# organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 2-(3,4-Dimethyl-5,5-dioxo-2*H*,4*H*pyrazolo[4,3-c][1,2]benzothiazin-2-yl)-*N*-(2-fluorobenzyl)acetamide

# Matloob Ahmad,<sup>a</sup> Hamid Latif Siddiqui,<sup>b</sup>\* Naveed Ahmad,<sup>b</sup> Sana Aslam<sup>b</sup> and Masood Parvez<sup>c</sup>

<sup>a</sup>Department of Chemistry, Government College University, Faisalabad 38000, Pakistan, <sup>b</sup>Institute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, and <sup>c</sup>Department of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4 Correspondence e-mail: drhamidlatif@hotmail.com

Received 12 July 2012; accepted 12 July 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean  $\sigma$ (C–C) = 0.006 Å; R factor = 0.049; wR factor = 0.146; data-to-parameter ratio = 11.4.

In the title molecule,  $C_{20}H_{19}FN_4O_3S$ , the heterocyclic thiazine ring adopts a half-chair conformation with the S atom displaced by 0.668 (4) Å from the mean plane formed by the remaining ring atoms. The mean planes of the benzene and pyrazole rings are inclined with respect to each other at a dihedral angle of 17.4 (3)°. The acetamide chain (O/N/C/C/C) linking the pyrazole and 2-fluorobenzyl rings is essentially planar (r.m.s. deviation = 0.030 Å) and forms dihedral angles with the mean planes of these rings of 78.8 (2) and 78.89 (14)°, respectively. The crystal structure is stabilized by N-H···O and C-H···O hydrogen-bonding interactions, resulting in a six-membered ring with an  $R_2^1(6)$  motif, while C-H···O and C-H···F hydrogen-bonding interactions result in chains of molecules lying along the *c* axis in a zigzag fashion.

### **Related literature**

For biological activities of benzothiazine derivatives, see: Turck *et al.* (1996); Silverstein *et al.* (2000); Lombardino *et al.* (1973); Zinnes *et al.* (1973); Ahmad, Siddiqui, Ahmad *et al.* (2010); Ahmad, Siddiqui, Zia-ur-Rehman & Parvez (2010). For related crystal structures, see: Siddiqui *et al.* (2008, 2009). For graph-set notations, see: Bernstein *et al.* (1995).



V = 1893.0 (2) Å<sup>3</sup>

Cu Ka radiation

 $0.12 \times 0.06 \times 0.05 \ \mathrm{mm}$ 

17539 measured reflections

3009 independent reflections

2730 reflections with  $I > 2\sigma(I)$ 

 $\mu = 1.88 \text{ mm}^{-1}$ 

T = 173 K

 $R_{\rm int} = 0.029$ 

Z = 4

### Experimental

Crystal data

 $\begin{array}{l} C_{20}H_{19}FN_4O_3S\\ M_r = 414.45\\ Orthorhombic, Pna2_1\\ a = 27.4331 \ (15) \ \text{\AA}\\ b = 7.4519 \ (5) \ \text{\AA}\\ c = 9.2598 \ (6) \ \text{\AA} \end{array}$ 

#### Data collection

Bruker SMART APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004)  $T_{min} = 0.806, T_{max} = 0.912$ 

### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.049$ | H-atom parameters constrained                              |
|---------------------------------|------------------------------------------------------------|
| $vR(F^2) = 0.146$               | $\Delta \rho_{\rm max} = 1.05 \ {\rm e} \ {\rm \AA}^{-3}$  |
| S = 1.09                        | $\Delta \rho_{\rm min} = -0.45 \text{ e } \text{\AA}^{-3}$ |
| 3009 reflections                | Absolute structure: Flack (1983),                          |
| 264 parameters                  | 1207 Friedel pairs                                         |
| restraint                       | Flack parameter: 0.05 (3)                                  |
|                                 |                                                            |

### Table 1

| H | lyd | rogen- | bond | geome | try | (A, | °) | ١. |
|---|-----|--------|------|-------|-----|-----|----|----|
|---|-----|--------|------|-------|-----|-----|----|----|

| $D - H \cdot \cdot \cdot A$ | $D-{\rm H}$ | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-----------------------------|-------------|--------------|--------------|---------------------------|
| N4-H4A···O3 <sup>i</sup>    | 0.88        | 2.09         | 2.940 (5)    | 162                       |
| C3-H3···O2 <sup>ii</sup>    | 0.95        | 2.50         | 3.366 (6)    | 152                       |
| $C14-H14A\cdots F1^{iii}$   | 0.99        | 2.53         | 3.202 (6)    | 125                       |
| $C12-H12B\cdots O3^{i}$     | 0.99        | 2.42         | 3.195 (6)    | 135                       |
| $C14-H14B\cdots F1$         | 0.99        | 2.42         | 2.820 (6)    | 103                       |

