537 (4)	0.3137 (5)	0.71038 (14)	0.0149 (9)
N3	-0.0869 (3)	-0.0151 (5)	0.68748 (14)	0.0140 (9)
N4	-0.0780 (3)	-0.2366 (5)	0.64767 (14)	0.0142 (9)
O1W	0.2245 (3)	0.0680 (5)	0.51848 (13)	0.0221 (9)
H1W	0.275 (4)	0.079 (8)	0.5390 (17)	0.033*
H2W	0.249 (5)	0.075 (8)	0.4936 (13)	0.033*
O2W	-0.0917 (4)	0.2942 (6)	0.50178 (14)	0.0347 (11)
H4W	-0.130 (5)	0.298 (9)	0.4768 (15)	0.052*
H3W	-0.138 (5)	0.331 (8)	0.515 (3)	0.052*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Yb1	0.01795 (13)	0.01015 (13)	0.00699 (12)	-0.00344 (9)	0.00307 (8)	-0.00139 (8)
Ag1	0.0334 (3)	0.0086 (2)	0.0326 (3)	-0.00032 (18)	0.00726 (19)	0.00049 (18)
Ag2	0.0308 (3)	0.0085 (2)	0.0290 (2)	-0.00071 (17)	0.00390 (19)	-0.00148 (17)
Ag3	0.0304 (3)	0.0191 (2)	0.0125 (2)	0.00166 (18)	0.00737 (17)	-0.00609 (16)
C1	0.015 (3)	0.010 (3)	0.012 (2)	-0.003 (2)	-0.001 (2)	0.001 (2)
C2	0.015 (3)	0.011 (3)	0.008 (2)	0.001 (2)	0.0039 (19)	0.000 (2)
C3	0.027 (3)	0.015 (3)	0.008 (2)	0.002 (2)	0.007 (2)	-0.003 (2)
C4	0.020 (3)	0.008 (3)	0.009 (2)	-0.002 (2)	0.004 (2)	-0.0018 (19)
C5	0.010(2)	0.012 (3)	0.014 (3)	-0.002 (2)	0.0024 (19)	-0.001 (2)
C6	0.016 (3)	0.010 (3)	0.010(2)	-0.002 (2)	0.001 (2)	-0.001 (2)
C7	0.018 (3)	0.011 (3)	0.008 (2)	0.003 (2)	0.0023 (19)	-0.0003 (19)
C8	0.026 (3)	0.012 (3)	0.015 (3)	0.000 (2)	0.009 (2)	0.003 (2)
C9	0.012 (3)	0.008 (3)	0.015 (2)	-0.003 (2)	0.004 (2)	0.002 (2)

supporting information

C10	0.011 (3)	0.011 (3)	0.013 (2)	-0.001 (2)	-0.001 (2)	0.001 (2)
01	0.052 (3)	0.010 (2)	0.0124 (19)	-0.0062 (18)	-0.0007 (18)	0.0020 (15)
O2	0.030 (2)	0.014 (2)	0.0091 (17)	-0.0080 (16)	0.0047 (15)	-0.0025 (15)
O3	0.026 (2)	0.015 (2)	0.0093 (17)	0.0017 (16)	0.0018 (14)	-0.0024 (15)
O4	0.039 (2)	0.0067 (19)	0.0121 (18)	0.0035 (17)	0.0004 (16)	-0.0005 (15)
O5	0.035 (2)	0.009 (2)	0.0194 (19)	0.0001 (16)	0.0143 (17)	-0.0007 (16)
06	0.026 (2)	0.014 (2)	0.0124 (18)	-0.0004 (16)	0.0070 (15)	0.0023 (15)
O7	0.026 (2)	0.015 (2)	0.0091 (17)	-0.0094 (16)	0.0056 (15)	-0.0020 (15)
08	0.029 (2)	0.013 (2)	0.0175 (19)	-0.0060 (16)	0.0063 (16)	-0.0095 (16)
N1	0.022 (2)	0.011 (2)	0.011 (2)	-0.0014 (19)	0.0023 (17)	-0.0002 (18)
N2	0.024 (2)	0.013 (2)	0.008 (2)	-0.0016 (18)	0.0048 (17)	-0.0012 (17)
N3	0.023 (2)	0.010 (2)	0.010(2)	0.0014 (18)	0.0071 (18)	0.0000 (17)
N4	0.022 (2)	0.007 (2)	0.015 (2)	0.0018 (18)	0.0071 (18)	0.0032 (17)
O1W	0.019 (2)	0.032 (2)	0.015 (2)	-0.0022 (18)	0.0042 (15)	-0.0015 (18)
O2W	0.039 (3)	0.052 (3)	0.014 (2)	0.024 (2)	0.0048 (18)	0.008 (2)

Geometric parameters (Å, °)

