organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Hydroxymethyl-10-methoxy-17,22dioxapentacyclo[21.2.2.2^{13,16}.1^{3,7}.-0^{11,30}]triaconta-1(25),3,5,7(30),8,10,-13,15,23,26,28-undecaene-2,12-dione acetone monosolvate

Daichi Hijikata, Kosuke Sasagawa, Sayaka Yoshiwaka, Akiko Okamoto* and Noriyuki Yonezawa

Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan Correspondence e-mail: aokamoto@cc.tuat.ac.jp

Received 19 July 2012; accepted 25 July 2012

Key indicators: single-crystal X-ray study; T = 193 K; mean σ (C–C) = 0.002 Å; R factor = 0.037; wR factor = 0.098; data-to-parameter ratio = 14.0.

In the title compound, $C_{30}H_{26}O_6 \cdot C_3H_6O$, the *syn*-oriented benzoyl groups are nearly parallel to each other; the dihedral angle between their benzene rings is 15.9 (1)°. They form dihedral angles of 72.5 (1) and 84.3 (1)° with the naphthalene system. In the crystal, molecules are linked into a three-dimensional architecture by $C-H \cdot \cdot O$ and $C-H \cdot \cdot \pi$ interactions.

Related literature

For electrophilic aromatic aroylation of the naphthalene core, see: Okamoto & Yonezawa (2009); Okamoto *et al.* (2011). For applications of related molecules, see; Okamoto *et al.* (2012). For the structures of closely related compounds, see: Hijikata *et al.* (2010); Mitsui *et al.* (2010); Sasagawa *et al.* (2011); Watanabe *et al.* (2010).

Experimental

Crystal data

 $C_{30}H_{26}O_6 \cdot C_3H_6O$ $M_r = 540.59$ Orthorhombic, *Pbca* a = 15.4948 (3) Å b = 16.1272 (3) Å c = 22.4430 (4) Å V = 5608.23 (18) Å³ Z = 8

1	
(
N	. /
	~

T = 193 K $0.50 \times 0.45 \times 0.40 \text{ mm}$

 $R_{\rm int} = 0.021$

366 parameters

 $\Delta \rho_{\text{max}} = 0.20 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.19 \text{ e } \text{\AA}^{-3}$

99441 measured reflections

5132 independent reflections

4829 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Data collection Rigaku R-AXIS RAPID

diffractometer Absorption correction: numerical (NUMABS; Higashi, 1999) $T_{min} = 0.712, T_{max} = 0.759$

Refinement

Cu Ka radiation

 $\mu = 0.73 \text{ mm}^{-1}$

 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.098$ S = 1.055132 reflections

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C12-C17 ring.

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C3-H3\cdots O2^{i}$	0.95	2.47	3.3241 (15)	150
C6−H6···O1 ⁱⁱ	0.95	2.38	3.3245 (16)	172
C7−H7···O3 ⁱⁱ	0.95	2.59	3.3910 (17)	143
C14−H14···O5 ⁱⁱⁱ	0.95	2.40	3.3328 (15)	169
$C21 - H21 \cdots O1S^{iv}$	0.95	2.54	3.482 (2)	172
$C2S-H2S2\cdots Cg^{v}$	0.98	2.86	3.830 (2)	171

Symmetry codes: (i) $x - \frac{1}{2}$, y, $-z + \frac{1}{2}$, (ii) -x + 2, $y - \frac{1}{2}$, $-z + \frac{1}{2}$, (iii) -x + 2, -y + 1, -z; (iv) $x + \frac{1}{2}$, $-y + \frac{1}{2}$, -z; (v) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, z.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku, 2010); program(s) used to solve structure: *Il Milione* (Burla, *et al.*, 2007); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996); software used to prepare material for publication: *SHELXL97*.

The authors would express their gratitude to Master Toyokazu Muto, Department of Organic and Polymer Materials Chemistry, Graduate School, Tokyo University of Agriculture and Technology, and Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for their technical advice. This work was partially supported by the Ogasawara Foundation for the Promotion of Science & Engineering, Tokyo, Japan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LD2069).

References

- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.
- Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
- Hijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). *Acta Cryst.* E66, o2902–o2903.
- Mitsui, R., Nagasawa, A., Noguchi, K., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, 01790.
- Okamoto, A., Hijikata, D., Sakai, N. & Yonezawa, N. (2012). Polym. J. In the press.
- Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.

Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915. Okamoto, A. & Tonezawa, N. (2009). Chem. Lett. 36, 914–913.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
Sasagawa, K., Muto, T., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, 03354.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
 Watanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010). Acta Cryst. E66, 0329.