Symmetry codes: (i) -x, -y,  $z + \frac{1}{2}$ ; (ii)  $-x + \frac{1}{2}$ ,  $y + \frac{1}{2}$ ,  $z - \frac{1}{2}$ ; (iii) -x, -y - 1,  $z + \frac{1}{2}$ .

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

The authors are grateful to the Higher Education Commission, Pakistan, and Institute of Chemistry, University of the Punjab, Lahore, Pakistan, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QM2076).

### References

- Ahmad, M., Siddiqui, H. L., Ahmad, S., Parvez, M. & Tizzard, G. J. (2010). J. Chem. Crystallogr. 40, 1188–1194.
- Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698–704.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

- Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Lombardino, J. G., Wiseman, E. H. & Chiaini, J. (1973). J. Med. Chem. 16, 493–496.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, 04–06.
- Siddiqui, W. A., Siddiqui, H. L., Azam, M., Parvez, M. & Rizvi, U. F. (2009). Acta Cryst. E65, 02279–02280.
- Silverstein, F. E., Faich, G., Goldstein, J. L., Simon, L. S., Pincus, T., Whelton, A., Makuch, R., Eisen, G., Agrawal, N. M., Stenson, W. F., Burr, A. M., Zhao, W. W., Kent, J. D., Lefkowith, J. B., Verburg, K. M. & Geis, G. S. (2000). J. Am. Med. Assoc. 284, 1247–1255.
- Turck, D., Roth, W. & Busch, U. (1996). Br. J. Rheumatol. 35, 13-16.
- Zinnes, H., Lindo, N. A., Sircar, J. C., Schwartz, M. L. & Shavel, J. Jr (1973). J. Med. Chem. 16, 44–48.

# supporting information

Acta Cryst. (2012). E68, o2470–o2471 [https://doi.org/10.1107/S160053681203187X]

# 2-(3,4-Dimethyl-5,5-dioxo-2*H*,4*H*-pyrazolo[4,3-c][1,2]benzothiazin-2-yl)-*N*-(2-fluorobenzyl)acetamide

# Matloob Ahmad, Hamid Latif Siddiqui, Naveed Ahmad, Sana Aslam and Masood Parvez

### S1. Comment

Oxicam drugs are benzothiazine based carboxamides which are well known for their potent anti-inflammatory and analgesic actions (Turck *et al.*, 1996; Lombardino *et al.*, 1973; Zinnes *et al.*, 1973). On the other hand, celecoxib, a pyrazole compound is an anti-inflammatory drug and a selective inhibitor of the cox-2 enzyme (Silverstein *et al.*, 2000). Keeping in view these features, we perceived that pyrazolobenzothiazine nucleus has a broad potential for biologically active molecules. We have prepared pyrazolobenzothiazines which are structural hybrids of both of these medicinally important heterocycles (Ahmad, Siddiqui, Ahmad, Parvez *et al.* (2010); Ahmad, Siddiqui, Zia-ur-Rehman & Parvez (2010)). In this article we report the crystal structure of the title molecule.

The bond distances and angles in the title compound (Fig. 1) agree very well with the corresponding bond distances and angles reported in closely related compounds (Siddiqui *et al.*, 2008; 2009). The heterocyclic thiazine ring adopts a half chair conformation with atom S1 displaced by 0.668 (4) Å, from the mean plane formed by the remaining ring atoms (r.m.s. deviation 0.036 Å for N1/C1/C6–C8 atoms). The mean-plane of the benzene ring C1–C6 makes a dihedral angle 17.4 (3)° with the mean-plane of the pyrazolyl ring (N2/N3/C7/C8/C10). The acetamide chain (O3/N4/C12–C14) linking the pyrazolyl and 2-fluorobenzyl rings is essentially planar (r.m.s. deviation 0.030 Å) and forms dihedral angles with the mean-planes of these rings 78.8 (2) and 78.89 (14)°, respectively.