Yb1—O2	2.224 (4)	C4—N2	1.385 (6)
Yb1—O6	2.251 (3)	C4—C5	1.504 (7)
Yb1—O3	2.261 (3)	С5—О3	1.251 (6)
Yb1—O7	2.263 (3)	C5—O4	1.255 (6)
Yb1—O2W	2.293 (4)	C6—O6	1.249 (6)
Yb1—O1W	2.361 (4)	C6—O5	1.262 (6)
Yb1—O7 ⁱ	2.389 (3)	C6—C7	1.496 (7)
Yb1—O8 ⁱ	2.594 (4)	C7—N3	1.375 (6)
Yb1-C10 ⁱ	2.895 (5)	С7—С9	1.393 (7)
Yb1—Yb1 ⁱ	3.8682 (5)	C8—N3	1.326 (7)
Ag1—N4 ⁱⁱ	2.119 (4)	C8—N4	1.336 (7)
Ag1—O5	2.157 (4)	C8—H8	0.9300
Ag2—N1	2.159 (4)	C9—N4	1.381 (6)
Ag2—O4 ⁱⁱ	2.160 (4)	C9—C10	1.461 (7)
Ag2—Ag3 ⁱⁱⁱ	3.3055 (6)	C10—O8	1.251 (6)
Ag3—N2 ^{iv}	2.107 (4)	C10—O7	1.283 (6)
Ag3—N3	2.127 (4)	C10—Yb1 ⁱ	2.895 (5)
Ag3—Ag3 ^{iv}	3.0969 (9)	O4—Ag2 ^{vi}	2.160 (3)
Ag3—Ag2 ^v	3.3055 (6)	O7—Yb1 ⁱ	2.389 (3)
C101	1.228 (6)	O8—Yb1 ⁱ	2.594 (4)
C1—O2	1.277 (6)	N2—Ag3 ^{iv}	2.107 (4)
C1—C2	1.500 (7)	N4—Ag1 ^{vi}	2.119 (4)
C2—N1	1.375 (6)	O1W—H1W	0.82 (2)
C2—C4	1.382 (7)	O1W—H2W	0.81 (2)
C3—N2	1.331 (7)	O2W—H4W	0.81 (2)
C3—N1	1.339 (7)	O2W—H3W	0.81 (2)
С3—Н3	0.9300		
O2—Yb1—O6	89.21 (13)	N1—C2—C4	108.3 (4)
O2—Yb1—O3	78.74 (13)	N1-C2-C1	117.3 (4)

