metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

The triclinic form of di-*u*-agua-bis[diaguabis(thiocyanato- κN)iron(II)]-1,4bis(4H-1,2,4-triazol-4-yl)benzene (1/3)

Pan Yang, Bin Ding* and Gui-Xiang Du

Tianjin Key Laboratory of Structure and Performance for Functional Molecule, Tianjin Normal University, Tianjin 300071, People's Republic of China Correspondence e-mail: qsdingbin@yahoo.com.cn

Received 26 May 2012; accepted 9 June 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.031; wR factor = 0.077; data-to-parameter ratio = 12.5.

In the title compound, $[Fe_2(NCS)_4(H_2O)_6] \cdot 3C_{10}H_8N_6$, the centrosymmetric dinuclear complex contains two Fe^{II} ions bridged by two aqua ligand O atoms, forming a fourmembered ring. The slightly distorted octahedral coordination environment of the two Fe^{II} ions is completed by two monodentate aqua ligands and two thiocyanate ligands. One of the 1,4-bis(4H-1,2,4-triazol-4-yl)benzene molecules lies across an inversion center. In the crystal, $O-H \cdots N$ hydrogen bonds connect the components, forming a two-dimensional network parallel to (011). In addition, $\pi - \pi$ stacking interactions involving the benzene and triazole rings, with centroid-centroid distances in the range 3.502(5)-3.787 (6) Å, connect the two-dimensional hydrogen-bonded network into a three-dimensional network.

Related literature

For details of compounds containing a diiron center, see: Hsu et al. (1999); Zheng et al. (1999); MacMurdo et al. (2000); Yoon et al. (2004). For related multicompent dioxygen dependent enzymes including toluene monooxygenase, see: Sazinsky et al. (2004). For related multicompent dioxygen dependent enzymes including the R_2 subunit of ribonucleotide reductase, see: Nordlund & Eklund (1993); Stubbe & Van der Donk (1998). For the monoclinic form of the title compound, see: Liu et al. (2012).

Experimental

Crvstal data

$[Fe_2(NCS)_4(H_2O)_6] \cdot 3C_{10}H_8N_6$	$\gamma = 83.355 \ (1)^{\circ}$
$M_r = 1088.79$	$V = 1092.62 (14) \text{ Å}^3$
Triclinic, P1	Z = 1
a = 7.8335 (6) Å	Mo $K\alpha$ radiation
b = 10.9081 (8) Å	$\mu = 0.93 \text{ mm}^{-1}$
c = 13.8067 (10) Å	T = 173 K
$\alpha = 68.999 \ (1)^{\circ}$	$0.18 \times 0.14 \times 0.13 \text{ mm}$
$\beta = 84.952 \ (1)^{\circ}$	

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.851, T_{\max} = 0.889$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$	2 restraints
$wR(F^2) = 0.077$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$
3827 reflections	$\Delta \rho_{\rm min} = -0.43 \text{ e } \text{\AA}^{-3}$
307 parameters	

5619 measured reflections

 $R_{\rm int} = 0.019$

3827 independent reflections

3435 reflections with $I > 2\sigma(I)$

Table 1

Selected bond lengths (Å).

C	1.2 1.1		
Fe1-O3	2.1011 (15)	Fe1-O2	2.2748 (15)
Fe1-N11	2.0968 (18)	Fe1-O2 ⁱ	2.2552 (14)
Fe1-N10	2.0865 (18)	Fe1-O1	2.1097 (14)
E-1 N10	2.09(5.(19))	E-1 01	2 1007

Symmetry code: (i) -x + 2, -y + 1, -z.