The crystal structure is stabilized by intermolecular hydrogen bonding interactions (Fig. 2 and Table 1). The hydrogen bonds N4—H4A···O3 and C12—H12B···O3 result in a six membered rings in  $R_2^{1}(6)$  motif (Bernstein *et al.*, 1995) while C3—H3···O2 and C14—H14A···F1 hydrogen bonding interactions result in chains of molecules lying along the *c*-axis in a zigzag fashion.

## **S2. Experimental**

3,4-Dimethyl-5,5-dioxidopyrazolo[4,3-c][1,2] benzothiazin-2(4H)-yl acetic acid (1.013 g, 3.3 mmol) was dissolved in toluene:THF (2:1) and boran-THF complex (1.1 mmol) was added. The reaction mixture was stirred for 40 minutes and 2-flourobenzyl amine (0.412 g, 3.3 mmol) added. The contents of the flask were refluxed for 5 h. The solvent was evaporated under vacuum and the product was purified by column chromatography. Colorless crystals were grown from an ethyl acetate solution which were used for X-ray crystallographic studies; m.p. 419–420 K.

## S3. Refinement

All H atoms were positioned geometrically and refined using a riding model, with N—H = 0.88 Å and C—H = 0.95, 0.98 and 0.99 Å, for aryl, methyl and methylene H-atoms, respectively. The  $U_{iso}$ (H) were allowed at  $1.5U_{eq}$ (methyl C) or  $1.2U_{eq}$ (the rest of the C/N). An absolute structure was determined by the Flack method (Flack, 1983) using 1207 Friedel pairs of reflections which were not merged.



## Figure 1

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.



## Figure 2

A part of the unit cell of the title compound showing hydrogen bonding interactions (dotted lines). H atoms nonparticipating in hydrogen-bonding were omitted for clarity.

2-(3,4-Dimethyl-5,5-dioxo-2H,4H-pyrazolo[4,3-c][1,2]benzothiazin-2-yl)-N-(2-fluorobenzyl)acetamide

| Crystal data                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C <sub>20</sub> H <sub>19</sub> FN <sub>4</sub> O <sub>3</sub> S<br>$M_r = 414.45$<br>Orthorhombic, <i>Pna</i> 2 <sub>1</sub><br>Hall symbol: P 2c -2n<br>a = 27.4331 (15)  Å<br>b = 7.4519 (5)  Å<br>c = 9.2598 (6)  Å<br>$V = 1893.0 (2) \text{ Å}^3$<br>Z = 4                                           | F(000) = 864<br>$D_x = 1.454 \text{ Mg m}^{-3}$<br>Cu Ka radiation, $\lambda = 1.54178 \text{ Å}$<br>Cell parameters from 8539 reflections<br>$\theta = 3.2-67.4^{\circ}$<br>$\mu = 1.88 \text{ mm}^{-1}$<br>T = 173  K<br>Needle, colorless<br>$0.12 \times 0.06 \times 0.05 \text{ mm}$                                                                                                                                 |
| Data collection                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Bruker SMART APEXII CCD<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>$\omega$ and $\varphi$ scans<br>Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 2004)<br>$T_{\min} = 0.806, T_{\max} = 0.912$                                            | 17539 measured reflections<br>3009 independent reflections<br>2730 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.029$<br>$\theta_{max} = 68.1^{\circ}, \theta_{min} = 3.2^{\circ}$<br>$h = -32 \rightarrow 32$<br>$k = -8 \rightarrow 8$<br>$l = -10 \rightarrow 8$                                                                                                                                                   |
| Refinement                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.049$<br>$wR(F^2) = 0.146$<br>S = 1.09<br>3009 reflections<br>264 parameters<br>1 restraint<br>Primary atom site location: structure-invariant<br>direct methods<br>Secondary atom site location: difference Fourier<br>map | Hydrogen site location: inferred from<br>neighbouring sites<br>H-atom parameters constrained<br>$w = 1/[\sigma^2(F_o^2) + (0.0785P)^2 + 2.144P]$<br>where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{max} < 0.001$<br>$\Delta\rho_{max} = 1.05$ e Å <sup>-3</sup><br>$\Delta\rho_{min} = -0.44$ e Å <sup>-3</sup><br>Absolute structure: Flack (1983), 1207 Friedel<br>pairs<br>Absolute structure parameter: 0.05 (3) |

