metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[(1,10-phenanthroline) $cobalt]-\mu-2,4'-oxydibenzoato]$

Hai-Kang Guo, Feng Fu,* Long Tang, Xiang-Yang Hou and lia Cao

Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China Correspondence e-mail: yadxgncl@126.com

Received 12 June 2012; accepted 11 July 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.008 Å; R factor = 0.073; wR factor = 0.141; data-to-parameter ratio = 12.8.

In the title compound, $[Co(C_{14}H_8O_5)(C_{12}H_8N_2)]_n$, the Co^{II} atom is six-coordinated in a distorted octahedral coordination geometry by four O atoms from two chelating carboxylate groups from different 2,4'-oxydibenzoate anions and by two N atoms from a 1,10-phenanthroline (phen) ligand. The two benzene rings of the 2,4'-oxydibenzoate ligand form a dihedral angle of 77.14 (16)°. Adjacent Co^{II} atoms are bridged by 2,4'oxydibenzoate anions to form a helical chain that propagates along the *b*-axis direction. Neighboring chains are further assembled by intermolecular π - π stacking interactions between inversion-related phen ligands [centroid-to-centroid distance = 4.0869(8) Å] to form a two-dimensional supramolecular architecture.

Related literature

For related structures and the properties of coordination polymers, see: Han et al. (2005); Xue et al. (2009); Sun et al. (2010); Wang et al. (2010).

Experimental

Crystal data

 $[Co(C_{14}H_8O_5)(C_{12}H_8N_2)]$ V = 2230.3 (8) Å³ $M_r = 495.34$ Z = 4Monoclinic, $P2_1/n$ a = 7.8524 (16) Å b = 15.345(3)Å c = 18.778 (4) Å $\beta = 99.72(3)$

Data collection

Bruker SMART diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.782, T_{\max} = 0.898$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.073$ $wR(F^2) = 0.141$ S = 1.153921 reflections

Mo $K\alpha$ radiation $\mu = 0.81 \text{ mm}^{-1}$ T = 293 K $0.40 \times 0.20 \times 0.15 \text{ mm}$

18945 measured reflections 3921 independent reflections 2794 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.066$

307 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.29 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

This work was supported by the National Natural Science Foundation of China (grant No. 21003103) and the Key Scientific Research Foundation of Shaanxi Provincial Education Office of China (grant No. 2010JS061).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2423).

References

- Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany
- Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Han, Z. B., Cheng, X. N. & Chen, X. M. (2005). Cryst. Growth Des. 5, 695-700. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sun, J. K., Yao, Q. X., Ju, Z. F. & Zhang, J. (2010). CrystEngComm, 12, 1709-1711.
- Wang, H. L., Zhang, D. P., Sun, D. F., Chen, Y. T., Wang, K., Ni, Z. H., Tian, L. J. & Jiang, J. Z. (2010). CrystEngComm, 12, 1096-1102.
- Xue, D. X., Lin, J. B., Zhang, J. P. & Chen, X. M. (2009). CrystEngComm, 11, 183-188.

supporting information

Acta Cryst. (2012). E68, m1078 [https://doi.org/10.1107/S1600536812031534] *catena*-Poly[[(1,10-phenanthroline)cobalt]-μ-2,4'-oxydibenzoato] Hai-Kang Guo, Feng Fu, Long Tang, Xiang-Yang Hou and Jia Cao

S1. Comment

The rational design and syntheses of metal–organic frameworks has been of increasing interest in the crystal engineering of coordination polymers owing to their ability to provide diverse assemblies with fascinating topological structures and material properties (Han *et al.*, 2005; Xue *et al.*,2009). The semi-rigid V-shaped multi-carboxylate ligands with two benzene rings, which contain a central molecular framework that can be bridged by an oxygen atom, have sufficient flexibility that they can freely twist around the oxygen atom, leading to metal complexes with diverse structures in the assembly process (Sun *et al.*, 2010; Wang *et al.*, 2010).