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1−H1A···N3 ⁱⁱ	0.84	1.94	2.784 (2)	177
$O1 - H1B \cdot \cdot \cdot N6^{iii}$	0.84	1.94	2.774 (2)	175
$O2-H2A\cdots N8^{i}$	0.99	1.86	2.838 (2)	168
$O2 - H2B \cdots N9^{ii}$	0.99	1.85	2.824 (2)	168
$O3-H3A\cdots N5^{iv}$	0.84	2.01	2.843 (2)	174
$O3-H3B\cdots N2$	0.84	2.00	2.834 (2)	174

Symmetry codes: (i) -x + 2, -y + 1, -z; (ii) x + 1, y, z; (iii) x + 1, y + 1, z - 1; (iv) x, y + 1, z - 1.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

This work was supported financially by Tianjin Educational Committee (20090504, 20110311) and Tianjin Normal University (1E0402B).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5483).

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Hsu, H. F., Dong, Y., Shu, L., Young, V. G. Jr & Que, L. Jr (1999). J. Am. Chem. Soc. 121, 5230–5237.

Liu, Y.-Y., Yang, P. & Ding, B. (2012). Acta Cryst. E68, m1036-m1037.

MacMurdo, V. L., Zheng, H. & Que, L. Jr (2000). *Inorg. Chem.* **39**, 2254–2255. Nordlund, P. & Eklund, H. (1993). *J. Mol. Biol.* **232**, 123–164.

- Sazinsky, M. H., Bard, J., Di Donato, A. & Lippard, S. J. (2004). J. Biol. Chem. 279, 30600–30610.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
 - Stubbe, J. & Van der Donk, W. A. (1998). Chem. Rev. 98, 705-762.
 - Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
 - Yoon, S., Kelly, A. E. & Lippard, S. J. (2004). Polyhedron, 23, 2805–2812.
 Zheng, H., Zang, Y., Dong, Y., Young, V. G. Jr & Que, L. Jr (1999). J. Am. Chem. Soc. 121, 2226–2235.

Acta Cryst. (2012). E68, m1038-m1039 [https://doi.org/10.1107/S1600536812026141]

The triclinic form of di- μ -aqua-bis[diaquabis(thiocyanato- κ N)iron(II)]-1,4-bis-(4*H*-1,2,4-triazol-4-yl)benzene (1/3)

Pan Yang, Bin Ding and Gui-Xiang Du

S1. Comment

The diiron unit, with a carboxylate-rich coordination environment, continues to attract considerable attention due to the enzyme catalysis activity, which occurs in related multicompent dioxygen dependent enzymes, including toluene monooxy-genase (Sazinsky *et al.*, 2004) and the R2 subunit of ribonucleotide reductase (Stubbe & Van der Donk, 1998; Nordlund & Eklund, 1993). With the development of compounds that contain the diiron center, the structure of a series of Fe2(II,II) (MacMurdo *et al.*, 2000), Fe2(III,III) (Zheng *et al.*, 1999) and Fe2(III,IV) (Hsu *et al.*, 1999) complexes with a central Fe₂O₂ four-membered ring have been obtained. Compared to the chelating to iron atoms with carboxylic oxygen atoms, it is rarely reported that the four-membered center includes both aqua oxygen atoms. In order to explore further details of the coordinated environment of the diiron system, the title complex was synthesized and its crystal structure is presented herein.

The molecular structure of the title complex is shown in Fig. 1. The dinuclear complex structure comprises two Fe^{II} ions related by a crystallographic inversion center and bridged by two aqua oxygen atoms to form a four-membered core. Both Fe^{II} ions are in a slightly distorted octahedral coordination environment. The separation between the Fe^{II} ions is 3.487 (1) Å, compared to 3.0430 (7) Å reported previously (Yoon *et al.*, 2004) possibly owing to the absence of the carboxylate ligands in the title compound. Moreover, the Fe^{...}Fe distance is comparatively different from that of diiron compounds containing higher valences of iron (MacMurdo *et al.*, 2000; Zheng *et al.*, 1999; Hsu *et al.*, 1999). In the crystal, O—H···N hydrogen bonds connect the components of the structure to form a two-dimensional network parallel to (011) (see Fig. 2). In addition, $\pi \cdots \pi$ stacking interactions involving the benzene and triazole rings with centroid to centroid distances in the range 3.502 (5)—3.787 (6) Å connect the two-dimensional hydrogen-bonded network into a three-dimensional network.

