Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-4-[(4-Bromophenyl)iminomethyl]-2-methoxyphenol

Karla Fejfarová,^a* Michal Dušek,^a Sepideh Maghsodlou Rad^b and Aliakbar Dehno Khalaji^b

^aInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Prague 8, Czech Republic, and ^bDepartment of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran Correspondence e-mail: fejfarov@fzu.cz

Received 10 July 2012; accepted 11 July 2012

Key indicators: single-crystal X-ray study: T = 120 K: mean σ (C–C) = 0.003 Å: R factor = 0.028; wR factor = 0.067; data-to-parameter ratio = 14.0.

In the crystal structure of the title compound, $C_{14}H_{12}BrNO_2$, the dihedral angle between the rings is $37.87 (10)^{\circ}$ and the molecule has an E conformation about the central C = Nbond. In the crystal, molecules are connected by intermolecular O-H···N hydrogen bonds into zigzag chains running parallel to the b axis. The packing also features C- $H \cdot \cdot \cdot O$ interactions.

Related literature

For Schiff base derivatives and related structures, see: Fejfarová et al. (2010a,b); Özek et al. (2009, 2010); Akkurt et al. (2008); Khalaji et al. (2007, 2009). For applications and properties of Schiff base compounds, see: da Silva et al. (2011); Dalapati et al. (2011); Sun et al. (2012).

Experimental

Crystal data

C14H12BrNO2 $M_r = 306.2$ Monoclinic, $P2_1/c$ a = 6.5692 (3) Å b = 11.4323 (4) Å c = 17.5552 (9) Å $\beta = 97.798 \ (4)^{\circ}$

Data collection

Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector

Cu Ka radiation μ = 4.24 mm⁻ T = 120 K $0.33 \times 0.13 \times 0.04 \text{ mm}$

 $V = 1306.22 (10) \text{ Å}^3$

Z = 4

Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) $T_{\min} = 0.432, T_{\max} = 1$

12474 measured reflections 2320 independent reflections

Refinement

$R[F^2 > 3\sigma(F^2)] = 0.028$	H atoms treated by a mixture of
$wR(F^2) = 0.067$	independent and constrained
S = 1.65	refinement
2320 reflections	$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm A}^{-3}$
166 parameters	$\Delta \rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3}$
1 restraint	

1991 reflections with $I > 3\sigma(I)$

 $R_{\rm int} = 0.044$

Table 1	
Hydrogen-bond geometry (Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} C2-H2\cdots O2^{i}\\ C14-H14\cdots O2^{ii}\\ O2-H20\cdots N1^{iii} \end{array}$	0.96 0.96 0.85 (2)	2.31 2.40 1.98 (2)	3.247 (3) 3.325 (3) 2.787 (2)	165 163 158 (3)
Symmetry codes: $-x + 2, y + \frac{1}{2}, -z + \frac{1}{2}.$	(i) $-x+2, y$	$-\frac{1}{2}, -z + \frac{1}{2};$ (ii)	$-x+1, y-\frac{1}{2}$	$\frac{1}{2}, -z + \frac{1}{2};$ (iii)

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006.

We acknowledge Golestan University for partial support of this work, the Institutional Research Plan No. AVOZ10100521 of the Institute of Physics, Prague, and the Praemium Academiae Project of the Academy of Sciences of the Czech Republic.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2433).

References

- Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.
- Akkurt, M., Jarrahpour, A., Aye, M., Gençaslan, M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o2087.
- Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
- Dalapati, S., Alam, M. A., Jana, S. & Guchhait, N. (2011). J. Fluorine Chem. 132, 536-540.
- Fejfarová, K., Khalaji, A. D. & Dušek, M. (2010a). Acta Cryst. E66, o2062.
- Fejfarová, K., Khalaji, A. D. & Dušek, M. (2010b). Acta Cryst. E66, o2874.
- Khalaji, A. D., Slawin, A. M. Z. & Woollins, J. D. (2007). Acta Cryst. E63, 04257.
- Khalaji, A. D., Weil, M., Gotoh, K. & Ishida, H. (2009). Acta Cryst. E65, 0436.
- Özek, A., Albayrak, Ç. & Büyükgüngör, O. (2009). Acta Cryst. E65, o2705.
- Özek, A., Koşar, B., Albayrak, Ç. & Büyükgüngör, O. (2010). Acta Cryst. E66, 0684.
- Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Prague, Czech Republic.
- Silva, C. M. da, da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M., Martins, C. V. B. & de Fatima, A. (2011). J. Adv. Res. 2, 1-8.
- Sun, Y., Wang, Y., Liu, Z., Huang, C. & Yu, C. (2012). Spectrochim. Acta A, 96, 42

supporting information

Acta Cryst. (2012). E68, o2466 [https://doi.org/10.1107/S1600536812031704]

(E)-4-[(4-Bromophenyl)iminomethyl]-2-methoxyphenol

Karla Fejfarová, Michal Dušek, Sepideh Maghsodlou Rad and Aliakbar Dehno Khalaji

S1. Comment

Schiff base compounds exhibit a broad range of biological activities, including antifungal and antibacterial properties (da Silva *et al.*, 2011). They are used as anion sensors (Dalapati *et al.*, 2011) and as non-linear optics compounds (Sun *et al.*, 2012).