The asymmetric unit contains one Co^{II} ion, one 1,10-phenanthroline ligand and one 2,4'-oxydibenzoate anion. Each Co^{II} atom has a distorted octahedral geometry and is six-coordinated by four O atoms from two chelating carboxylate groups of non-symmetry related 2,4'-oxydibenzoate ligands and by two N atoms from a 1,10-phenanthroline molecule (Fig. 1). The Co—O bond distances vary from 2.077 (3) to 2.201 (3) Å and the Co—N bond lengths are 2.077 (4) and 2.107 (4) Å. Adjacent Co^{II} atoms are linked by 2,4'-oxydibenzoate ligands with carboxyl groups to form infinite one-dimensional helical chains along the b-axis direction (Fig. 2). Neighboring chains are further assembled by intermolecular π - π stacking interaction between the phenanthroline ring systems with a ring centroid-centroid distance of 4.0869 (8) Å, forming a two-dimensional supramolecular architecture (Fig. 3).

S2. Experimental

A mixture of $CoSO_4.7H_2O$ (0.0149, 0.05 mmol), 2,4'-oxybis(benzoic acid) (0.0129, 0.05 mmol), 1,10-phenanthroline (0.0099 g, 0.05 mmol), H₂O (8 ml) was sealed in 25 ml Teflon-lined stainless steel reactor, which was heated to 413 K for 5 d and was subsequently cooled slowly to room temperature. Red block-shaped crystals were collected in 47% yield based on Co.

S3. Refinement

All H atoms were positioned geometrically (C—H = 0.93Å) and allowed to ride on their parent atoms, with $U_{iso}(H)$ values equal to $1.2U_{eq}(C)$.

Figure 1

The coordination environment of Co^{II} atoms in the title compound, with thermal ellipsoids drawn at the 50% level. Symmetry code: A -x + 3/2, y + 1/2, -z + 3/2.

Figure 2

The helical chain formed by molecules of the title compound that extends along *b*-axis.

Figure 3

The 2D supramolecular structure formed through π - π interactions.

catena-Poly[[(1,10-phenanthroline)cobalt]-µ-2,4'-oxydibenzoato]

Crystal data

 $[Co(C_{14}H_8O_5)(C_{12}H_8N_2)]$ $M_r = 495.34$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 7.8524 (16) Å b = 15.345 (3) Å c = 18.778 (4) Å $\beta = 99.72$ (3)° V = 2230.3 (8) Å³ Z = 4

Data collection

Bruker SMART	18945 measured reflections
diffractometer	3921 independent reflections
Radiation source: fine-focus sealed tube	2794 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.066$
φ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
Absorption correction: multi-scan	$h = -9 \longrightarrow 8$
(SADABS; Sheldrick, 1996)	$k = -18 \rightarrow 15$
$T_{\min} = 0.782, \ T_{\max} = 0.898$	$l = -22 \rightarrow 22$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.073$	Hydrogen site location: inferred from
$wR(F^2) = 0.141$	neighbouring sites
<i>S</i> = 1.15	H-atom parameters constrained
3921 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0374P)^2 + 2.4235P]$
307 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.003$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.29 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.35 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

F(000) = 1012

 $\theta = 3.0 - 25.4^{\circ}$

 $\mu = 0.81 \text{ mm}^{-1}$ T = 293 K

Block, red

 $D_{\rm x} = 1.475 {\rm Mg} {\rm m}^{-3}$

 $0.40 \times 0.20 \times 0.15 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 5540 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
04	0.6161 (4)	0.7767 (2)	0.64914 (18)	0.0608 (9)	
05	0.8475 (5)	0.7208 (2)	0.61748 (19)	0.0631 (9)	
C14	0.6932 (7)	0.7120 (3)	0.6281 (3)	0.0535 (12)	
C11	0.6083 (6)	0.6252 (3)	0.6175 (2)	0.0483 (11)	

