Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(2,2'-Bipyridine- $\left.\kappa^{2} N, N^{\prime}\right)$ bis(4-formyl-benzoato- κO^{1})copper(II)

Jin-li Qi and Wei Xu*

Center of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
Correspondence e-mail: xuwei@nbu.edu.cn

Received 16 May 2012; accepted 7 July 2012
Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; R factor $=0.058 ; w R$ factor $=0.146$; data-to-parameter ratio $=17.0$.

The title mononuclear $\mathrm{Cu}^{\text {II }}$ complex, $\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2}\right.$ $\left.\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$, is comprised of a $\mathrm{Cu}^{\text {II }}$ cation, two 4-formylbenzoate $\left(L^{-}\right)$ligands and a 2,2'-bipyridine (bipy) ligand. The $\mathrm{Cu}^{\mathrm{II}}$ ion and bipy ligand lie on a crystallographic twofold rotation axis; the $\mathrm{Cu}^{\mathrm{II}}$ ion is coordinated by two N atoms from one bipy ligand and two O atoms from two different carboxylate groups of two L^{-}ligands, exhibiting effectively a distorted square-planar geometry. The complex molecules are interlinked to generate two-dimensional supramolecular layers in the $a b$ plane, formed by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, where the O acceptor is the O atom from the carboxylate group not involved in coordination to the $\mathrm{Cu}^{\mathrm{II}}$ ion. The twodimensional layers are stacked in a sequence via $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions where the formyl O atom acts as acceptor.

Related literature

For general background on the use of transition metal complexes containing carboxylate ligands and secondary building units, see: Sun et al. (2002); Liu et al. (2006); Xu et al. (2011). For related structures using the same metal, similar ligands and with a similar coordination environment, see: Liet al. (2007).

Experimental

Crystal data
$\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$
$M_{r}=517.96$

$$
Z=4
$$

Monoclinic, C2/c
$a=11.923$ (2) A
$b=10.992$ (2) \AA
$c=18.275$ (4) \AA
$\beta=100.11$ (3) ${ }^{\circ}$

Data collection

Rigaku R-AXIS RAPID diffractometer
Absorption correction: empirical (using intensity measurements) (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.820, T_{\text {max }}=0.925$

$$
V=2357.9(8) \AA^{3}
$$

Mo $K \alpha$ radiation
$\mu=0.97 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
$0.23 \times 0.17 \times 0.08 \mathrm{~mm}$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058 \quad 159$ parameters
$w R\left(F^{2}\right)=0.146 \quad \mathrm{H}$-atom parameters constrained
$S=1.23$
2698 reflections
$\Delta \rho_{\text {max }}=1.16 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.51 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{Cu}-\mathrm{O} 1$	$1.935(3)$	$\mathrm{Cu}-\mathrm{N}$	$1.984(3)$

Table 2
Hydrogen-bond geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{O}^{\text {ii }}$	0.93	2.58	$3.460(5)$	159
$\mathrm{C}^{\mathrm{iii}}$	0.93	2.58	$3.284(6)$	133

Symmetry codes: (ii) $x-\frac{1}{2}, y-\frac{1}{2}, z$; (iii) $x+\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$.
Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.

This project was supported by the Scientific Research Fund of Ningbo University (grant No. XKL069). Thanks are also extended to the K. C. Wong Magna Fund of Ningbo University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2165).

References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Li, C. H., He, X. M., Yang, Y. Q. \& Li, W. (2007). Chin. J. Inorg. Chem. 23, 1449-1452.

metal-organic compounds

Liu, F. Q., Wang, Q. X., Jiao, K., Jian, F. F., Guang, Y. L. \& Li, R. X. (2006). Inorg. Chim. Acta, 359, 1524-1530.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sun, J., Lin, J. L., Zheng, Y. Q. \& Wang, J. Y. (2002). J. Synth. Cryst. pp. 365369.

Xu, W., Liu, W., Yao, F. Y. \& Zheng, Y. Q. (2011). Inorg. Chim. Acta, 365, $297-$ 301.

supporting information

Acta Cryst. (2012). E68, m1062-m1063 [https://doi.org/10.1107/S1600536812031066]
(2,2'-Bipyridine- $\kappa^{2} N, N^{\prime}$)bis(4-formylbenzoato- κO^{1}) copper(II)

Jin-li Qi and Wei Xu

S1. Comment

Transition metal complexes with carboxylic acids using various secondary building units (SBUs) frequently show interesting physical, chemical and/or biological properties (Sun et al., 2002, Li et al., 2007, Liu et al., 2006). Herein, we are interested in selfassemblies of Cu^{2+} ions and 2,2'-bipydine (bipy) with 4-formylbenzoate, which led to the preparation of $\left[\mathrm{Cu}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2}\right]$.