Acta Cryst. (2012). E68, o2598–o2599 [https://doi.org/10.1107/S1600536812033521] 4-Hydroxymethyl-10-methoxy-17,22-dioxapentacyclo-[21.2.2.2^{13,16}.1^{3,7}.0^{11,30}]triaconta-1(25),3,5,7(30),8,10,13,15,23,26,28-undecaene-2,12-dione acetone monosolvate

Daichi Hijikata, Kosuke Sasagawa, Sayaka Yoshiwaka, Akiko Okamoto and Noriyuki Yonezawa

S1. Comment

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, *peri*-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009; Okamoto, Mitsui *et al.*, 2011). As one of applications, the authors have integrated the resulting molecular unit to poly(ether ketone)backbone *via* nucleophilic aromatic substitution polycondensation (Okamoto *et al.*, 2012). Furthermore we have also reported the crystal structures of several 1,8-diaroylated naphthalene analogues exemplified by (2,7-dimethoxynaphthalene-1,8-diyl)bis(4-fluorobenzoyl)dimethanone (Watanabe *et al.*, 2010) and [8-(4-butoxybenzoyl)-2,7-dimethoxynaphthalen-1-yl](4-butoxyphenyl)methanone (Sasagawa *et al.*, 2011). These molecules have essentially same non-coplanarly features. The aroyl groups at the 1,8-positions of the naphthalene rings in these molecules are twisted in almost perpendicular fashion, but the benzene ring moieties of the aroyl groups tilt slightly toward the *exo* sides of the naphthalene rings. On the other hand, 1,8-bis(4-chlorobenzoyl)-7-methoxynaphthalene-2-ol ethanol monosolvate (Mitsui *et al.*, 2010) and 2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene (Hijikata *et al.*, 2010) have apparently different spatial organizations. The aroyl groups attached to the naphthalene ring are oriented in the same directions. As a part of our continuous study on the molecular structures of this kind of molecules, the X-ray crystal structure of the title compound containing a 1,8-diaroylenenaphthalene moiety is discussed in this article.

The crystal packing is stabilized by intermolecular C—H···O hydrogen bonding between the oxygen atom (O2) of the carbonyl group of the adjacent molecule and one hydrogen atom (H3) on the naphthalene ring along the *a* axis (C3—H3···O2ⁱ= 2.47 Å; Table 1). Furthermore, two intermolecular C—H···O interactions, between the oxygen atom (O3) of the methoxy group and one hydrogen atom (H7) on the naphthalene ring, and between the oxygen atom (O1) of the carbonyl group and one hydrogen atom (H6) on the naphthalene ring, are observed along the *c* axis (C7—H7···O3ⁱⁱ= 2.59 Å, C6—H6···O1ⁱⁱ= 2.38 Å; Table 1). Moreover, the title compounds and acetones are linked by two C—H···O interactions and C—H···*π* interaction forming a three-dimensional architecture. The C—H···O interactions (C14—H14···O5ⁱⁱⁱ= 2.40 Å, C21—H21···O1S^{iV}= 2.54 Å; Fig. 2 and Table 1) and the C—H···*π* interaction (C2S^v—H2S2^v···Cg= 2.86 Å; Fig. 2 and Table 1) also contribute to the stabilization of the molecular conformation and crystal structure.

S2. Experimental

The title compound was prepared by S_N2 reaction of 1,8-bis(4-hydroxybenzoyl)-2,7-dimethoxynaphthalene (1.0 mmol, 428 mg) with 1,4-dibromobutane (1.0 mmol, 215 mg) in *N*,*N*-dimethylacetamide (DMAc; 25.0 ml) with potassium carbonate (5.0 mmol, 691 mg). [The precursor, 1,8-bis(4-hydroxybenzoyl)-2,7-dimethoxynaphthalene, was obtained *via* S_NAr reaction of 1,8-bis(4-fluorobenzoyl)-2,7-dimethoxynaphthalene with sodium hydroxide.] After the reaction, the

mixture was stirred at 333 K for 48 h, it was poured into water and extracted with CHCl₃. The combined extracts were washed with 2*M* aqueous NaOH followed with brine. The organic layers were dried over anhydrous MgSO₄. The solvent was removed under reduced pressure to give the crude product, which was purified by column chromatography (silica gel, CHCl₃; isolated yield 47%). The pure product was crystallized from acetone to yield single crystals.

¹H NMR δ (300 MHz, CDCl₃): 1.78–1.93(4*H*, m),3.72(6*H*, s), 4.10–4.27(4*H*, m) 6.31(2*H*, dd, *J*=8.5, 2.4 Hz), 6.63(2*H*, dd, *J*=8.9, 2.4 Hz), 6.88(2*H*, dd, *J*=8.5, 2.0 Hz), 7.20(2*H*, d, *J*=8.9 Hz), 7.87(2*H*, dd, *J*=8.9, 2.0 Hz), 7.92(2*H*, d, *J*=8.9 Hz) p.p.m.

¹³C NMR δ (75 MHz, CDCl₃): 22.49, 56.59, 66.80, 111.15, 113.77, 115.45, 121.81, 125.10, 128.81, 129.93, 131.24, 131.69, 133.82, 156.01, 160.90, 193.86 p.p.m.

IR (KBr): 1668 (C=O), 1600, 1509, 1460 (Ar, naphthalene), 1263 (=C-O-C) cm⁻¹.

HRMS (m/z): $[M + H]^+$ calcd for C₃₀H₂₇O₆, 483.1808 found, 483.1836.

m.p. 537.5–538.8 K

S3. Refinement

All H atoms were put in calculated positions and treated as riding on their parent atoms, with C—H = 0.95(aromatic C—H), 0.98(methyl), 0.99(methylene) Å, and $U_{iso}(H) = 1.2 U_{eq}(aromatic C, methyl C, methylene C)$. The positions of methyl hydrogens were rotationally optimized.