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{iso} * / U_{eq}$ х Zy C1 0.18005 (14) 0.0298 (9) 0.5585 (5) 0.5621 (5) 0.0366 (10) C2 0.19683 (14) 0.4508(5)0.6653 (6) H2 0.044\* 0.2306 0.6695 0.4286 C3 0.7660 (6) 0.3722 (6) 0.0410 (11) 0.16385 (16) 0.049\* H3 0.1747 0.8363 0.2928 C4 0.11472 (16) 0.7642(5)0.4095 (6) 0.0411 (11) H4 0.0925 0.8391 0.3589 0.049\* C5 0.09785 (14) 0.6551(5)0.5191(5)0.0330(10) 0.040\* H5 0.0642 0.6552 0.5433 C6 0.12980(13) 0.5455(5)0.5939(5)0.0276 (8) C7 0.11436 (12) 0.4057 (5) 0.6914 (5) 0.0279 (8) C8 0.14419 (13) 0.2643(5)0.7402(5)0.0294(9)C9 0.21028 (17) 0.0897(7)0.6235 (6) 0.0487 (13) H9A 0.1937 -0.01720.6608 0.073\* H9B 0.2456 0.0742 0.6326 0.073\* H9C 0.2018 0.1066 0.5216 0.073\* C10 0.11529 (13) 0.0309(9)0.1512(5)0.8186(5)C11 0.12523 (17) -0.0203(6)0.8981 (6) 0.0402(11)0.060\* H11A 0.1037 -0.02830.9824 0.1593 -0.02210.9301 0.060\* H11B H11C 0.1192 -0.12250.8340 0.060\* C12 0.8796(5)0.02597 (14) 0.1619(5)0.0336(9)H12A -0.00030.2517 0.8664 0.040\* H12B 0.9845 0.040\* 0.0315 0.1467 C13 0.00996(13)-0.0174(5)0.8142(5)0.0265 (8) C14 -0.02579(14)-0.3102(5)0.8631(5)0.0317(9)-0.0295-0.38380.9515 0.038\* H14A H14B 0.0014 -0.36200.8063 0.038\* C15 -0.07211(15)-0.3255(5)0.7752(5)0.0321(9)C16 -0.07666(19)-0.4367(6)0.6583 (6) 0.0504(13)C17 -0.4580(7)0.5805 (6) 0.0593 (16) -0.1212(2)H17 -0.1236-0.53740.5006 0.071\* C18 -0.1600(2)-0.3605(8)0.6252 (8) 0.0618 (16) H18 -0.1898-0.37010.5735 0.074\* C19 -0.15798(19)-0.2509(9)0.7397 (8) 0.0635 (16)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