S2. Experimental

The compound was synthesized under hydrothermal conditions. A mixture of L (L = 1,4-Bis(4H-1,2,4-triazol-4yl)benzene) (0.3 mmol, 0.0636 g), FeSO₄.7H₂O (0.1 mmol, 0.028 g), KSCN (0.2 mmol, 0.019 g) and water (10 ml) was placed in a 25 ml acid digestion bomb and heated at 393 K for two days, then cooled to room temperature over three days. After being washed by 5 ml water twice, colorless block-shaped crystals of the title compound were obtained.

S3. Refinement

The water H atoms were located in a Fourier difference map and refined subject to an O—H restraint 0.88 (1) Å and an H···H restraint of 1.42 (2) Å. Other H atoms were allowed to ride on their parent atoms with C—H distances of 0.93 Å $(U_{iso}(H) = 1.2Ueq(C))$.

Figure 1

The molecular structure of the title compound, showing 30% probability displacement ellipsoids. Unlabeled atoms in the dinuclear complex and one of the 1,4-Bis(4H-1,2,4-triazol-4-yl)benzene tri-solvate molecules are related by the symmetry codes (-x+2, -y+1, -z) and (-x+1, -y, -z+1), respectively.

Figure 2

The two-dimensional layered structure of the title complex. Purple Dashed lines indicate donor acceptor distances of the hydrogen bonds. H atoms are not shown.

 $Di-\mu$ -aqua-bis[diaquabis(thiocyanato- κN)iron(II)]- 1,4-bis(4H-1,2,4-triazol-4-yl)benzene (1/3)

Crystal data	
$[Fe_2(NCS)_4(H_2O)_6] \cdot 3C_{10}H_8N_6$	Z = 1
$M_r = 1088.79$	F(000) = 558
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.655 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 7.8335 (6) Å	Cell parameters from 2875 reflections
b = 10.9081 (8) Å	$\theta = 3.0 - 28.4^{\circ}$
c = 13.8067 (10) Å	$\mu = 0.93 \text{ mm}^{-1}$
$\alpha = 68.999 (1)^{\circ}$	T = 173 K
$\beta = 84.952 (1)^{\circ}$	Block, colourless
$\gamma = 83.355 (1)^{\circ}$	$0.18 \times 0.14 \times 0.13 \text{ mm}$
$V = 1092.62 (14) Å^3$	

Data collection

Bruker APEXII CCD	5619 measured reflections
Radiation source: fine-focus sealed tube	3435 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.019$
φ and ω scans	$\theta_{\rm max} = 25.0^{\circ}, \theta_{\rm min} = 1.6^{\circ}$
Absorption correction: multi-scan	$h = -8 \rightarrow 9$
(SADABS; Sheldrick, 1996)	$k = -9 \rightarrow 12$
$T_{\min} = 0.851, \ T_{\max} = 0.889$	$l = -15 \rightarrow 16$
Refinement	
Refinement on F^2	2 restraints
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.031$	$w = 1/[\sigma^2(F_0^2) + (0.0345P)^2 + 0.7404P]$
$wR(F^2) = 0.077$	where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} = 0.001$
3827 reflections	$\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$
307 parameters	$\Delta \rho_{\rm min} = -0.43 \text{ e } \text{\AA}^{-3}$
Special details	