Figure 1

Figure 2

Crystal data

The dimeric associates of title compound. The C—H···O and C—H··· π interactions are shown as dashed lines.

4-Hydroxymethyl-10-methoxy-17,22- dioxapentacyclo[21.2.2.2^{13,16}.1^{3,7}.0^{11,30}]triaconta-1(25),3,5,7(30),8,10,13,15,23,26,28-undecaene-2,12-dione acetone monosolvate

 $C_{30}H_{26}O_6 \cdot C_3H_6O$ $D_{\rm x} = 1.280 {\rm Mg} {\rm m}^{-3}$ $M_r = 540.59$ Melting point = 537.5–538.8 K Cu *K* α radiation, $\lambda = 1.54187$ Å Orthorhombic, Pbca Hall symbol: -P 2ac 2ab Cell parameters from 92773 reflections *a* = 15.4948 (3) Å $\theta = 3.4 - 68.3^{\circ}$ b = 16.1272 (3) Å $\mu = 0.73 \text{ mm}^{-1}$ c = 22.4430 (4) Å T = 193 KV = 5608.23 (18) Å³ Block, colorless Z = 8 $0.50 \times 0.45 \times 0.40 \text{ mm}$ F(000) = 2288

Data collection

Rigaku R-AXIS RAPID diffractometer Radiation source: rotating anode Graphite monochromator Detector resolution: 10.000 pixels mm ⁻¹ ω scans Absorption correction: numerical (<i>NUMABS</i> ; Higashi, 1999) $T_{min} = 0.712, T_{max} = 0.759$	99441 measured reflections 5132 independent reflections 4829 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$ $\theta_{max} = 68.3^{\circ}, \ \theta_{min} = 3.9^{\circ}$ $h = -18 \rightarrow 18$ $k = -19 \rightarrow 19$ $l = -27 \rightarrow 27$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$wR(F^2) = 0.098$	$w = 1/[\sigma^2(F_o^2) + (0.0495P)^2 + 1.7635P]$
S = 1.03	where $P = (P_0^- + 2P_c^-)/3$
5132 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
366 parameters	$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm A}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.19 \text{ e A}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/6(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.00160 (9)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