C12	0.4465 (7)	0.6116 (3)	0.6354 (3)	0.0630 (14)
H12	0.3881	0.6578	0.6524	0.076*
C10	0.6901 (6)	0.5560 (3)	0.5906 (2)	0.0562 (13)
H10	0.7981	0.5640	0.5776	0.067*
C13	0.3704 (7)	0.5299 (3)	0.6283 (3)	0.0632 (14)
H13	0.2624	0.5210	0.6411	0.076*
Co1	0.66874 (8)	0.35628 (4)	0.84782 (3)	0.0515 (2)
02	0.5626 (4)	0.3396 (2)	0.73244 (17)	0.0595 (9)
C19	0.8855 (7)	0.6524 (3)	0.9794 (4)	0.0756 (18)
H19	0.9317	0.7083	0.9855	0.091*
03	0.3900 (4)	0.3788 (2)	0.59100 (17)	0.0586 (9)
N2	0.6821 (5)	0.4027 (2)	0.9525 (2)	0.0516 (10)
C6	0.0948 (7)	0.3431 (3)	0.5734 (3)	0.0661 (14)
H6	0.0913	0.3523	0.5242	0.079*
C26	0.7996 (6)	0.5268 (3)	0.9018 (3)	0.0525 (12)
C1	0.4169 (6)	0.3533 (3)	0.7488 (3)	0.0507 (11)
01	0.4041 (4)	0.3737 (2)	0.81312 (18)	0.0678 (10)
C7	0.2449 (6)	0.3566 (3)	0.6210 (3)	0.0523 (12)
N1	0.7779 (5)	0.4804 (2)	0.8387 (2)	0.0566 (10)
C2	0.2544 (6)	0.3446 (3)	0.6948 (2)	0.0476 (11)
C8	0.4557 (6)	0.4624 (3)	0.6022 (2)	0.0502 (12)
C18	0.8689 (6)	0.6116 (3)	0.9098 (3)	0.0653(15)
C17	0.9161 (7)	0.6477 (4)	0.8483 (4)	0.0824(19)
H17	0.9620	0.7037	0.8504	0.099*
C24	0.6333 (6)	0.3639 (4)	1.0079 (3)	0.0619 (13)
H24	0.5872	0.3081	1.0010	0.074*
C4	-0.0473(7)	0 3059 (4)	0 6720 (4)	0.0783(18)
H4	-0.1467	0.2898	0.6894	0.094*
C9	0.6133 (7)	0.4752(3)	0 5827 (3)	0.0568 (13)
H9	0.6690	0.4292	0.5641	0.068*
C23	0.6459 (7)	0 4005 (4)	1 0763 (3)	0.0736 (16)
H23	0.6098	0 3698	1 1138	0.088*
C5	-0.0513(7)	0.3157 (4)	0.5990 (4)	0.0784 (17)
H5	-0.1523	0.3039	0.5668	0.094*
C22	0.7118 (7)	0.4819 (4)	1.0872 (3)	0.0720 (16)
H22	0.7215	0.5077	1.1325	0.086*
C20	0.8358 (7)	0.6121 (4)	1.0358 (4)	0.0783 (18)
H20	0.8483	0.6409	1 0800	0.094*
C21	0.7651 (6)	0 5271 (4)	1.0304(3)	0.051
C15	0.8250 (7)	0 5179 (4)	0 7816 (3)	0.0729(16)
H15	0.8106	0 4877	0 7380	0.087*
C16	0.8963 (8)	0.6026 (4)	0.7850 (4)	0.087(2)
H16	0.9296	0.6274	0.7442	0.104*
C3	0.1048 (7)	0.3200 (3)	0.7192 (3)	0.0627 (14)
H3	0.1069	0.3127	0.7685	0.075*
C25	0.7487 (6)	0.4845 (3)	0.9629 (3)	0.0509 (12)
				()