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Fe1	0.93995 (4)	0.61553 (3)	0.06003 (2)	0.01245 (10)	
S1	0.94951 (7)	0.98407 (6)	-0.27085 (4)	0.01874 (14)	
S2	0.94707 (7)	0.29730 (6)	0.41566 (4)	0.01899 (14)	
01	1.08753 (19)	0.72399 (15)	0.11568 (11)	0.0168 (3)	
H1A	1.1503	0.6859	0.1662	0.025*	
H1B	1.1432	0.7829	0.0721	0.025*	
O2	1.17972 (18)	0.51345 (14)	0.00652 (10)	0.0135 (3)	
H2A	1.2497	0.5774	-0.0469	0.020*	
H2B	1.2517	0.4605	0.0653	0.020*	
O3	0.68912 (19)	0.68356 (15)	0.09608 (11)	0.0172 (3)	
H3A	0.6264	0.7424	0.0535	0.026*	
H3B	0.6237	0.6411	0.1452	0.026*	
N1	0.3803 (2)	0.43716 (17)	0.42713 (13)	0.0149 (4)	
N2	0.4701 (2)	0.55412 (18)	0.26843 (13)	0.0166 (4)	
N3	0.2969 (2)	0.58853 (19)	0.28071 (14)	0.0212 (4)	
N4	0.3748 (2)	0.05660 (17)	0.83062 (13)	0.0133 (4)	
N5	0.4598 (2)	-0.11802 (18)	0.96406 (13)	0.0165 (4)	
N6	0.2857 (2)	-0.08517 (18)	0.97992 (14)	0.0188 (4)	
N7	0.5005 (2)	0.19396 (17)	0.29899 (13)	0.0116 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

N8	0.5907 (2)	0.33244 (18)	0.14775 (13)	0.0151 (4)
N9	0.4119 (2)	0.34901 (17)	0.15464 (13)	0.0150 (4)
N10	0.9418 (2)	0.76782 (18)	-0.08416 (14)	0.0164 (4)
N11	0.9443 (2)	0.46757 (18)	0.20753 (14)	0.0168 (4)
C1	0.5168 (3)	0.4650 (2)	0.35647 (16)	0.0172 (5)
H1	0.6307	0.4247	0.3696	0.021*
C2	0.2474 (3)	0.5182 (2)	0.37532 (17)	0.0207 (5)
H2	0.1332	0.5231	0.4041	0.025*
C3	0.3786 (3)	0.3430 (2)	0.53126 (16)	0.0138 (4)
C4	0.2299 (3)	0.3324 (2)	0.59539 (16)	0.0173 (5)
H4	0.1291	0.3888	0.5708	0.021*
C5	0.2281 (3)	0.2398 (2)	0.69513 (16)	0.0159 (5)
H5	0.1264	0.2325	0.7390	0.019*
C6	0.3758 (3)	0.1580 (2)	0.73034 (15)	0.0135 (4)
C7	0.5257 (3)	0.1709 (2)	0.66666 (16)	0.0160 (5)
H7	0.6275	0.1161	0.6917	0.019*
C8	0.5268 (3)	0.2630 (2)	0.56752 (16)	0.0159 (5)
H8	0.6291	0.2717	0.5241	0.019*
C9	0.5101 (3)	-0.0323 (2)	0.87559 (16)	0.0167 (5)
H9	0.6244	-0.0314	0.8462	0.020*
C10	0.2392 (3)	0.0185 (2)	0.89994 (16)	0.0173 (5)
H10	0.1260	0.0614	0.8913	0.021*
C11	0.6395 (3)	0.2405 (2)	0.23378 (16)	0.0146 (5)
H11	0.7560	0.2098	0.2493	0.017*
C12	0.3619 (3)	0.2663 (2)	0.24462 (16)	0.0144 (5)
H12	0.2452	0.2573	0.2692	0.017*
C13	0.5004 (3)	0.0950 (2)	0.40112 (15)	0.0119 (4)
C14	0.3452 (3)	0.0654 (2)	0.45848 (16)	0.0147 (5)
H14	0.2398	0.1101	0.4297	0.018*
C15	0.6553 (3)	0.0293 (2)	0.44258 (16)	0.0147 (5)
H15	0.7608	0.0493	0.4032	0.018*
C16	0.9452 (3)	0.8577 (2)	-0.16137 (16)	0.0128 (4)
C17	0.9453 (3)	0.3973 (2)	0.29352 (16)	0.0139 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.01271 (17)	0.01269 (17)	0.01021 (16)	-0.00163 (13)	-0.00107 (12)	-0.00164 (13)
S1	0.0169 (3)	0.0181 (3)	0.0141 (3)	-0.0007 (2)	-0.0003 (2)	0.0026 (2)
S2	0.0171 (3)	0.0201 (3)	0.0129 (3)	0.0002 (2)	-0.0008(2)	0.0019 (2)
01	0.0173 (8)	0.0179 (8)	0.0124 (7)	-0.0047 (6)	-0.0022 (6)	-0.0008 (6)
02	0.0135 (7)	0.0140 (8)	0.0103 (7)	-0.0012 (6)	-0.0013 (6)	-0.0008 (6)
O3	0.0154 (8)	0.0180 (8)	0.0118 (7)	0.0000 (6)	0.0011 (6)	0.0017 (6)
N1	0.0184 (10)	0.0130 (9)	0.0108 (9)	-0.0002 (8)	-0.0013 (8)	-0.0015 (7)
N2	0.0207 (10)	0.0147 (10)	0.0144 (9)	-0.0022 (8)	-0.0001 (8)	-0.0050 (8)
N3	0.0197 (10)	0.0221 (11)	0.0194 (10)	-0.0035 (8)	-0.0049 (8)	-0.0029 (8)
N4	0.0148 (9)	0.0123 (9)	0.0118 (8)	-0.0008 (8)	-0.0006 (7)	-0.0033 (7)
N5	0.0194 (10)	0.0140 (9)	0.0153 (9)	0.0001 (8)	-0.0028 (8)	-0.0041 (8)