xyz O_{iso}^{-}/O_{eq} O11.07047 (5)0.27102 (5)0.20944 (4)0.0347 (2)O21.19956 (5)0.17013 (6)0.14801 (4)0.0365 (2)O30.85352 (6)0.25079 (6)0.23241 (4)0.0408 (2)O41.19863 (7) $-0.01523 (6)$ 0.13445 (5)0.0546 (3)O50.89572 (6)0.42949 (5) $-0.01715 (4)$ 0.0411 (2)O61.01931 (7)0.19019 (6) $-0.10484 (4)$ 0.0521 (3)O1S0.72978 (11)0.11706 (9)0.09895 (8)0.0950 (5)C10.96632 (7)0.16581 (7)0.20049 (5)0.0284 (2)C20.88697 (8)0.17239 (7)0.22823 (5)0.0324 (3)				_	II */II
O1 $1.07047 (5)$ $0.27102 (5)$ $0.20944 (4)$ $0.0347 (2)$ $O2$ $1.19956 (5)$ $0.17013 (6)$ $0.14801 (4)$ $0.0365 (2)$ $O3$ $0.85352 (6)$ $0.25079 (6)$ $0.23241 (4)$ $0.0408 (2)$ $O4$ $1.19863 (7)$ $-0.01523 (6)$ $0.13445 (5)$ $0.0546 (3)$ $O5$ $0.89572 (6)$ $0.42949 (5)$ $-0.01715 (4)$ $0.0411 (2)$ $O6$ $1.01931 (7)$ $0.19019 (6)$ $-0.10484 (4)$ $0.0521 (3)$ $O1S$ $0.72978 (11)$ $0.11706 (9)$ $0.09895 (8)$ $0.0950 (5)$ $C1$ $0.96632 (7)$ $0.16581 (7)$ $0.20049 (5)$ $0.0284 (2)$ $C2$ $0.88697 (8)$ $0.17239 (7)$ $0.22823 (5)$ $0.0324 (3)$		X	У	Z	$U_{\rm iso} V_{\rm eq}$
O21.19956 (5)0.17013 (6)0.14801 (4)0.0365 (2)O30.85352 (6)0.25079 (6)0.23241 (4)0.0408 (2)O41.19863 (7)-0.01523 (6)0.13445 (5)0.0546 (3)O50.89572 (6)0.42949 (5)-0.01715 (4)0.0411 (2)O61.01931 (7)0.19019 (6)-0.10484 (4)0.0521 (3)O1S0.72978 (11)0.11706 (9)0.09895 (8)0.0950 (5)C10.96632 (7)0.16581 (7)0.20049 (5)0.0284 (2)C20.88697 (8)0.17239 (7)0.22823 (5)0.0324 (3)	01	1.07047 (5)	0.27102 (5)	0.20944 (4)	0.0347 (2)
O30.85352 (6)0.25079 (6)0.23241 (4)0.0408 (2)O41.19863 (7)-0.01523 (6)0.13445 (5)0.0546 (3)O50.89572 (6)0.42949 (5)-0.01715 (4)0.0411 (2)O61.01931 (7)0.19019 (6)-0.10484 (4)0.0521 (3)O1S0.72978 (11)0.11706 (9)0.09895 (8)0.0950 (5)C10.96632 (7)0.16581 (7)0.20049 (5)0.0284 (2)C20.88697 (8)0.17239 (7)0.22823 (5)0.0324 (3)	02	1.19956 (5)	0.17013 (6)	0.14801 (4)	0.0365 (2)
O41.19863 (7)-0.01523 (6)0.13445 (5)0.0546 (3)O50.89572 (6)0.42949 (5)-0.01715 (4)0.0411 (2)O61.01931 (7)0.19019 (6)-0.10484 (4)0.0521 (3)O1S0.72978 (11)0.11706 (9)0.09895 (8)0.0950 (5)C10.96632 (7)0.16581 (7)0.20049 (5)0.0284 (2)C20.88697 (8)0.17239 (7)0.22823 (5)0.0324 (3)	03	0.85352 (6)	0.25079 (6)	0.23241 (4)	0.0408 (2)
O50.89572 (6)0.42949 (5)-0.01715 (4)0.0411 (2)O61.01931 (7)0.19019 (6)-0.10484 (4)0.0521 (3)O1S0.72978 (11)0.11706 (9)0.09895 (8)0.0950 (5)C10.96632 (7)0.16581 (7)0.20049 (5)0.0284 (2)C20.88697 (8)0.17239 (7)0.22823 (5)0.0324 (3)	04	1.19863 (7)	-0.01523 (6)	0.13445 (5)	0.0546 (3)
O61.01931 (7)0.19019 (6)-0.10484 (4)0.0521 (3)O1S0.72978 (11)0.11706 (9)0.09895 (8)0.0950 (5)C10.96632 (7)0.16581 (7)0.20049 (5)0.0284 (2)C20.88697 (8)0.17239 (7)0.22823 (5)0.0324 (3)	05	0.89572 (6)	0.42949 (5)	-0.01715 (4)	0.0411 (2)
O1S0.72978 (11)0.11706 (9)0.09895 (8)0.0950 (5)C10.96632 (7)0.16581 (7)0.20049 (5)0.0284 (2)C20.88697 (8)0.17239 (7)0.22823 (5)0.0324 (3)	06	1.01931 (7)	0.19019 (6)	-0.10484 (4)	0.0521 (3)
C10.96632 (7)0.16581 (7)0.20049 (5)0.0284 (2)C20.88697 (8)0.17239 (7)0.22823 (5)0.0324 (3)	01S	0.72978 (11)	0.11706 (9)	0.09895 (8)	0.0950 (5)
C2 0.88697 (8) 0.17239 (7) 0.22823 (5) 0.0324 (3)	C1	0.96632 (7)	0.16581 (7)	0.20049 (5)	0.0284 (2)
	C2	0.88697 (8)	0.17239 (7)	0.22823 (5)	0.0324 (3)
C3 0.84625 (8) 0.10363 (8) 0.25505 (5) 0.0378 (3)	C3	0.84625 (8)	0.10363 (8)	0.25505 (5)	0.0378 (3)
H3 0.7913 0.1093 0.2734 0.045*	H3	0.7913	0.1093	0.2734	0.045*
C4 0.88732 (9) 0.02911 (8) 0.25413 (6) 0.0392 (3)	C4	0.88732 (9)	0.02911 (8)	0.25413 (6)	0.0392 (3)
H4 0.8608 -0.0171 0.2729 0.047*	H4	0.8608	-0.0171	0.2729	0.047*
C5 0.96831 (8) 0.01832 (8) 0.22606 (5) 0.0351 (3)	C5	0.96831 (8)	0.01832 (8)	0.22606 (5)	0.0351 (3)