# supporting information

| H19 | -0.1864       | -0.1850      | 0.7649       | 0.076*      |  |
|-----|---------------|--------------|--------------|-------------|--|
| C20 | -0.11537 (14) | -0.2278 (8)  | 0.8259 (9)   | 0.077 (2)   |  |
| H20 | -0.1150       | -0.1547      | 0.9099       | 0.093*      |  |
| F1  | -0.03977 (13) | -0.5300 (6)  | 0.6187 (5)   | 0.0875 (13) |  |
| N1  | 0.19490 (11)  | 0.2479 (4)   | 0.7068 (4)   | 0.0341 (9)  |  |
| N2  | 0.06857 (10)  | 0.3820 (4)   | 0.7375 (4)   | 0.0281 (7)  |  |
| N3  | 0.07015 (11)  | 0.2262 (4)   | 0.8123 (4)   | 0.0294 (7)  |  |
| N4  | -0.01247 (11) | -0.1285 (5)  | 0.9057 (4)   | 0.0304 (8)  |  |
| H4A | -0.0193       | -0.0912      | 0.9936       | 0.036*      |  |
| O1  | 0.22202 (11)  | 0.5389 (4)   | 0.8089 (4)   | 0.0455 (8)  |  |
| O2  | 0.26539 (10)  | 0.4115 (5)   | 0.5993 (4)   | 0.0522 (9)  |  |
| O3  | 0.01791 (9)   | -0.0534 (4)  | 0.6870 (4)   | 0.0345 (6)  |  |
| S1  | 0.22083 (3)   | 0.44366 (14) | 0.67509 (13) | 0.0366 (3)  |  |
|     |               |              |              |             |  |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | <i>U</i> <sup>23</sup> |
|-----|-------------|-------------|-------------|--------------|--------------|------------------------|
| C1  | 0.0245 (19) | 0.035 (2)   | 0.030 (3)   | -0.0034 (15) | -0.0003 (17) | -0.0045 (17)           |
| C2  | 0.0277 (19) | 0.041 (2)   | 0.041 (3)   | -0.0089 (16) | 0.0123 (19)  | -0.003 (2)             |
| C3  | 0.045 (2)   | 0.039 (2)   | 0.038 (3)   | -0.0113 (19) | 0.003 (2)    | 0.008 (2)              |
| C4  | 0.037 (2)   | 0.032 (2)   | 0.055 (3)   | -0.0024 (17) | -0.004 (2)   | 0.007 (2)              |
| C5  | 0.0247 (18) | 0.0297 (19) | 0.044 (3)   | -0.0011 (15) | -0.0004 (18) | -0.0020 (19)           |
| C6  | 0.0256 (18) | 0.0299 (18) | 0.027 (2)   | -0.0046 (15) | 0.0001 (17)  | -0.0017 (17)           |
| C7  | 0.0202 (15) | 0.0357 (19) | 0.028 (2)   | -0.0012 (13) | 0.0007 (17)  | -0.0018 (19)           |
| C8  | 0.0192 (16) | 0.041 (2)   | 0.028 (2)   | -0.0003 (15) | -0.0001 (17) | -0.0041 (17)           |
| C9  | 0.038 (2)   | 0.057 (3)   | 0.051 (3)   | 0.011 (2)    | 0.004 (2)    | -0.014 (2)             |
| C10 | 0.0257 (18) | 0.0307 (19) | 0.036 (3)   | 0.0002 (14)  | -0.0043 (17) | -0.0015 (18)           |
| C11 | 0.038 (2)   | 0.042 (2)   | 0.041 (3)   | 0.0007 (18)  | -0.006 (2)   | 0.010 (2)              |
| C12 | 0.0290 (19) | 0.038 (2)   | 0.033 (3)   | -0.0057 (16) | 0.0026 (18)  | -0.0058 (19)           |
| C13 | 0.0202 (17) | 0.036 (2)   | 0.023 (2)   | 0.0010 (14)  | 0.0011 (16)  | 0.0009 (18)            |
| C14 | 0.0278 (18) | 0.0296 (19) | 0.038 (3)   | -0.0008 (15) | 0.0007 (18)  | 0.0023 (18)            |
| C15 | 0.037 (2)   | 0.035 (2)   | 0.024 (2)   | -0.0099 (16) | -0.0015 (17) | 0.0037 (17)            |
| C16 | 0.058 (3)   | 0.050 (3)   | 0.044 (3)   | -0.003 (2)   | 0.004 (3)    | 0.003 (2)              |
| C17 | 0.092 (4)   | 0.056 (3)   | 0.030 (3)   | -0.029 (3)   | -0.018 (3)   | 0.006 (2)              |
| C18 | 0.047 (3)   | 0.070 (4)   | 0.069 (4)   | -0.018 (3)   | -0.008(3)    | 0.022 (3)              |
| C19 | 0.043 (3)   | 0.074 (4)   | 0.073 (5)   | -0.004 (3)   | -0.011 (3)   | 0.015 (4)              |
| C20 | 0.019 (2)   | 0.072 (3)   | 0.141 (7)   | -0.013 (2)   | -0.021 (3)   | 0.068 (4)              |
| F1  | 0.063 (2)   | 0.117 (3)   | 0.082 (3)   | 0.011 (2)    | -0.0018 (19) | -0.036 (3)             |
| N1  | 0.0213 (14) | 0.0416 (18) | 0.039 (2)   | 0.0041 (12)  | 0.0043 (15)  | 0.0026 (17)            |
| N2  | 0.0225 (14) | 0.0303 (17) | 0.032 (2)   | -0.0024 (12) | 0.0031 (14)  | -0.0018 (14)           |
| N3  | 0.0235 (15) | 0.0333 (16) | 0.032 (2)   | -0.0056 (12) | 0.0006 (14)  | 0.0017 (15)            |
| N4  | 0.0254 (15) | 0.0374 (17) | 0.028 (2)   | -0.0041 (14) | 0.0007 (14)  | -0.0031 (15)           |
| 01  | 0.0400 (17) | 0.059 (2)   | 0.038 (2)   | -0.0167 (13) | -0.0096 (15) | -0.0051 (17)           |
| O2  | 0.0200 (13) | 0.077 (2)   | 0.060 (2)   | 0.0022 (14)  | 0.0048 (15)  | 0.007 (2)              |
| O3  | 0.0364 (14) | 0.0427 (15) | 0.0243 (17) | -0.0059 (11) | -0.0004 (14) | 0.0020 (13)            |
| S1  | 0.0184 (4)  | 0.0516 (6)  | 0.0399 (7)  | -0.0042 (4)  | -0.0017 (4)  | 0.0012 (5)             |