supporting information

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
04	0.069 (2)	0.043 (2)	0.072 (2)	-0.0033 (17)	0.0164 (18)	-0.0001 (17)
05	0.068 (2)	0.046 (2)	0.078 (3)	-0.0039 (18)	0.0199 (19)	0.0048 (17)
C14	0.063 (3)	0.048 (3)	0.048 (3)	0.000 (3)	0.005 (2)	0.010 (2)
C11	0.054 (3)	0.040 (3)	0.051 (3)	-0.008(2)	0.009 (2)	0.003 (2)
C12	0.065 (3)	0.043 (3)	0.083 (4)	-0.001 (3)	0.018 (3)	-0.004 (3)
C10	0.057 (3)	0.055 (3)	0.058 (3)	-0.008(3)	0.016 (2)	0.007 (3)
C13	0.066 (3)	0.047 (3)	0.081 (4)	-0.012 (3)	0.025 (3)	-0.007 (3)
Col	0.0622 (4)	0.0414 (4)	0.0508 (4)	0.0034 (3)	0.0096 (3)	-0.0037(3)
O2	0.052 (2)	0.071 (2)	0.057 (2)	0.0007 (17)	0.0132 (16)	-0.0115 (17)
C19	0.064 (4)	0.036 (3)	0.111 (5)	0.008 (3)	-0.029(3)	-0.022 (3)
03	0.072 (2)	0.050 (2)	0.056 (2)	-0.0153 (17)	0.0190 (17)	-0.0088 (16)
N2	0.058 (2)	0.041 (2)	0.056 (3)	0.0075 (19)	0.011 (2)	0.0021 (19)
C6	0.074 (4)	0.052 (3)	0.068 (4)	-0.010 (3)	0.000 (3)	-0.009(3)
C26	0.045 (3)	0.036 (3)	0.071 (4)	0.009 (2)	-0.005 (2)	-0.001 (2)
C1	0.064 (3)	0.036 (2)	0.054 (3)	0.001 (2)	0.014 (2)	-0.008(2)
01	0.072 (2)	0.084 (3)	0.049 (2)	0.0129 (19)	0.0150 (17)	-0.0154 (19)
C7	0.060 (3)	0.045 (3)	0.053 (3)	-0.009(2)	0.010 (2)	-0.012 (2)
N1	0.071 (3)	0.044 (2)	0.053 (3)	0.008 (2)	0.005 (2)	0.011 (2)
C2	0.050 (3)	0.042 (3)	0.052 (3)	-0.004 (2)	0.014 (2)	-0.012 (2)
C8	0.069 (3)	0.040 (3)	0.042 (3)	-0.007 (2)	0.009 (2)	0.001 (2)
C18	0.057 (3)	0.043 (3)	0.088 (4)	0.010 (2)	-0.013 (3)	0.015 (3)
C17	0.070 (4)	0.050 (3)	0.114 (6)	-0.004 (3)	-0.025 (4)	0.012 (4)
C24	0.066 (3)	0.060 (3)	0.061 (3)	0.007 (3)	0.013 (3)	0.002 (3)
C4	0.056 (3)	0.073 (4)	0.111 (5)	-0.017 (3)	0.027 (3)	-0.032 (4)
C9	0.072 (3)	0.044 (3)	0.058 (3)	0.001 (3)	0.020 (3)	-0.003 (2)
C23	0.072 (4)	0.089 (5)	0.061 (4)	0.020 (3)	0.013 (3)	-0.002 (3)
C5	0.061 (4)	0.071 (4)	0.097 (5)	-0.003 (3)	-0.005 (3)	-0.031 (4)
C22	0.067 (4)	0.094 (5)	0.053 (4)	0.031 (3)	0.004 (3)	-0.015 (3)
C20	0.074 (4)	0.067 (4)	0.086 (5)	0.022 (3)	-0.011 (3)	-0.017 (4)
C21	0.050 (3)	0.057 (3)	0.074 (4)	0.020 (3)	-0.011 (3)	-0.020(3)
C15	0.083 (4)	0.073 (4)	0.060 (4)	0.000 (3)	0.003 (3)	0.019 (3)
C16	0.077 (4)	0.080 (4)	0.097 (5)	-0.007 (3)	-0.005 (4)	0.047 (4)
C3	0.061 (3)	0.060 (3)	0.072 (4)	-0.006 (3)	0.025 (3)	-0.010 (3)
C25	0.050 (3)	0.045 (3)	0.054 (3)	0.016 (2)	-0.002 (2)	-0.004 (2)

Geometric parameters (Å, °)