The present work is part of a ongoing structural study of Schiff bases (Khalaji *et al.*, 2009; Fejfarová *et al.*, 2010*a,b*) and we report here the structure of (*E*)-(4-hydroxy-3-methoxybenzylidene)-4-bromoaniline, (1). In the crystal, the dihedral angle between the two phenyl rings is 37.87 (10)° and the molecule has an *E* conformation about the central C=N bond. The methoxy group is slightly twisted from the attached benzene ring [C2—C3—O1—C7 = 13.8 (3)°]. The C=N and C—N bond lengths of 1.283 (3) Å and 1.419 (3) Å agree well with the corresponding distances in other Schiff bases (Akkurt *et al.*, 2008; Özek *et al.*, 2009, 2010; Khalaji *et al.*, 2007, 2009; Fejfarová *et al.*, 2010*a,b*).

The molecules are connected by intermolecular O—H···N hydrogen bonds, forming zigzag chains parallel to the *b* axis (Fig. 2). The crystal structure is further stabilized by intermolecular C—H···O hydrogen bonds.

S2. Experimental

To a stirring solution of the 4-hydroxy-3-methoxybenzaldehyde (0.2 mmol, in 5 ml of methanol) was added 4-bromoaniline (0.2 mmol) in 10 ml of methanol, and the mixture was stirred for 1 h in air at 323 K and was then left at room temperature for several days without disturbance yielding suitable crystals of (1) that subsequently were filtered off and washed with Et_2O . Yield: 91%.

S3. Refinement

All H atoms bonded to carbon atoms were positioned geometrically and treated as riding on their parent atoms. The methyl H atoms were allowed to rotate freely about the adjacent C—O bonds. The hydroxyl H atoms were found in difference Fourier maps and their coordinates were refined with a restraint on the O—H bond length 0.85 Å with σ of 0.01. All hydrogen atoms were refined with thermal displacement coefficients $U_{iso}(H)$ set to $1.5U_{eq}(C, O)$ for methyl and hydroxyl groups and to 1.2Ueq(C) for the CH and CH₂ groups.

Figure 2

Packing of molecules in direction of *a* axis. Hydrogen bonds are drawn as dashed lines.

(E)-4-[(4-Bromophenyl)iminomethyl]-2-methoxyphenol

Crystal data

 $C_{14}H_{12}BrNO_2$ $\beta = 97.798 (4)^{\circ}$ $M_r = 306.2$ $V = 1306.22 (10) \text{ Å}^3$ Monoclinic, $P2_1/c$ Z = 4Hall symbol: -P 2ybcF(000) = 616a = 6.5692 (3) Å $D_x = 1.556 \text{ Mg m}^{-3}$ b = 11.4323 (4) Å $Cu K\alpha$ radiation, $\lambda = 1.5418 \text{ Å}$ c = 17.5552 (9) ÅCell parameters from 6414 reflections

 $\theta = 3.9-66.9^{\circ}$ $\mu = 4.24 \text{ mm}^{-1}$ T = 120 K

Data collection

Agilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu)
detector
Radiation source: Enhance Ultra (Cu) X-ray
Source
Mirror monochromator
Detector resolution: 10.3784 pixels mm ⁻¹
Rotation method data acquisition using ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)

Refinement

Refinement on F^2 $R[F > 3\sigma(F)] = 0.028$ wR(F) = 0.067 S = 1.65	H atoms treated by a mixture of independent and constrained refinement Weighting scheme based on measured s.u.'s $w = 1/(\sigma^2(I) + 0.0004I^2)$
2320 reflections 166 parameters	$(\Delta/\sigma)_{max} = 0.0003$ $\Delta\rho_{max} = 0.27 \text{ e} \text{ Å}^{-3}$
1 restraint 45 constraints	$\Delta \rho_{\min} = -0.37 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. Absorption correction: *CrysAlis PRO* (Agilent, 2011) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Refinement. The refinement was carried out against all reflections. The conventional *R*-factor is always based on *F*. The goodness of fit as well as the weighted *R*-factor are based on *F* and F^2 for refinement carried out on *F* and F^2 , respectively. The threshold expression is used only for calculating *R*-factors *etc*. and it is not relevant to the choice of reflections for refinement.