N6	0.0207 (10)	0.0175 (10)	0.0161 (9)	-0.0044 (8)	-0.0018 (8)	-0.0024 (8)
N7	0.0128 (9)	0.0110 (9)	0.0100 (8)	-0.0010 (7)	-0.0014 (7)	-0.0023 (7)
N8	0.0150 (9)	0.0140 (9)	0.0149 (9)	-0.0017 (8)	-0.0024 (7)	-0.0028 (8)
N9	0.0164 (10)	0.0130 (9)	0.0139 (9)	-0.0017 (8)	-0.0032 (7)	-0.0022 (8)
N10	0.0132 (10)	0.0173 (10)	0.0171 (9)	0.0003 (8)	-0.0016 (8)	-0.0042 (8)
N11	0.0143 (10)	0.0187 (10)	0.0162 (9)	-0.0023 (8)	-0.0004 (8)	-0.0043 (8)
C1	0.0179 (12)	0.0184 (12)	0.0156 (11)	-0.0025 (9)	0.0015 (9)	-0.0066 (9)
C2	0.0167 (12)	0.0229 (13)	0.0179 (11)	-0.0020 (10)	-0.0011 (10)	-0.0014 (10)
C3	0.0172 (11)	0.0125 (11)	0.0131 (10)	-0.0031 (9)	-0.0010 (9)	-0.0055 (9)
C4	0.0140 (11)	0.0176 (12)	0.0161 (11)	0.0034 (9)	-0.0016 (9)	-0.0020 (9)
C5	0.0121 (11)	0.0179 (12)	0.0150 (10)	-0.0004 (9)	0.0025 (9)	-0.0034 (9)
C6	0.0178 (11)	0.0121 (11)	0.0119 (10)	-0.0026 (9)	-0.0019 (9)	-0.0049 (9)
C7	0.0151 (11)	0.0154 (11)	0.0165 (11)	0.0022 (9)	-0.0026 (9)	-0.0050 (9)
C8	0.0135 (11)	0.0171 (11)	0.0159 (11)	-0.0011 (9)	0.0010 (9)	-0.0050 (9)
C9	0.0182 (12)	0.0160 (11)	0.0156 (11)	0.0008 (9)	-0.0043 (9)	-0.0051 (9)
C10	0.0154 (12)	0.0182 (12)	0.0161 (11)	-0.0025 (9)	-0.0014 (9)	-0.0029 (9)
C11	0.0134 (11)	0.0164 (11)	0.0130 (10)	-0.0021 (9)	0.0000 (9)	-0.0040 (9)
C12	0.0149 (11)	0.0144 (11)	0.0130 (10)	0.0001 (9)	-0.0030 (9)	-0.0037 (9)
C13	0.0151 (11)	0.0104 (10)	0.0105 (10)	-0.0022 (9)	-0.0026 (8)	-0.0032 (8)
C14	0.0114 (11)	0.0158 (11)	0.0153 (10)	0.0000 (9)	-0.0023 (9)	-0.0036 (9)
C15	0.0125 (11)	0.0165 (11)	0.0137 (10)	-0.0018 (9)	0.0014 (9)	-0.0039 (9)
C16	0.0104 (10)	0.0146 (10)	0.0131 (9)	0.0001 (9)	-0.0005 (8)	-0.0048 (7)
C17	0.0121 (11)	0.0137 (11)	0.0148 (9)	-0.0002 (9)	0.0003 (9)	-0.0041 (8)