C6	1.00846 (10)	-0.06012 (8)	0.22537 (6)	0.0434 (3)
H6	0.9814	-0.1052	0.2452	0.052*
C7	1.08489 (10)	-0.07290(8)	0.19709 (7)	0.0463 (3)
H7	1.1115	-0.1260	0.1978	0.056*
C8	1.12400 (9)	-0.00658(8)	0.16673 (6)	0.0400(3)
С9	1.08822 (8)	0.07214 (7)	0.16682 (5)	0.0315 (3)
C10	1.00922 (8)	0.08721 (7)	0.19760 (5)	0.0295 (3)
C11	1.00809 (7)	0.24613 (7)	0.18132 (5)	0.0274(2)
C12	0.97305(7)	0.29312(7)	0.13029(5)	0.0276(2)
C13	1 01308 (8)	0.29312(7) 0.36739(7)	0.113029(5)	0.0219(2)
H13	1.01900 (0)	0.3879	0.1371	0.0319 (3)
C14	0.98588 (8)	0.3379	0.06475 (6)	0.030
H14	1 0130	0.4614	0.0539	0.0349(3) 0.042*
C15	0.01706 (8)	0.4014 0.38176 (7)	0.0339	0.042°
C15	0.91700(8) 0.87467(8)	0.38170(7) 0.20022(8)	0.03089(3)	0.0328(3)
	0.87407 (8)	0.30933 (8)	0.04747 (0)	0.0341(3)
П10 С17	0.8204	0.2902	0.0233	0.041°
C17	0.90344 (8)	0.26532 (7)	0.09658 (5)	0.0312 (3)
HI/	0.8/52	0.2153	0.10/4	0.03/*
C18	1.13496 (7)	0.13598 (7)	0.12938 (5)	0.0293 (2)
C19	1.10244 (7)	0.15208 (7)	0.06846 (5)	0.0299 (3)
C20	1.13965 (8)	0.21529 (7)	0.03479 (6)	0.0334 (3)
H20	1.1838	0.2483	0.0520	0.040*
C21	1.11380 (8)	0.23109 (8)	-0.02314 (6)	0.0385 (3)
H21	1.1399	0.2744	-0.0455	0.046*
C22	1.04891 (9)	0.18246 (8)	-0.04813 (6)	0.0394 (3)
C23	1.01050 (9)	0.11965 (8)	-0.01486 (6)	0.0414 (3)
H23	0.9659	0.0870	-0.0320	0.050*
C24	1.03688 (8)	0.10465 (7)	0.04282 (6)	0.0361 (3)
H24	1.0103	0.0617	0.0652	0.043*
C25	0.76197 (9)	0.25914 (10)	0.22669 (7)	0.0496 (4)
H25A	0.7472	0.3177	0.2212	0.060*
H25B	0.7339	0.2382	0.2628	0.060*
H25C	0.7421	0.2272	0.1922	0.060*
C26	1.22703 (12)	-0.09660 (10)	0.12000 (10)	0.0656 (5)
H26A	1.1788	-0.1284	0.1034	0.079*
H26B	1.2482	-0.1241	0.1561	0.079*
H26C	1.2737	-0.0934	0.0906	0.079*
C27	0.84853 (8)	0.39230 (9)	-0.06580(6)	0.0410 (3)
H27A	0.8372	0.4352	-0.0964	0.049*
H27B	0.7921	0.3725	-0.0508	0.049*
C28	0.89555 (9)	0.32062(9)	-0.09454(6)	0.0409(3)
H28A	0.8645	0 3045	-0.1313	0.049*
H28B	0.8942	0.2726	-0.0671	0.049*
C29	0.98906 (9)	0 33975 (9)	-0 11025 (6)	0.0435(3)
H29A	0.9906	0 3864	-0 1389	0.052*
H29R	1 0199	0 3574	-0.0738	0.052
C30	1 03545 (11)	0.26622 (10)	-0 13715 (6)	0.052
H30A	1.0165	0.25022 (10)	-0.1700	0.0551 (4)
1150/1	1.0105	0.2372	0.1790	0.004