Geometric parameters (Å, °)

| C1—C2    | 1.381 (6) | C12—C13       | 1.531 (6) |
|----------|-----------|---------------|-----------|
| C1—C6    | 1.413 (5) | C12—H12A      | 0.9900    |
| C1—S1    | 1.755 (4) | C12—H12B      | 0.9900    |
| C2—C3    | 1.383 (7) | C13—O3        | 1.227 (5) |
| C2—H2    | 0.9500    | C13—N4        | 1.335 (5) |
| C3—C4    | 1.391 (6) | C14—N4        | 1.457 (5) |
| С3—Н3    | 0.9500    | C14—C15       | 1.514 (6) |
| C4—C5    | 1.380 (7) | C14—H14A      | 0.9900    |
| C4—H4    | 0.9500    | C14—H14B      | 0.9900    |
| C5—C6    | 1.384 (6) | C15—C16       | 1.369 (7) |
| С5—Н5    | 0.9500    | C15—C20       | 1.469 (7) |
| C6—C7    | 1.443 (6) | C16—F1        | 1.282 (6) |
| C7—N2    | 1.339 (5) | C16—C17       | 1.428 (8) |
| C7—C8    | 1.408 (5) | C17—C18       | 1.354 (9) |
| C8—C10   | 1.366 (6) | C17—H17       | 0.9500    |
| C8—N1    | 1.430 (5) | C18—C19       | 1.340 (9) |
| C9—N1    | 1.471 (6) | C18—H18       | 0.9500    |
| С9—Н9А   | 0.9800    | C19—C20       | 1.425 (8) |
| С9—Н9В   | 0.9800    | C19—H19       | 0.9500    |
| С9—Н9С   | 0.9800    | С20—Н20       | 0.9500    |
| C10—N3   | 1.360 (5) | N1—S1         | 1.650 (3) |
| C10—C11  | 1.500 (6) | N2—N3         | 1.353 (5) |
| C11—H11A | 0.9800    | N4—H4A        | 0.8800    |
| C11—H11B | 0.9800    | O1—S1         | 1.429 (4) |
| C11—H11C | 0.9800    | O2—S1         | 1.430 (3) |
| C12—N3   | 1.444 (5) |               |           |
| C2—C1—C6 | 121.3 (4) | H12A—C12—H12B | 108.0     |
| C2-C1-S1 | 120.9 (3) | O3—C13—N4     | 123.7 (4) |
| C6—C1—S1 | 117.7 (3) | O3—C13—C12    | 121.3 (4) |
| C1—C2—C3 | 119.2 (4) | N4—C13—C12    | 115.0 (4) |
| C1—C2—H2 | 120.4     | N4—C14—C15    | 115.2 (3) |
| С3—С2—Н2 | 120.4     | N4—C14—H14A   | 108.5     |
| C2—C3—C4 | 119.8 (4) | C15—C14—H14A  | 108.5     |
| С2—С3—Н3 | 120.1     | N4—C14—H14B   | 108.5     |
| С4—С3—Н3 | 120.1     | C15—C14—H14B  | 108.5     |
| C5—C4—C3 | 120.9 (4) | H14A—C14—H14B | 107.5     |
| C5—C4—H4 | 119.6     | C16—C15—C20   | 118.6 (5) |
| C3—C4—H4 | 119.6     | C16—C15—C14   | 123.2 (4) |
| C4—C5—C6 | 120.2 (4) | C20-C15-C14   | 118.0 (4) |
| C4—C5—H5 | 119.9     | F1—C16—C15    | 118.9 (5) |
| C6—C5—H5 | 119.9     | F1-C16-C17    | 118.1 (5) |
| C5—C6—C1 | 118.3 (4) | C15—C16—C17   | 123.0 (5) |
| C5—C6—C7 | 123.6 (3) | C18—C17—C16   | 117.4 (5) |
| C1—C6—C7 | 117.8 (3) | C18—C17—H17   | 121.3     |
| N2—C7—C8 | 110.2 (3) | C16—C17—H17   | 121.3     |