The asymmetric unit contains a half $\mathrm{Cu}^{\text {II }}$ cation, a half bipy ligand and one 4-formylbenzoate ($L^{-}=p-\mathrm{CHO}^{-} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COO}^{-}$) ligand. Both the $\mathrm{Cu}^{\mathrm{II}}$ ion and bipy ligand lie on a crystallographic twofold rotation axis. In the complex, two crystallographically equivalent L^{-}anions function as monodentate ligands, while one bipy molecular functions as a terminal ligand adopting an expected chelating mode to coordinate with one $\mathrm{Cu}^{\mathrm{II}}$ ion, forming a mononuclear unit. The $\mathrm{Cu}^{\mathrm{II}}$ ion is coordinated by two nitrogen atoms (N and $\mathrm{N}^{\# 1}, \# 1=1-x, y, 1.5-z$) of one bipy ligand and two oxygen atoms ($\mathrm{O} 1, \mathrm{Ol}^{\# 1}$) from two different carboxylic groups of two L^{-}ligands exhibiting essentially distorted square planar geometry (Fig.1). The $\mathrm{Cu}-\mathrm{N} / \mathrm{O}$ bonds in the quadrilateral plane are 1.984 (3) and 1.934 (3) \AA, respectively. The cisoid bond angles fall in the region $80.9(1)-93.8(1)^{\circ}$, and transoid ones are both equal to $170.2(1)^{\circ}$, exhibiting substantial deviations from 90 and 180° for a quadrate. In comparison with literatures, the above bonding values are normal (Li et al., 2007).
The complex molecules are linked via weak $\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 2^{\# 2}(\# 2=-0.5+x,-0.5+y, z)$ hydrogen bonds to generate twodimensional supramolecular layers in the $a b$ plane. Along [001] direction the two-dimensional layers are stacked in a sequence $\cdots \mathrm{ABABA} \cdots$ and further connected via $\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{O} 3^{\# 3}(\# 3=0.5+x, 0.5-y,-0.5+z$) hydrogen bonds form three-dimensional supramolecular structure.

S2. Experimental

$1 \mathrm{~mL}(1 M) \mathrm{NaOH}$ was added to an aqueous solution of $\mathrm{CuCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}(0.0852 \mathrm{~g}, 0.5 \mathrm{mmol})$ and Cl^{-}anions were removed by repeated centrifugation with NaOH , then $5.0 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ and 5.0 ml EtOH were subsequently added. The blue suspension above was added to an aqueous ethanol solution $(5.0 \mathrm{ml}$ and 5.0 ml$)$ of 4-formylbenzoic acid $(0.1501 \mathrm{~g}, 1.0 \mathrm{mmol})$, then another aqueous ethanol solution (5.0 ml and 5.0 ml) of 2, 2^{\prime}-bipyridine ($0.0782 \mathrm{~g}, 0.5 \mathrm{mmol}$) was added and stirred continuously for 1 h to give another blue suspension. After filtration, the blue filtrate $(\mathrm{pH}=4.8)$ was allowed to evaporate at room temperature for one week to give dark blue plate-shaped crystals.

S3. Refinement

H atoms bonded to C atoms were placed in geometrically calculated position and were refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$. After refinement there still remains one large residual peak $1.16 \mathrm{e} . \AA^{-3} \mathrm{high}$ and located $2.36 \AA$ from H10A. This was initially postulated as partly occupied water. However, the TG-DTA curve of the title complex shows no removal of a water molecula in the weight loss progress. We believe that the residual peak may be an artifact of poor crystal quality.

Figure 1
ORTEP view of the title compound, The dispalcement ellipsoids are drawn at 30% probability dispalcement ellipsoids. [Symmetry codes: (\#1)-x+1,y,-z+1.5.]

Figure 2
the two-dimensional lay structure parallel to (001).

(2,2'-Bipyridine- $\left.\kappa^{2} N, N^{\prime}\right)$ bis(4-formylbenzoato- $\left.\kappa O^{1}\right) \operatorname{copper}($ II)

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$
$M_{r}=517.96$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=11.923$ (2) \AA
$b=10.992$ (2) \AA
$c=18.275$ (4) \AA
$\beta=100.11(3)^{\circ}$
$V=2357.9(8) \AA^{3}$
$Z=4$

Data collection

Rigaku R-AXIS RAPID
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
$F(000)=1060$
$D_{\mathrm{x}}=1.459 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 11333 reflections
$\theta=3.2-27.4^{\circ}$
$\mu=0.97 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Block, blue
$0.23 \times 0.17 \times 0.08 \mathrm{~mm}$