O4—C14	1.261 (5)	С6—Н6	0.9300	_
O4—Co1 ⁱ	2.077 (3)	C26—N1	1.369 (6)	
O5—C14	1.267 (5)	C26—C18	1.408 (7)	
O5-Co1 ⁱ	2.190 (3)	C26—C25	1.432 (7)	
C14—C11	1.488 (6)	C1—O1	1.269 (5)	
C14—Co1 ⁱ	2.473 (5)	C1—C2	1.495 (6)	
C11—C10	1.381 (6)	C7—C2	1.387 (6)	
C11—C12	1.384 (6)	N1-C15	1.324 (6)	

C12—C13	1.385 (6)	C2—C3	1.384 (6)
C12—H12	0.9300	C8—C9	1.363 (6)
С10—С9	1.375 (6)	C18—C17	1.385 (8)
C10—H10	0.9300	C17—C16	1.363 (8)
С13—С8	1.368 (6)	C17—H17	0.9300
С13—Н13	0.9300	C24—C23	1.390 (7)
Co1—N2	2.077 (4)	C24—H24	0.9300
Co1—O4 ⁱⁱ	2.077 (3)	C4—C5	1.374 (8)
Co1	2.087 (3)	C4—C3	1.379 (7)
Co1—N1	2,107 (4)	C4—H4	0.9300
$Co1 - O5^{ii}$	2.107(1) 2.190(3)	C9—H9	0.9300
Col = 02	2.190(3)	$C^{23} - C^{22}$	1 354 (8)
$Co1 - C14^{ii}$	2.201(5) 2 473(5)	С23—Н23	0.9300
02-C1	1,252(5)	C5—H5	0.9300
C_{19} C_{20}	1.232(3) 1 342(8)	C^{22} C^{21}	1 395 (8)
C19 - C18	1.342(0) 1 436(8)	C22_H22	0.9300
C19 $H19$	0.9300	C_{20} C_{21}	1 415 (8)
$O_3 C_8$	1 385 (5)	$C_{20} = C_{21}$	0.9300
03-03	1.305 (5)	$C_{20} = 1120$	1.412(7)
N2 C24	1.370(5)	$C_{21} = C_{23}$	1.412(7)
N2 C25	1.312 (0)	C15—C10	0.9300
C_{6}	1.301(0) 1.360(7)	C16 H16	0.9300
$C_0 = C_1$	1.309(7) 1.382(7)	C_{10} H_{2}	0.9300
0-03	1.362 (7)	C3—113	0.9300
C14-04-Co1 ⁱ	923(3)	01 - C1 - C2	118 2 (4)
$C14 - 05 - Co1^{i}$	92.3 (3) 87.1 (3)	$C_1 = C_1 = C_2$	918(3)
04 C14 05	1102(4)	C_{1}^{-}	121.8(5)
04 - C14 - C11	119.2 (4) 121 2 (4)	$C_{0} = C_{7} = C_{2}$	121.8(3) 1164(4)
05 - C14 - C11	121.2(4) 110 5 (4)	$C_{0} = C_{7} = C_{3}$	110.4(4)
04 C14 Col ⁱ	57.1(2)	$C_2 = C_7 = O_3$	121.7(4) 117.6(5)
04 - C14 - C01	57.1(2)	$C_{13} = N_1 = C_{20}$	117.0(3) 120.2(4)
$C_{11} = C_{14} = C_{01}$	02.2(2)	C15—N1—C01	129.2(4)
C10 - C11 - C12	177.0(4)	C_{20} N_{1} C_{01} C_{7}	113.1(3)
C10-C11-C12	110.4 (4)	$C_{3} = C_{2} = C_{1}$	117.4 (4)
C10-C11-C14	120.8(4)	$C_{3} - C_{2} - C_{1}$	118.4(4) 124.1(4)
C12 - C11 - C14	120.8 (4)	$C_{1} = C_{2} = C_{1}$	124.1(4)
C11 - C12 - C13	120.8 (5)	$C_{9} = C_{8} = C_{13}$	120.5 (4)
C11—C12—H12	119.6	$C_{9} = C_{8} = O_{3}$	115.1 (4)
C13 - C12 - H12	119.0	C13 - C8 - O3	124.3 (4)
	120.0 (4)	C1/-C18-C20	115.8 (6)
C9—C10—H10	119.7	C1/-C18-C19	125.9 (6)
CII—CI0—HI0	119.7	$C_{26} - C_{18} - C_{19}$	118.3 (6)
C_{0} C_{12} U_{12}	119.4 (5)		121.1 (6)
C8-C13-H13	120.3		119.5
C12—C13—H13	120.3		119.5
$N2-Co1-O4^{n}$	105.35 (14)	N2	124.4 (5)
N_2 —Col—Ol	98.04 (14)	N2—C24—H24	117.8
U4"—Co1—O1	147.79 (14)	C23—C24—H24	117.8
N2-Co1-N1	79.09 (16)	C5 - C4 - C3	119.7 (5)