Geometric parameters (Å, °)

Fe1—N10	2.0865 (18)	N7—C13	1.436 (3)
Fe1—N11	2.0968 (18)	N8—C11	1.304 (3)
Fe1—O3	2.1011 (15)	N8—N9	1.391 (3)
Fe1—O1	2.1097 (14)	N9—C12	1.305 (3)
Fe1—O2 ⁱ	2.2552 (14)	N10—C16	1.162 (3)
Fe1—O2	2.2748 (15)	N11—C17	1.160 (3)
S1—C16	1.641 (2)	C1—H1	0.9500
S2—C17	1.648 (2)	C2—H2	0.9500
O1—H1A	0.8401	C3—C8	1.384 (3)
O1—H1B	0.8401	C3—C4	1.389 (3)
O2—Fe1 ⁱ	2.2552 (14)	C4—C5	1.385 (3)
O2—H2A	0.9900	C4—H4	0.9500
O2—H2B	0.9900	C5—C6	1.386 (3)
O3—H3A	0.8401	С5—Н5	0.9500
O3—H3B	0.8401	C6—C7	1.393 (3)
N1-C2	1.357 (3)	C7—C8	1.377 (3)
N1-C1	1.366 (3)	С7—Н7	0.9500
N1—C3	1.437 (3)	C8—H8	0.9500
N2-C1	1.306 (3)	С9—Н9	0.9500
N2—N3	1.377 (3)	C10—H10	0.9500
N3—C2	1.306 (3)	C11—H11	0.9500
N4—C10	1.362 (3)	C12—H12	0.9500