| N2—C7—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 124.8 (3)  | C19—C18—C17                                           | 122.4 (6)              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------|------------------------|
| C8—C7—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 124.8 (3)  | C19—C18—H18                                           | 118.8                  |
| C10—C8—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 107.1 (3)  | C17—C18—H18                                           | 118.8                  |
| C10—C8—N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 128.8 (4)  | C18—C19—C20                                           | 123.4 (6)              |
| C7—C8—N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 124.1 (4)  | C18—C19—H19                                           | 118.3                  |
| N1—C9—H9A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.5      | С20—С19—Н19                                           | 118.3                  |
| N1—C9—H9B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.5      | C19—C20—C15                                           | 115.1 (7)              |
| H9A—C9—H9B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5      | С19—С20—Н20                                           | 122.5                  |
| N1—C9—H9C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.5      | С15—С20—Н20                                           | 122.5                  |
| Н9А—С9—Н9С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5      | C8—N1—C9                                              | 117.5 (3)              |
| H9B—C9—H9C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5      | C8—N1—S1                                              | 112.4 (3)              |
| N3—C10—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 104.6 (3)  | C9—N1—S1                                              | 119.5 (3)              |
| N3-C10-C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122.4 (4)  | C7—N2—N3                                              | 104.3 (3)              |
| C8-C10-C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 132.9 (4)  | $N_{2} = N_{3} = C_{10}$                              | 113.8 (3)              |
| C10-C11-H11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5      | $N_2 - N_3 - C_{12}$                                  | 118.6(3)               |
| C10—C11—H11B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5      | C10 - N3 - C12                                        | 127.6(3)               |
| H11A—C11—H11B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5      | $C_{13}$ N4 $C_{14}$                                  | 121.3(4)               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.5      | C13 $N4$ $H4A$                                        | 1193                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.5      | C14 $N4$ $H4A$                                        | 119.3                  |
| H11B_C11_H11C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5      | 01 - 51 - 02                                          | 119.3 (2)              |
| $N_3$ _C12_C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 111 1 (3)  | 01-51-02                                              | 117.3(2)<br>107.15(19) |
| N3_C12_H12A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.4      | $0^2$ _S1_N1                                          | 107.13(1)              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.4      | 01  S1  C1                                            | 107.9(2)<br>106.9(2)   |
| N2 C12 H12R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.4      | $O_2 S_1 C_1$                                         | 100.5(2)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.4      | $N_1 = S_1 = C_1$                                     | 109.3(2)<br>105.23(17) |
| C15—C12—III2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.4      | NI-5I-CI                                              | 103.23 (17)            |
| C6-C1-C2-C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22(7)      | C17 - C18 - C19 - C20                                 | -0.7(9)                |
| $S_1 = C_1 = C_2 = C_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1743(3)   | $C_{18}$ $C_{19}$ $C_{20}$ $C_{15}$ $C_{20}$ $C_{15}$ | 36(8)                  |
| C1 - C2 - C3 - C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26(7)      | $C_{16} - C_{15} - C_{20} - C_{19}$                   | -41(7)                 |
| $C_1 = C_2 = C_3 = C_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0(7)     | $C_{10} = C_{15} = C_{20} = C_{19}$                   | -1788(4)               |
| $C_2 = C_3 = C_4 = C_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1(7)     | C10  C8  N1  C9                                       | 170.0(4)               |
| $C_{4}$ $C_{5}$ $C_{6}$ $C_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1(7)     | C7 C8 N1 C9                                           | -1175(5)               |
| $C_{4} = C_{5} = C_{6} = C_{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -168.7(4)  | $C_{10} C_{8} N_{1} C_{9}$                            | -154.7(3)              |
| $C_{4} = C_{5} = C_{6} = C_{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -5.7(6)    | C7 C9 N1 S1                                           | 134.7(4)               |
| $C_2 - C_1 - C_0 - C_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -3.7(0)    | $C^{2} = C^{2} = N^{2} = N^{2}$                       | 27.0(3)                |
| S1 = C1 = C0 = C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 170.9(3)   | $C_{0}$ $C_{1}$ $N_{2}$ $N_{3}$                       | -0.8(3)                |
| $C_2 - C_1 - C_0 - C_7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 107.9 (4)  | $C_{0}$ $C_{1}$ $N_{2}$ $N_{3}$ $C_{10}$              | 1/3.4(4)<br>1 2 (5)    |
| SI = CI = CO = C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -13.3(3)   | C/-N2-N3-C10                                          | 1.5(3)                 |
| $C_{3} = C_{0} = C_{7} = N_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -10.5(7)   | $C = N_2 = N_3 = C_{12}$                              | 1/9.1(4)               |
| C1 - C0 - C7 - N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/0.3(4)   | $C_{0}$ $C_{10}$ $N_{2}$ $N_{2}$                      | -1.5(3)                |
| $C_{3} = C_{0} = C_{1} = C_{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 103.0 (4)  | C11 - C10 - N3 - N2                                   | 1/9.0 (4)              |
| C1 - C6 - C7 - C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -10.2(6)   | C8 - C10 - N3 - C12                                   | -1/8.9(4)              |
| $N_2 - C_7 - C_8 - C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0 (5)    | C11 - C10 - N3 - C12                                  | 1.5 (7)                |
| 10 - 1 - 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1/4.1(4)  | $C_{13} = C_{12} = N_3 = N_2$                         | 110.5 (4)              |
| $N2 - C / - C \delta - N1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1/8.0 (4)  | C13 - C12 - N3 - C10                                  | -00.1(0)               |
| $C_{0}$ $C_{1}$ $C_{2}$ $C_{1}$ $C_{2}$ $C_{3}$ $C_{1}$ $C_{2}$ $C_{3}$ $C_{3$ | 4.5 (/)    | $U_{3}$ — $U_{13}$ — $N_{4}$ — $U_{14}$               | 5.2 (6)                |
| C = C = C = C = C = C = C = C = C = C =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.8 (5)    | C12—C13—N4—C14                                        | -1/4.2(3)              |
| NI-C8-C10-N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1//.8 (4) | C15—C14—N4—C13                                        | -80.3 (5)              |
| $C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -179.7(5)  | C8—N1—S1—O1                                           | 68.7 (3)               |