O6—Yb1—O3	77.75 (13)	C4—C2—C1	134.4 (5)
O2—Yb1—O7	159.69 (12)	N2—C3—N1	113.8 (4)
06—Yb1—07	77.17 (13)	N2—C3—H3	123.1
O3—Yb1—O7	83.64 (13)	N1—C3—H3	123.1
O2—Yb1—O2W	98.34 (17)	C2—C4—N2	107.8 (4)
O6—Yb1—O2W	67.73 (13)	C2—C4—C5	134.4 (4)
O3—Yb1—O2W	145.43 (14)	N2—C4—C5	117.6 (4)
O7—Yb1—O2W	90.43 (17)	O3—C5—O4	124.5 (5)
O2—Yb1—O1W	86.59 (14)	O3—C5—C4	120.0 (4)
O6—Yb1—O1W	147.79 (13)	O4—C5—C4	115.5 (4)
O3—Yb1—O1W	70.10(13)	O6—C6—O5	122.3 (5)
O7—Yb1—O1W	96.89 (14)	O6—C6—C7	121.2 (4)
O2W—Yb1—O1W	144.46 (13)	O5—C6—C7	116.5 (4)
O2—Yb1—O7 ⁱ	132.22 (12)	N3—C7—C9	107.8 (4)
06—Yb1—07 ⁱ	129.72 (12)	N3—C7—C6	118.5 (4)
O3—Yb1—O7 ⁱ	129.53 (13)	C9—C7—C6	133.6 (4)
07—Yb1—07 ⁱ	67.50 (13)	N3—C8—N4	114.5 (5)
$O2W$ —Yb1— $O7^{i}$	77.69 (15)	N3—C8—H8	122.8
$O1W$ —Yb1— $O7^i$	73.28 (13)	N4—C8—H8	122.8
Ω^2 —Yb1— Ω^{8^i}	81.79 (11)	N4—C9—C7	107.9 (4)
$O6-Yb1-O8^{i}$	136.44 (12)	N4—C9—C10	119.2 (4)
$03 - Yb1 - 08^{i}$	140.18 (13)	C7-C9-C10	132.8 (4)
$07 - Yb1 - 08^{i}$	118.45 (11)	08-010-07	117.8 (4)
O^2W —Yb1— O^{8^i}	71 58 (14)	08 - 010 - 09	121.4(5)
$01W - Yb1 - 08^{i}$	74 40 (13)	07 - 07 - 07 - 07 - 07 - 07 - 07 - 07 -	121.1(3) 120.7(4)
07^{i} Yb1 -08^{i}	51 43 (11)	$08 - C10 - Yb1^{i}$	63 6 (3)
0^{2} Yb1 $-C10^{i}$	106 65 (13)	$07 - C10 - Yb1^{i}$	54 5 (2)
$06 - Yb1 - C10^{i}$	140.62(13)	$C9-C10-Yb1^{i}$	171.2 (4)
$03 - Yb1 - C10^{i}$	139.85 (13)	C1 = O2 = Yb1	1395(3)
$07 - Yb1 - C10^{i}$	93 32 (13)	$C_5 - O_3 - Y_{b1}$	140.0(3)
$O^2W_V_h = C_{10^i}$	74 33 (14)	$C5 - C4 - Ag2^{vi}$	110.0(3)
$01W - Yb1 - C10^{i}$	70.57(13)	C6-O5-Ag1	113.8(3)
07^{i} Yb1 - C10 ⁱ	25.90(12)	C6-O6-Vh1	145.0(3)
$O8^{i}$ Vb1 $-C10^{i}$	25.50 (12)	C10-07-Yb1	147.5(3)
Ω^2 —Vb1—Vb1 ⁱ	164 48 (9)	$C10 - 07 - Yb1^{i}$	99.6(3)
02 - 101 - 101 06	105 35 (9)	$Vh1-07-Vh1^{i}$	11250(13)
$03 - Yh1 - Yh1^{i}$	109.35(9) 109.17(9)	$C10-08-Vb1^{i}$	90.8 (3)
$07 - Yh1 - Yh1^{i}$	34.79(8)	$C_{10} = 0.05 = 1.01$	105.0(3)
O^2W _Vb1_Vb1 ⁱ	82 69 (13)	$C_3 = N_1 = \Delta g^2$	105.0(4) 129 5 (4)
O1W Vb1 Vb1 ⁱ	83.82 (10)	$C_2 = N_1 = A_{g2}$	129.3(4) 123.7(3)
$O7^{i}$ Vb1 Vb1 ⁱ	33.32(10)	$C_2 = N_1 = Ag_2$	125.7(3) 105.0(4)
O^{i} Vb1 Vb1 ⁱ	32.71(8)	$C_{3} = N_{2} = A_{3} a^{2iv}$	103.0(4) 127.3(3)
$C10^{i}$ Vb1 Vb1 ⁱ	58 56 (10)	$C_3 = 1N_2 = Ag_3$	127.3(3) 126.3(3)
M^{ii} Ag1 O5	157 46 (14)	C4 - N2 - Ag5	120.3(3) 105.3(4)
$M_{4} = -Ag_{1} = -O_{3}$	137.40 (14)	$C_{0} = \frac{1}{1} \frac{3}{2} \frac{1}{2} \frac{1}$	103.3(4) $129 \in (2)$
$N1 = Ag2 = 04^{\circ}$	139.60 (14) 70.00 (11)	$\begin{array}{c} Co - IN 3 - Ag 3 \\ C7 - NI2 - Ag 2 \end{array}$	120.0(3) 125.5(2)
$A_{\text{III}} = A_{\text{III}} = A_{\text{III}} = A_{\text{III}}$	100 59 (11)	C_{1} C_{1} C_{2} C_{2} C_{3} C_{4} C_{2} C_{5} C_{5} C_{6} C_{7} C_{7	123.3(3)
$O4^{}Ag2^{}Ag3^{}$	100.38 (10)	$C_{0} = N_{1} + C_{2}$	104.6 (4)
IN2—Ag3—N3	1/0.23 (1/)	Co-N4-Ag1"	123.2 (3)

supporting information

N2 ^{iv} —Ag3—Ag3 ^{iv}	98.55 (12)	C9—N4—Ag1 ^{vi}	132.2 (3)
N3—Ag3—Ag3 ^{iv}	79.79 (12)	Yb1—O1W—H1W	116 (5)
$N2^{iv}$ —Ag3—Ag2 ^v	89.30 (12)	Yb1—O1W—H2W	126 (5)
N3—Ag3—Ag2 ^v	89.89 (11)	H1W—O1W—H2W	105 (6)
Ag3 ^{iv} —Ag3—Ag2 ^v	140.588 (19)	Yb1—O2W—H4W	140 (6)
O1—C1—O2	122.7 (5)	Yb1—O2W—H3W	128 (6)
O1—C1—C2	118.0 (5)	H4W—O2W—H3W	90 (7)
O2—C1—C2	119.2 (4)		

Symmetry codes: (i) -*x*, -*y*, -*z*+1; (ii) *x*, *y*+1, *z*; (iii) *x*+1/2, *y*+1/2, *z*; (iv) -*x*, *y*, -*z*+3/2; (v) *x*-1/2, *y*-1/2, *z*; (vi) *x*, *y*-1, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	$D \cdots A$	D—H··· A	
01 <i>W</i> —H1 <i>W</i> ···O8 ⁱⁱⁱ	0.82 (2)	2.11 (5)	2.751 (5)	136 (6)	
$O1W$ — $H2W$ ··· $O2^{vii}$	0.81 (2)	2.03 (3)	2.823 (5)	165 (6)	
O2W—H4 W ···O1 ^{viii}	0.81 (2)	1.88 (4)	2.634 (5)	154 (8)	

Symmetry codes: (iii) *x*+1/2, *y*+1/2, *z*; (vii) -*x*+1/2, -*y*+1/2, -*z*+1; (viii) -*x*, -*y*+1, -*z*+1.