N4—C9	1.377 (3)	C13—C15	1.393 (3)
N4—C6	1.430 (3)	C13—C14	1.396 (3)
N5—C9	1.305 (3)	C14—C15 ⁱⁱ	1.386 (3)
N5—N6	1.388 (3)	C14—H14	0.9500
N6—C10	1.308 (3)	C15—C14 ⁱⁱ	1.386 (3)
N7—C11	1.372 (3)	C15—H15	0.9500
N7—C12	1.373(3)		019000
N10—Fe1—N11	177.40 (7)	N1—C1—H1	124.5
N10—Fe1—O3	90.67.(6)	N3 - C2 - N1	111.2 (2)
N11—Fe1—O3	89.72 (6)	N3_C2_H2	124.4
N10—Fe1—O1	88 84 (6)	N1_C2_H2	124.4
N11 Fel Ol	88.55 (6)	$C_8 C_3 C_4$	124.4 120.1(2)
$O_3 = F_{e1} = O_1$	101.03 (6)	C_{3} C_{3} N_{1}	120.1(2) 110 30 (10)
$N10 F_{2}1 O2^{i}$	101.03(0)	C_{0} C_{3} N_{1}	119.39(19) 120.48(10)
N10 - Fe1 - O2	91.05 (0)	C_{4}	120.40(19) 120.2(2)
N_{11} $-Fe_{1}$ O_{2}^{i}	91.30 (0)	C_{5} C_{4} U_{4}	120.2 (2)
03 —rei— 02°	87.33(0)	$C_3 = C_4 = H_4$	119.9
OI - FeI - O2	1/1.43 (6)	C3-C4-H4	119.9
N10—FeI—02	89.61 (6)	C4 - C5 - C6	119.4 (2)
NII—Fel—O2	90.60 (6)	C4—C5—H5	120.3
O3—Fel—O2	166.90 (5)	С6—С5—Н5	120.3
O1—Fe1—O2	92.07 (6)	C5—C6—C7	120.17 (19)
O2 ¹ —Fe1—O2	79.35 (5)	C5—C6—N4	120.60 (19)
Fe1—O1—H1A	120.8	C7—C6—N4	119.19 (19)
Fe1—O1—H1B	118.2	C8—C7—C6	120.2 (2)
H1A—O1—H1B	106.9	C8—C7—H7	119.9
Fe1 ⁱ —O2—Fe1	100.65 (5)	С6—С7—Н7	119.9
Fel ⁱ —O2—H2A	111.6	C7—C8—C3	119.8 (2)
Fe1—O2—H2A	111.6	С7—С8—Н8	120.1
Fe1 ⁱ —O2—H2B	111.6	С3—С8—Н8	120.1
Fe1—O2—H2B	111.6	N5—C9—N4	110.8 (2)
H2A—O2—H2B	109.4	N5—C9—H9	124.6
Fe1—O3—H3A	124.5	N4—C9—H9	124.6
Fe1—O3—H3B	125.3	N6	111.0 (2)
НЗА—ОЗ—НЗВ	106.9	N6-C10-H10	124.5
C2—N1—C1	103.71 (18)	N4—C10—H10	124.5
C2—N1—C3	128.44 (19)	N8—C11—N7	111.06 (19)
C1—N1—C3	127.84 (18)	N8—C11—H11	124.5
C1—N2—N3	106.87 (18)	N7—C11—H11	124.5
C2—N3—N2	107.16 (18)	N9—C12—N7	110.95 (19)
C10—N4—C9	104.00 (18)	N9—C12—H12	124.5
C10-N4-C6	128 60 (18)	N7—C12—H12	124.5
C9—N4—C6	127.22 (18)	C15-C13-C14	120.34 (19)
C9—N5—N6	107.03(17)	C15-C13-N7	119 82 (19)
C10—N6—N5	107.25 (18)	C14-C13-N7	119.82 (19)
C11 - N7 - C12	103 73 (17)	$C15^{ii}$ $C14$ $C13$	120 01 (10)
C11 - N7 - C12	128.06(17)	$C15^{ii}$ $C14^{-}$ $C15^{ii}$	120.01 (19)
C12 N7 C13	120.00(17) 128 10(18)	C13 C14 H14	120.0
U12-IN/-U13	120.17(10)	013 - 014 - 1114	120.0