Plate, colourless

 $0.33 \times 0.13 \times 0.04 \text{ mm}$

 $T_{\min} = 0.432, T_{\max} = 1$ 12474 measured reflections 2320 independent reflections 1991 reflections with $I > 3\sigma(I)$

 $\theta_{\rm max} = 67.0^\circ, \ \theta_{\rm min} = 4.6^\circ$

 $R_{\rm int} = 0.044$

 $h = -7 \rightarrow 7$ $k = -13 \rightarrow 13$ $l = -19 \rightarrow 20$

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the *SHELX* program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.68807 (4)	0.03813 (2)	0.611307 (17)	0.04255 (10)	
01	1.0904 (2)	0.70826 (13)	0.18744 (10)	0.0341 (5)	
O2	0.8114 (2)	0.88161 (13)	0.17128 (9)	0.0283 (5)	
N1	0.8397 (3)	0.43584 (16)	0.39607 (10)	0.0260 (6)	
C1	0.7469 (3)	0.61449 (19)	0.32641 (12)	0.0268 (6)	
C2	0.9135 (3)	0.61379 (19)	0.28390 (13)	0.0278 (7)	
C3	0.9362 (3)	0.70156 (18)	0.23240 (13)	0.0260 (6)	
C4	0.7941 (3)	0.79425 (18)	0.22238 (13)	0.0252 (6)	
C5	0.6294 (3)	0.79520 (19)	0.26391 (13)	0.0292 (7)	
C6	0.6055 (3)	0.70607 (19)	0.31557 (13)	0.0296 (7)	
C7	1.2114 (4)	0.6054 (2)	0.18148 (15)	0.0342 (8)	
C8	0.7179 (3)	0.52315 (19)	0.38158 (12)	0.0278 (7)	
C9	0.7943 (3)	0.34873 (18)	0.44886 (12)	0.0263 (6)	

supporting information

C10	0.9598 (3)	0.29543 (19)	0.49366 (13)	0.0304 (7)
C11	0.9292 (4)	0.2049 (2)	0.54324 (13)	0.0326 (7)
C12	0.7312 (4)	0.16602 (19)	0.54612 (13)	0.0308 (7)
C13	0.5637 (3)	0.21731 (19)	0.50239 (13)	0.0312 (7)
C14	0.5954 (3)	0.30931 (19)	0.45378 (13)	0.0281 (7)
H2	1.012127	0.551422	0.290947	0.0333*
Н5	0.531306	0.857837	0.256922	0.035*
H6	0.490709	0.70739	0.344094	0.0355*
H7a	1.305933	0.618817	0.14521	0.0513*
H7b	1.286592	0.587401	0.230856	0.0513*
H7c	1.12292	0.541111	0.164378	0.0513*
H8	0.600817	0.52848	0.408718	0.0334*
H10	1.096928	0.321827	0.490106	0.0365*
H11	1.043401	0.169756	0.575023	0.0391*
H13	0.42723	0.189582	0.505637	0.0374*
H14	0.480191	0.345928	0.423465	0.0337*
H2o	0.930 (2)	0.882 (2)	0.1576 (16)	0.0424*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.04436 (17)	0.03681 (16)	0.05028 (18)	0.00744 (11)	0.02019 (12)	0.01743 (12)
O1	0.0363 (9)	0.0270 (8)	0.0426 (9)	0.0074 (6)	0.0190 (7)	0.0074 (7)
O2	0.0264 (8)	0.0245 (8)	0.0347 (9)	0.0004 (6)	0.0066 (6)	0.0055 (6)
N1	0.0294 (9)	0.0254 (9)	0.0235 (9)	-0.0014 (7)	0.0044 (8)	0.0003 (7)
C1	0.0314 (11)	0.0256 (11)	0.0237 (11)	0.0006 (9)	0.0050 (9)	-0.0045 (9)
C2	0.0310 (11)	0.0240 (11)	0.0287 (11)	0.0035 (9)	0.0054 (9)	-0.0003 (9)
C3	0.0275 (10)	0.0251 (11)	0.0261 (11)	-0.0003 (8)	0.0063 (9)	-0.0029 (9)
C4	0.0264 (10)	0.0216 (10)	0.0271 (11)	-0.0035 (8)	0.0014 (9)	-0.0031 (9)
C5	0.0294 (11)	0.0259 (11)	0.0327 (12)	0.0030 (9)	0.0062 (9)	-0.0012 (9)
C6	0.0306 (11)	0.0297 (11)	0.0299 (12)	0.0018 (9)	0.0093 (9)	-0.0022 (9)
C7	0.0317 (12)	0.0276 (12)	0.0459 (14)	0.0044 (9)	0.0146 (11)	0.0005 (10)
C8	0.0315 (11)	0.0288 (12)	0.0243 (11)	-0.0001 (9)	0.0075 (9)	-0.0043 (9)
C9	0.0321 (11)	0.0237 (11)	0.0237 (11)	0.0004 (8)	0.0066 (9)	-0.0037 (9)
C10	0.0255 (11)	0.0327 (12)	0.0331 (12)	-0.0009 (9)	0.0043 (9)	0.0011 (10)
C11	0.0317 (12)	0.0339 (13)	0.0317 (12)	0.0057 (9)	0.0025 (10)	0.0053 (10)
C12	0.0349 (12)	0.0271 (11)	0.0318 (12)	0.0024 (9)	0.0101 (10)	0.0035 (9)
C13	0.0276 (11)	0.0321 (12)	0.0356 (13)	-0.0005 (9)	0.0108 (10)	-0.0005 (10)
C14	0.0275 (11)	0.0302 (12)	0.0273 (11)	0.0032 (9)	0.0060 (9)	0.0010 (9)