Absorption correction: empirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.820, T_{\text {max }}=0.925$
11333 measured reflections
2700 independent reflections
1672 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.067$
$\theta_{\text {max }}=27.4^{\circ}, \theta_{\text {min }}=3.2^{\circ}$
$h=-15 \rightarrow 15$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.146$
$S=1.23$
2698 reflections
159 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$k=-14 \rightarrow 14$
$l=-23 \rightarrow 23$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.050 P)^{2}+1.7765 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=1.16 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.50$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Cu	0.5000	$0.53295(6)$	0.7500	$0.0500(3)$
O 1	$0.4216(2)$	$0.4112(2)$	$0.79856(15)$	$0.0620(7)$
O 2	$0.5705(2)$	$0.4465(3)$	$0.88645(15)$	$0.0660(8)$
O 3	$0.3550(4)$	$-0.0045(4)$	$1.1014(2)$	$0.1132(14)$
C 1	$0.4812(3)$	$0.3924(3)$	$0.8630(2)$	$0.0505(9)$
C 2	$0.4358(3)$	$0.2966(3)$	$0.9090(2)$	$0.0496(9)$
C 3	$0.3319(3)$	$0.2404(3)$	$0.8846(2)$	$0.0571(10)$
H 3 A	0.2888	0.2623	0.8391	0.069^{*}
C 4	$0.2918(4)$	$0.1529(3)$	$0.9271(2)$	$0.0606(11)$
H 4 A	0.2221	0.1158	0.9099	0.073^{*}
C 5	$0.3537(4)$	$0.1197(4)$	$0.9947(2)$	$0.0597(10)$
C 6	$0.4576(4)$	$0.1749(5)$	$1.0194(3)$	$0.0834(15)$
H 6 A	0.5006	0.1522	1.0648	0.100^{*}
C 7	$0.4980(4)$	$0.2632(4)$	$0.9774(2)$	$0.0752(13)$
H 7 A	0.5674	0.3007	0.9950	0.090^{*}
C 8	$0.3097(5)$	$0.0272(4)$	$1.0403(3)$	$0.0819(14)$
H 8 A	0.2411	-0.0099	1.0203	0.098^{*}
N	$0.5875(3)$	$0.6702(3)$	$0.71745(17)$	$0.0516(8)$
C 9	$0.5513(3)$	$0.7822(3)$	$0.73221(19)$	$0.0499(9)$
C 10	$0.6077(3)$	$0.8850(4)$	$0.7152(2)$	$0.0607(11)$
H 10 A	0.5824	0.9618	0.7261	0.073^{*}
C 11	$0.7018(4)$	$0.8726(4)$	$0.6819(2)$	$0.0677(12)$