H30B	1.0983	0.2774	-0.1374	0.064*	
C1S	0.73688 (11)	0.04533 (11)	0.11251 (9)	0.0641 (4)	
C2S	0.68285 (14)	0.00854 (15)	0.16044 (10)	0.0800 (6)	
H2S1	0.7202	-0.0168	0.1906	0.096*	
H2S2	0.6450	-0.0339	0.1434	0.096*	
H2S3	0.6477	0.0520	0.1789	0.096*	
C3S	0.80147 (16)	-0.00945 (16)	0.08399 (14)	0.1037 (8)	
H3S1	0.8474	-0.0222	0.1125	0.124*	
H3S2	0.8262	0.0186	0.0492	0.124*	
H3S3	0.7735	-0.0610	0.0713	0.124*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0305 (4)	0.0346 (4)	0.0390 (5)	-0.0018 (3)	-0.0044 (4)	-0.0020 (3)
O2	0.0293 (4)	0.0451 (5)	0.0350 (5)	-0.0036 (4)	-0.0012 (4)	-0.0012 (4)
O3	0.0337 (5)	0.0391 (5)	0.0494 (5)	-0.0001 (4)	0.0108 (4)	-0.0077 (4)
O4	0.0438 (6)	0.0353 (5)	0.0847 (8)	0.0101 (4)	0.0133 (5)	-0.0011 (5)
O5	0.0472 (5)	0.0364 (5)	0.0398 (5)	-0.0068 (4)	-0.0094 (4)	0.0096 (4)
O6	0.0694 (7)	0.0524 (6)	0.0345 (5)	0.0088 (5)	-0.0144 (5)	-0.0026 (4)
O1S	0.0980 (11)	0.0695 (9)	0.1174 (13)	0.0063 (8)	-0.0003 (10)	0.0117 (9)
C1	0.0308 (6)	0.0314 (6)	0.0229 (5)	-0.0028 (5)	-0.0010 (4)	0.0000 (4)
C2	0.0335 (6)	0.0363 (6)	0.0273 (6)	-0.0032 (5)	0.0012 (5)	-0.0037 (5)
C3	0.0359 (6)	0.0472 (7)	0.0304 (6)	-0.0097 (5)	0.0056 (5)	-0.0015 (5)
C4	0.0458 (7)	0.0416 (7)	0.0302 (6)	-0.0135 (6)	0.0016 (5)	0.0064 (5)
C5	0.0420 (7)	0.0343 (6)	0.0291 (6)	-0.0062 (5)	-0.0040 (5)	0.0051 (5)
C6	0.0535 (8)	0.0325 (6)	0.0441 (7)	-0.0062 (6)	-0.0064 (6)	0.0118 (6)
C7	0.0508 (8)	0.0294 (6)	0.0585 (9)	0.0048 (6)	-0.0075 (7)	0.0076 (6)
C8	0.0361 (7)	0.0342 (6)	0.0497 (8)	0.0037 (5)	-0.0038 (6)	0.0016 (6)
C9	0.0319 (6)	0.0304 (6)	0.0322 (6)	0.0010 (5)	-0.0044 (5)	0.0022 (5)
C10	0.0328 (6)	0.0309 (6)	0.0247 (5)	-0.0023 (5)	-0.0048 (4)	0.0025 (4)
C11	0.0263 (5)	0.0274 (5)	0.0284 (6)	0.0015 (4)	0.0039 (4)	-0.0052 (4)
C12	0.0285 (6)	0.0261 (5)	0.0282 (6)	0.0000 (4)	0.0038 (4)	-0.0022 (4)
C13	0.0323 (6)	0.0307 (6)	0.0326 (6)	-0.0056 (5)	-0.0011 (5)	-0.0026 (5)
C14	0.0393 (7)	0.0287 (6)	0.0367 (6)	-0.0078 (5)	0.0006 (5)	0.0019 (5)
C15	0.0347 (6)	0.0316 (6)	0.0319 (6)	0.0003 (5)	0.0008 (5)	0.0027 (5)
C16	0.0314 (6)	0.0364 (6)	0.0345 (6)	-0.0063 (5)	-0.0037 (5)	0.0005 (5)
C17	0.0328 (6)	0.0285 (6)	0.0325 (6)	-0.0056 (5)	0.0030 (5)	0.0006 (5)
C18	0.0260 (5)	0.0284 (6)	0.0334 (6)	0.0047 (4)	0.0024 (5)	-0.0027 (5)
C19	0.0274 (6)	0.0290 (6)	0.0334 (6)	0.0048 (4)	0.0003 (5)	-0.0021 (5)
C20	0.0288 (6)	0.0340 (6)	0.0373 (6)	0.0015 (5)	-0.0015 (5)	0.0003 (5)
C21	0.0378 (7)	0.0398 (7)	0.0377 (7)	0.0046 (5)	0.0009 (5)	0.0068 (5)
C22	0.0444 (7)	0.0412 (7)	0.0327 (6)	0.0116 (6)	-0.0060(5)	-0.0047 (5)
C23	0.0449 (7)	0.0357 (7)	0.0436 (7)	0.0001 (6)	-0.0114 (6)	-0.0072 (5)
C24	0.0368 (6)	0.0306 (6)	0.0410 (7)	0.0003 (5)	-0.0035 (5)	-0.0012 (5)
C25	0.0373 (7)	0.0528 (8)	0.0588 (9)	0.0057 (6)	0.0047 (6)	0.0065 (7)
C26	0.0530 (9)	0.0409 (8)	0.1029 (14)	0.0106 (7)	0.0068 (9)	-0.0143 (9)
C27	0.0364 (7)	0.0479 (7)	0.0387 (7)	-0.0037 (6)	-0.0100 (5)	0.0098 (6)

C28	0.0409 (7)	0.0469 (7)	0.0350 (7)	-0.0063 (6)	-0.0092(5)	0.0073 (6)
C29	0.0406 (7)	0.0512 (8)	0.0388 (7)	-0.0013 (6)	-0.0050 (6)	0.0134 (6)
C30	0.0586 (9)	0.0698 (10)	0.0309 (7)	0.0094 (8)	-0.0038 (6)	0.0079 (7)
C1S	0.0513 (9)	0.0580 (10)	0.0830 (12)	-0.0041 (8)	-0.0127 (9)	-0.0068 (9)
C2S	0.0652 (12)	0.0906 (14)	0.0844 (14)	-0.0182 (10)	-0.0137 (10)	0.0009 (11)
C3S	0.0761 (15)	0.0973 (17)	0.138 (2)	0.0054 (13)	0.0116 (15)	-0.0289 (16)

Geometric parameters (Å, °)