O4 ⁱⁱ —Co1—N1	101.12 (15)	С5—С4—Н4	120.2
O1—Co1—N1	104.84 (15)	C3—C4—H4	120.2
N2—Co1—O5 ⁱⁱ	92.31 (14)	C8—C9—C10	120.2 (5)
O4 ⁱⁱ —Co1—O5 ⁱⁱ	61.42 (13)	С8—С9—Н9	119.9
O1—Co1—O5 ⁱⁱ	96.30 (14)	С10—С9—Н9	119.9
N1—Co1—O5 ⁱⁱ	158.04 (14)	C22—C23—C24	118.6 (6)
N2—Co1—O2	157.20 (13)	С22—С23—Н23	120.7
O4 ⁱⁱ —Co1—O2	97.45 (13)	С24—С23—Н23	120.7
O1—Co1—O2	61.06 (12)	C4—C5—C6	120.0 (5)
N1—Co1—O2	96.71 (14)	С4—С5—Н5	120.0
O5 ⁱⁱ —Co1—O2	98.68 (13)	С6—С5—Н5	120.0
N2—Co1—C14 ⁱⁱ	100.58 (15)	C23—C22—C21	120.0 (5)
O4 ⁱⁱ —Co1—C14 ⁱⁱ	30.64 (14)	С23—С22—Н22	120.0
O1—Co1—C14 ⁱⁱ	123.66 (16)	C21—C22—H22	120.0
N1—Co1—C14 ⁱⁱ	130.70 (17)	C19—C20—C21	122.1 (6)
O5 ⁱⁱ —Co1—C14 ⁱⁱ	30.78 (13)	С19—С20—Н20	119.0
O2—Co1—C14 ⁱⁱ	99.04 (14)	C21—C20—H20	119.0
C1—O2—Co1	87.1 (3)	C22—C21—C25	117.6 (5)
C20—C19—C18	121.6 (5)	C22—C21—C20	124.6 (6)
С20—С19—Н19	119.2	C25—C21—C20	117.8 (6)
C18—C19—H19	119.2	N1-C15-C16	121.8 (6)
C8—O3—C7	118.2 (4)	N1—C15—H15	119.1
C24—N2—C25	117.5 (4)	C16—C15—H15	119.1
C24—N2—Co1	128.4 (4)	C17—C16—C15	119.5 (6)
C25—N2—Co1	114.1 (3)	С17—С16—Н16	120.2
C7—C6—C5	119.5 (5)	C15—C16—H16	120.2
С7—С6—Н6	120.2	C4—C3—C2	121.5 (5)
С5—С6—Н6	120.2	С4—С3—Н3	119.3
N1-C26-C18	124.2 (5)	С2—С3—Н3	119.3
N1—C26—C25	116.5 (4)	N2—C25—C21	122.0 (5)
C18—C26—C25	119.3 (5)	N2-C25-C26	117.1 (4)
O2—C1—O1	119.8 (4)	C21—C25—C26	120.9 (5)
O2—C1—C2	122.0 (4)		

Symmetry codes: (i) -x+3/2, y+1/2, -z+3/2; (ii) -x+3/2, y-1/2, -z+3/2.