Geometric parameters (Å, °)

Br1—C12	1.901 (2)	С6—Н6	0.96	
O1—C3	1.368 (3)	C7—H7a	0.96	
O1—C7	1.431 (3)	C7—H7b	0.96	
O2—C4	1.358 (3)	C7—H7c	0.96	
O2—H2o	0.846 (19)	C8—H8	0.96	
N1—C8	1.283 (3)	C9—C10	1.393 (3)	

supporting information

N1—C9	1.419 (3)	C9—C14	1.396 (3)
C1—C2	1.406 (3)	C10—C11	1.385 (3)
C1—C6	1.396 (3)	C10—H10	0.96
C1—C8	1.454 (3)	C11—C12	1.382 (3)
C2—C3	1.372 (3)	C11—H11	0.96
С2—Н2	0.96	C12—C13	1.384 (3)
C3—C4	1.407 (3)	C13—C14	1.388 (3)
C4—C5	1.384 (3)	С13—Н13	0.96
C5—C6	1.387 (3)	C14—H14	0.96
С5—Н5	0.96		
C3—O1—C7	117.28 (17)	H7a—C7—H7b	109.4709
C4—O2—H2o	111.1 (19)	H7a—C7—H7c	109.4715
C8—N1—C9	119.6 (2)	H7b—C7—H7c	109.4709
C2—C1—C6	118.9 (2)	N1-C8-C1	123.8 (2)
C2—C1—C8	122.1 (2)	N1—C8—H8	118.1105
C6—C1—C8	119.0 (2)	C1—C8—H8	118.1102
C1—C2—C3	120.5 (2)	N1-C9-C10	117.3 (2)
С1—С2—Н2	119.7453	N1-C9-C14	123.25 (18)
С3—С2—Н2	119.747	C10—C9—C14	119.3 (2)
O1—C3—C2	125.18 (19)	C9—C10—C11	120.9 (2)
O1—C3—C4	114.60 (19)	С9—С10—Н10	119.5592
C2—C3—C4	120.2 (2)	C11—C10—H10	119.5589
O2—C4—C3	121.5 (2)	C10-C11-C12	118.7 (2)
O2—C4—C5	118.94 (19)	C10-C11-H11	120.6272
C3—C4—C5	119.5 (2)	C12—C11—H11	120.6256
C4—C5—C6	120.3 (2)	Br1-C12-C11	119.14 (17)
С4—С5—Н5	119.8487	Br1-C12-C13	119.19 (18)
С6—С5—Н5	119.849	C11—C12—C13	121.7 (2)
C1—C6—C5	120.5 (2)	C12—C13—C14	119.2 (2)
С1—С6—Н6	119.7435	С12—С13—Н13	120.3851
С5—С6—Н6	119.7433	C14—C13—H13	120.3861
O1—C7—H7a	109.4713	C9—C14—C13	120.15 (19)
O1—C7—H7b	109.4714	C9—C14—H14	119.9259
O1—C7—H7c	109.4714	C13—C14—H14	119.925
C2—C3—O1—C7	13.8 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C2—H2···O2 ⁱ	0.96	2.31	3.247 (3)	165
C14—H14…O2 ⁱⁱ	0.96	2.40	3.325 (3)	163
O2—H2o···N1 ⁱⁱⁱ	0.85 (2)	1.98 (2)	2.787 (2)	158 (3)

Symmetry codes: (i) -*x*+2, *y*-1/2, -*z*+1/2; (ii) -*x*+1, *y*-1/2, -*z*+1/2; (iii) -*x*+2, *y*+1/2, -*z*+1/2.