H11A	0.7411	0.9411	0.6704	0.081^{*}
C12	$0.7375(4)$	$0.7592(5)$	$0.6655(2)$	$0.0700(12)$
H12A	0.8003	0.7493	0.6422	0.084^{*}
C13	$0.6783(3)$	$0.6600(4)$	$0.6844(2)$	$0.0619(11)$
H13A	0.7025	0.5827	0.6737	0.074^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu	$0.0473(4)$	$0.0495(4)$	$0.0548(4)$	0.000	$0.0132(3)$	0.000
O 1	$0.0622(17)$	$0.0604(16)$	$0.0625(17)$	$-0.0078(14)$	$0.0083(15)$	$0.0070(14)$
O 2	$0.0510(16)$	$0.077(2)$	$0.0706(18)$	$-0.0208(15)$	$0.0118(14)$	$-0.0027(15)$
O 3	$0.122(3)$	$0.123(3)$	$0.102(3)$	$-0.006(3)$	$0.040(3)$	$0.049(2)$
C 1	$0.052(2)$	$0.049(2)$	$0.054(2)$	$0.0002(19)$	$0.0201(19)$	$-0.0042(18)$
C 2	$0.050(2)$	$0.050(2)$	$0.051(2)$	$-0.0035(18)$	$0.0131(18)$	$-0.0029(17)$
C 3	$0.059(2)$	$0.058(2)$	$0.053(2)$	$-0.010(2)$	$0.0038(19)$	$-0.0009(19)$
C 4	$0.063(3)$	$0.057(2)$	$0.064(3)$	$-0.020(2)$	$0.015(2)$	$-0.009(2)$
C 5	$0.066(3)$	$0.054(2)$	$0.063(2)$	$-0.003(2)$	$0.023(2)$	$0.002(2)$
C 6	$0.076(3)$	$0.107(4)$	$0.065(3)$	$-0.012(3)$	$0.005(2)$	$0.027(3)$
C 7	$0.060(3)$	$0.095(3)$	$0.066(3)$	$-0.023(3)$	$0.001(2)$	$0.011(3)$
C 8	$0.093(4)$	$0.078(3)$	$0.083(3)$	$-0.010(3)$	$0.037(3)$	$0.009(3)$
N	$0.0466(18)$	$0.0563(18)$	$0.0545(18)$	$0.0012(15)$	$0.0155(15)$	$-0.0035(15)$
C 9	$0.048(2)$	$0.054(2)$	$0.047(2)$	$-0.0013(18)$	$0.0053(17)$	$0.0018(17)$
C 10	$0.060(3)$	$0.053(2)$	$0.068(3)$	$-0.007(2)$	$0.007(2)$	$0.007(2)$
C 11	$0.063(3)$	$0.073(3)$	$0.066(3)$	$-0.021(2)$	$0.010(2)$	$0.016(2)$
C 12	$0.056(3)$	$0.092(3)$	$0.066(3)$	$-0.015(3)$	$0.021(2)$	$0.001(3)$
C 13	$0.056(2)$	$0.070(3)$	$0.063(2)$	$-0.004(2)$	$0.022(2)$	$-0.007(2)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Cu}-\mathrm{O} 1^{\mathrm{i}}$	$1.935(3)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.376(6)$
$\mathrm{Cu}-\mathrm{O} 1$	$1.935(3)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	0.9300
$\mathrm{Cu}-\mathrm{N}$	$1.984(3)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	0.9300
$\mathrm{Cu}-\mathrm{N}^{\mathrm{i}}$	$1.984(3)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9300
$\mathrm{O} 1-\mathrm{C} 1$	$1.282(4)$	$\mathrm{N}-\mathrm{C} 13$	$1.334(5)$
$\mathrm{O} 2-\mathrm{C} 1$	$1.229(4)$	$\mathrm{N}-\mathrm{C} 9$	$1.347(4)$
$\mathrm{O} 3-\mathrm{C} 8$	$1.203(6)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.378(5)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.505(5)$	$\mathrm{C} 9-\mathrm{C} 9 \mathrm{i}$	$1.482(7)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.386(5)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.374(6)$
$\mathrm{C} 2-\mathrm{C} 7$	$1.386(5)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	0.9300
$\mathrm{C} 3-\mathrm{C} 4$	$1.374(5)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.367(6)$
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9300	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	0.9300
$\mathrm{C} 4-\mathrm{C} 5$	$1.373(5)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.375(6)$
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9300	$\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	0.9300
$\mathrm{C} 5-\mathrm{C} 6$	$1.382(6)$	$\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$	0.9300
$\mathrm{C} 5-\mathrm{C} 8$	$1.469(6)$		
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 1$		$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 2$	$120.4(4)$

supporting information

$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N}$	$93.83(12)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N}$	$170.15(12)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N}^{\mathrm{i}}$	$170.15(12)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N}^{\mathrm{i}}$	$93.83(12)$
$\mathrm{N}-\mathrm{Cu}-\mathrm{N}^{\mathrm{i}}$	$80.96(18)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Cu}$	$107.4(2)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	$123.3(4)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	$121.3(4)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$115.5(3)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7$	$118.6(4)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$121.4(3)$
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 1$	$120.0(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$120.7(4)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.6
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.6
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$120.6(4)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	119.7
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	119.7
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$119.1(4)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 8$	$120.4(4)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 8$	$120.5(4)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$120.6(4)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	119.7
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	119.7

$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	119.8
$\mathrm{C} 2-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	119.8
$\mathrm{O} 3-\mathrm{C} 8-\mathrm{C} 5$	$125.5(5)$
$\mathrm{O} 3-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	117.3
$\mathrm{C} 5-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	117.3
$\mathrm{C} 13-\mathrm{N}-\mathrm{C} 9$	$118.8(3)$
$\mathrm{C} 13-\mathrm{N}-\mathrm{Cu}$	$125.7(3)$
$\mathrm{C} 9-\mathrm{N}-\mathrm{Cu}$	$115.5(3)$
$\mathrm{N}-\mathrm{C} 9-\mathrm{C} 10$	$121.2(4)$
$\mathrm{N}-\mathrm{C} 9-\mathrm{C} 9$	$113.9(2)$
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 9$	$124.9(2)$
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 9$	$119.2(4)$
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	120.4
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	120.4
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 10$	$119.8(4)$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	120.1
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	120.1
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$118.3(4)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	120.8
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	120.8
$\mathrm{~N}-\mathrm{C} 13-\mathrm{C} 12$	$122.7(4)$
$\mathrm{N}-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$	118.6
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$	118.6

Symmetry code: (i) $-x+1, y,-z+3 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4 — \mathrm{H} 4 A \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.93	2.58	$3.460(5)$	159
$\mathrm{C} 13 — \mathrm{H} 13 A \cdots \mathrm{O} 3^{\mathrm{iii}}$	0.93	2.58	$3.284(6)$	133

Symmetry codes: (ii) $x-1 / 2, y-1 / 2, z$; (iii) $x+1 / 2,-y+1 / 2, z-1 / 2$.