01—C11	1.2222 (14)	C17—H17	0.9500
O2—C18	1.2166 (14)	C18—C19	1.4800 (16)
O3—C2	1.3697 (15)	C19—C20	1.3939 (17)
O3—C25	1.4306 (16)	C19—C24	1.3959 (17)
O4—C8	1.3717 (17)	C20—C21	1.3841 (18)
O4—C26	1.4215 (17)	C20—H20	0.9500
O5—C15	1.3654 (15)	C21—C22	1.3930 (19)
O5—C27	1.4445 (16)	C21—H21	0.9500
O6—C22	1.3586 (16)	C22—C23	1.392 (2)
O6—C30	1.4463 (19)	C23—C24	1.3787 (18)
O1S—C1S	1.201 (2)	С23—Н23	0.9500
C1—C2	1.3822 (16)	C24—H24	0.9500
C1-C10	1.4328 (16)	C25—H25A	0.9800
C1-C11	1.5107 (15)	C25—H25B	0.9800
C2—C3	1.4109 (17)	C25—H25C	0.9800
C3—C4	1.3600 (19)	C26—H26A	0.9800
С3—Н3	0.9500	C26—H26B	0.9800
C4—C5	1.4149 (19)	C26—H26C	0.9800
C4—H4	0.9500	C27—C28	1.511 (2)
C5—C6	1.4098 (19)	C27—H27A	0.9900
C5—C10	1.4297 (16)	C27—H27B	0.9900
С6—С7	1.359 (2)	C28—C29	1.5227 (19)
С6—Н6	0.9500	C28—H28A	0.9900
С7—С8	1.4057 (19)	C28—H28B	0.9900
С7—Н7	0.9500	C29—C30	1.512 (2)
С8—С9	1.3852 (17)	C29—H29A	0.9900
C9—C10	1.4266 (17)	C29—H29B	0.9900
C9—C18	1.5134 (16)	C30—H30A	0.9900
C11—C12	1.4766 (16)	C30—H30B	0.9900
C12—C17	1.3917 (16)	C1S—C3S	1.481 (3)
C12—C13	1.3980 (16)	C1S—C2S	1.487 (3)
C13—C14	1.3764 (17)	C2S—H2S1	0.9800
С13—Н13	0.9500	C2S—H2S2	0.9800
C14—C15	1.3927 (17)	C2S—H2S3	0.9800
C14—H14	0.9500	C3S—H3S1	0.9800
C15—C16	1.3908 (17)	C3S—H3S2	0.9800
C16—C17	1.3846 (17)	C3S—H3S3	0.9800
C16—H16	0.9500		

C2—O3—C25	117.13 (10)	С19—С20—Н20	119.2
C8—O4—C26	118.39 (12)	C20—C21—C22	118.91 (12)
C15—O5—C27	119.04 (10)	C20—C21—H21	120.5
C22—O6—C30	119.28 (11)	C22—C21—H21	120.5
C2—C1—C10	120.07 (10)	O6—C22—C23	115.15 (12)
C2—C1—C11	116.33 (10)	O6—C22—C21	124.69 (13)
C10-C1-C11	123.16 (10)	C23—C22—C21	120.15 (12)
O3—C2—C1	116.00 (10)	C24—C23—C22	120.31 (12)
O3—C2—C3	121.81 (11)	С24—С23—Н23	119.8
C1—C2—C3	121.98 (11)	С22—С23—Н23	119.8
C4—C3—C2	118.61 (12)	C23—C24—C19	120.44 (12)
С4—С3—Н3	120.7	C23—C24—H24	119.8
С2—С3—Н3	120.7	C19—C24—H24	119.8
C3—C4—C5	122.04 (11)	O3—C25—H25A	109.5
C3—C4—H4	119.0	O3—C25—H25B	109.5
С5—С4—Н4	119.0	H25A—C25—H25B	109.5
C6-C5-C4	120.45 (12)	O3—C25—H25C	109.5
C6—C5—C10	119.78 (12)	H25A—C25—H25C	109.5
C4—C5—C10	119.77 (11)	H25B—C25—H25C	109.5
C7—C6—C5	121.72 (12)	04—C26—H26A	109.5
C7—C6—H6	119.1	O4—C26—H26B	109.5
С5—С6—Н6	119.1	H26A—C26—H26B	109.5
C6-C7-C8	119.11 (12)	O4—C26—H26C	109.5
С6—С7—Н7	120.4	H26A—C26—H26C	109.5
С8—С7—Н7	120.4	H26B—C26—H26C	109.5
04	115.56 (11)	05-C27-C28	113.35 (10)
O4—C8—C7	122.82 (12)	O5—C27—H27A	108.9
C9—C8—C7	121.61 (13)	С28—С27—Н27А	108.9
C8—C9—C10	120.01 (11)	O5—C27—H27B	108.9
C8—C9—C18	115.55 (11)	С28—С27—Н27В	108.9
C10—C9—C18	124.31 (10)	H27A—C27—H27B	107.7
C9—C10—C5	117.68 (11)	C27—C28—C29	113.75 (11)
C9—C10—C1	124.80 (10)	C27—C28—H28A	108.8
C5-C10-C1	117.49 (11)	C29—C28—H28A	108.8
O1—C11—C12	121.52 (10)	C27—C28—H28B	108.8
01—C11—C1	118.25 (10)	C29—C28—H28B	108.8
C12—C11—C1	120.23 (10)	H28A—C28—H28B	107.7
C17—C12—C13	118.49 (11)	C30—C29—C28	112.69 (13)
C17—C12—C11	122.76 (10)	C30—C29—H29A	109.1
C13—C12—C11	118.72 (10)	C28—C29—H29A	109.1
C14-C13-C12	120.98 (11)	C30—C29—H29B	109.1
C14—C13—H13	119.5	C28—C29—H29B	109.1
C12—C13—H13	119.5	H29A—C29—H29B	107.8
C13—C14—C15	119.79 (11)	Q6-C30-C29	112.49 (12)
C13—C14—H14	120.1	O6-C30-H30A	109.1
C15—C14—H14	120.1	C29—C30—H30A	109.1
05-C15-C16	124.78 (11)	O6-C30-H30B	109.1
05-C15-C14	115.09(10)	C29—C30—H30B	109.1
		5_2 000 H00B	