| N1_C8_C10_C11   | 18(8)      | C9 - N1 - S1 - O1 | -1475(4)   |
|-----------------|------------|-------------------|------------|
| NI-Co-CI0-CII   | 1.0 (8)    | 01-01             | 147.3 (4)  |
| N3—C12—C13—O3   | -31.9 (5)  | C8—N1—S1—O2       | -161.6 (3) |
| N3—C12—C13—N4   | 147.6 (3)  | C9—N1—S1—O2       | -17.8 (4)  |
| N4-C14-C15-C16  | 138.4 (4)  | C8—N1—S1—C1       | -44.7 (3)  |
| N4—C14—C15—C20  | -47.1 (5)  | C9—N1—S1—C1       | 99.0 (4)   |
| C20-C15-C16-F1  | -176.0 (5) | C2-C1-S1-O1       | 104.4 (4)  |
| C14—C15—C16—F1  | -1.6 (7)   | C6-C1-S1-O1       | -72.2 (3)  |
| C20-C15-C16-C17 | 2.0 (7)    | C2-C1-S1-O2       | -26.1 (4)  |
| C14—C15—C16—C17 | 176.4 (4)  | C6—C1—S1—O2       | 157.2 (3)  |
| F1-C16-C17-C18  | 179.0 (5)  | C2-C1-S1-N1       | -141.9 (4) |
| C15—C16—C17—C18 | 0.9 (8)    | C6-C1-S1-N1       | 41.5 (4)   |
| C16—C17—C18—C19 | -1.6 (8)   |                   |            |
| C16—C17—C18—C19 | -1.6 (8)   |                   |            |

Hydrogen-bond geometry (Å, °)

| D—H···A                             | <i>D</i> —Н | H···A | $D \cdots A$ | D—H···A |
|-------------------------------------|-------------|-------|--------------|---------|
| N4—H4A····O3 <sup>i</sup>           | 0.88        | 2.09  | 2.940 (5)    | 162     |
| С3—Н3…О2 <sup>іі</sup>              | 0.95        | 2.50  | 3.366 (6)    | 152     |
| C14—H14A····F1 <sup>iii</sup>       | 0.99        | 2.53  | 3.202 (6)    | 125     |
| C12—H12 <i>B</i> ···O3 <sup>i</sup> | 0.99        | 2.42  | 3.195 (6)    | 135     |
| C14—H14 <i>B</i> …F1                | 0.99        | 2.42  | 2.820 (6)    | 103     |

Symmetry codes: (i) -*x*, -*y*, *z*+1/2; (ii) -*x*+1/2, *y*+1/2, *z*-1/2; (iii) -*x*, -*y*-1, *z*+1/2.