C11—N8—N9	107.13 (17)	C14 ⁱⁱ —C15—C13	119.7 (2)
C12—N9—N8	107.12 (17)	C14 ⁱⁱ —C15—H15	120.2
C16—N10—Fe1	175.78 (17)	С13—С15—Н15	120.2
C17—N11—Fe1	172.21 (17)	N10-C16-S1	179.6 (2)
N2—C1—N1	111.1 (2)	N11—C17—S2	179.9 (3)
N2—C1—H1	124.5		
N10—Fe1—O2—Fe1 ⁱ	-91.12 (6)	C4—C5—C6—N4	-176.34 (18)
N11—Fe1—O2—Fe1 ⁱ	91.48 (6)	C10—N4—C6—C5	5.2 (3)
O3—Fe1—O2—Fe1 ⁱ	0.2 (3)	C9—N4—C6—C5	179.4 (2)
O1—Fe1—O2—Fe1 ⁱ	-179.95 (5)	C10—N4—C6—C7	-172.6 (2)
O2 ⁱ —Fe1—O2—Fe1 ⁱ	0.0	C9—N4—C6—C7	1.7 (3)
C1—N2—N3—C2	-0.2 (2)	C5—C6—C7—C8	-1.5 (3)
C9—N5—N6—C10	0.3 (2)	N4—C6—C7—C8	176.30 (18)
C11—N8—N9—C12	0.1 (2)	C6—C7—C8—C3	0.1 (3)
N11—Fe1—N10—C16	-18 (3)	C4—C3—C8—C7	1.4 (3)
O3—Fe1—N10—C16	80 (2)	N1—C3—C8—C7	-178.93 (18)
O1—Fe1—N10—C16	-21 (2)	N6—N5—C9—N4	-0.7 (2)
O2 ⁱ —Fe1—N10—C16	168 (2)	C10—N4—C9—N5	0.8 (2)
O2-Fe1-N10-C16	-113 (2)	C6—N4—C9—N5	-174.65 (18)
N10—Fe1—N11—C17	34 (2)	N5—N6—C10—N4	0.2 (2)
O3—Fe1—N11—C17	-64.2 (12)	C9—N4—C10—N6	-0.6 (2)
O1—Fe1—N11—C17	36.9 (12)	C6—N4—C10—N6	174.75 (18)
O2 ⁱ —Fe1—N11—C17	-151.7 (12)	N9—N8—C11—N7	0.0 (2)
O2—Fe1—N11—C17	128.9 (12)	C12—N7—C11—N8	0.0 (2)
N3—N2—C1—N1	0.7 (2)	C13—N7—C11—N8	-178.74 (18)
C2—N1—C1—N2	-0.9 (2)	N8—N9—C12—N7	-0.1 (2)
C3—N1—C1—N2	178.46 (18)	C11—N7—C12—N9	0.1 (2)
N2—N3—C2—N1	-0.3 (3)	C13—N7—C12—N9	178.79 (18)
C1—N1—C2—N3	0.7 (2)	C11—N7—C13—C15	-3.3 (3)
C3—N1—C2—N3	-178.62 (19)	C12—N7—C13—C15	178.31 (19)
C2—N1—C3—C8	175.7 (2)	C11—N7—C13—C14	176.49 (19)
C1—N1—C3—C8	-3.5 (3)	C12—N7—C13—C14	-1.9 (3)
C2—N1—C3—C4	-4.6 (3)	C15—C13—C14—C15 ⁱⁱ	0.3 (3)
C1—N1—C3—C4	176.2 (2)	N7—C13—C14—C15 ⁱⁱ	-179.45 (18)
C8—C3—C4—C5	-1.4 (3)	C14—C13—C15—C14 ⁱⁱ	-0.3 (3)
N1—C3—C4—C5	178.86 (19)	N7-C13-C15-C14 ⁱⁱ	179.45 (18)
C3—C4—C5—C6	0.0 (3)	Fe1—N10—C16—S1	-174 (100)
C4—C5—C6—C7	1.4 (3)	Fe1—N11—C17—S2	-123 (100)

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*; (ii) -*x*+1, -*y*, -*z*+1.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
O1—H1A···N3 ⁱⁱⁱ	0.84	1.94	2.784 (2)	177
O1—H1B···N6 ^{iv}	0.84	1.94	2.774 (2)	175
O2—H2A····N8 ⁱ	0.99	1.86	2.838 (2)	168

$O2$ — $H2B$ ···· $N9^{iii}$	0.99	1.85	2.824 (2)	168	
$O3$ — $H3A$ ···· $N5^{v}$	0.84	2.01	2.843 (2)	174	
O3—H3 <i>B</i> ···N2	0.84	2.00	2.834 (2)	174	

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*; (iii) *x*+1, *y*, *z*; (iv) *x*+1, *y*+1, *z*-1; (v) *x*, *y*+1, *z*-1.