C16—C15—C14	120.13 (11)	H30A—C30—H30B	107.8
C17—C16—C15	119.44 (11)	O1S—C1S—C3S	121.8 (2)
C17—C16—H16	120.3	O1S-C1S-C2S	121.1 (2)
C15—C16—H16	120.3	C3S—C1S—C2S	117.1 (2)
C16—C17—C12	121.13 (11)	C1S—C2S—H2S1	109.5
C16—C17—H17	119.4	C1S—C2S—H2S2	109.5
С12—С17—Н17	119.4	H2S1—C2S—H2S2	109.5
02-C18-C19	121.20 (11)	C1S - C2S - H2S3	109.5
02 - C18 - C9	120.73 (10)	$H_{2}S_{1} - C_{2}S_{1} - H_{2}S_{3}$	109.5
$C_{19} - C_{18} - C_{9}$	117 99 (10)	H2S2—C2S—H2S3	109.5
C_{20} C_{19} C_{24}	118 57 (11)	C1S - C3S - H3S1	109.5
$C_{20} - C_{19} - C_{18}$	119.23 (11)	H_{3S1} C_{3S} H_{3S2}	109.5
$C_{20} C_{19} C_{10} C_{18}$	119.23(11) 122.18(11)	H351 C35 H352	109.5
$C_{24} = C_{19} = C_{18}$	122.10(11) 121.61(12)	H3S1-C3S-H3S3	109.5
$C_{21} = C_{20} = C_{19}$	121.01 (12)	11552-055-11555	109.5
C21—C20—H20	119.2		
C25 Q2 C2 C1	144 21 (12)	01 011 012 012	0.49(16)
$C_{23} = 0_{3} = C_{2} = C_{1}$	144.21 (12)	01 - 011 - 012 - 013	0.48(10)
$C_{23} = 0_{3} = C_{2} = C_{3}$	-40.90(17)	C1 = C12 = C12	1/9.74(10)
C10 - C1 - C2 - O3	1/5.75(10)	C17 - C12 - C13 - C14	-1.5/(1/)
CII = CI = C2 = O3	3.16 (15)	C11 - C12 - C13 - C14	1/6.45 (11)
C10-C1-C2-C3	0.87 (17)	C12 - C13 - C14 - C15	0.49 (18)
CII = CI = C2 = C3	-1/1./2 (11)	C27—O5—C15—C16	-22.73 (18)
03-C2-C3-C4	-173.61 (11)	C27—O5—C15—C14	158.29 (11)
C1—C2—C3—C4	0.97 (18)	C13—C14—C15—O5	-179.49 (11)
C2—C3—C4—C5	-1.43 (19)	C13—C14—C15—C16	1.47 (19)
C3—C4—C5—C6	-179.21 (12)	O5—C15—C16—C17	178.76 (12)
C3—C4—C5—C10	0.05 (19)	C14—C15—C16—C17	-2.30 (19)
C4—C5—C6—C7	177.84 (13)	C15—C16—C17—C12	1.20 (18)
C10—C5—C6—C7	-1.4 (2)	C13—C12—C17—C16	0.71 (17)
C5—C6—C7—C8	-1.3 (2)	C11—C12—C17—C16	-177.22 (11)
C26—O4—C8—C9	-164.56 (14)	C8—C9—C18—O2	-80.03 (15)
C26—O4—C8—C7	14.4 (2)	C10—C9—C18—O2	104.23 (14)
C6—C7—C8—O4	-176.42 (13)	C8—C9—C18—C19	96.73 (13)
C6—C7—C8—C9	2.5 (2)	C10-C9-C18-C19	-79.01 (14)
O4—C8—C9—C10	178.17 (11)	O2-C18-C19-C20	-8.52 (16)
C7—C8—C9—C10	-0.8(2)	C9—C18—C19—C20	174.74 (10)
O4—C8—C9—C18	2.23 (17)	O2—C18—C19—C24	169.87 (11)
C7—C8—C9—C18	-176.74 (12)	C9—C18—C19—C24	-6.87 (16)
C8—C9—C10—C5	-1.91 (17)	C24—C19—C20—C21	-0.75(18)
C18—C9—C10—C5	173.65 (11)	C18—C19—C20—C21	177.70 (11)
C8-C9-C10-C1	-17977(11)	C19 - C20 - C21 - C22	0.07(18)
$C_{18} - C_{9} - C_{10} - C_{1}$	-4.20(18)	$C_{30} - C_{6} - C_{22} - C_{23}$	$162\ 23\ (12)$
C_{6}	3.00(17)	$C_{30} = 06 = C_{22} = C_{23}$	-189(2)
C4 - C5 - C10 - C9	-17627(11)	C_{20} C_{21} C_{22} C_{21}	-178 25 (12)
$C_{1} = C_{1} = C_{1} = C_{1}$	-178.00(11)	C_{20} C_{21} C_{22} C_{23}	0.50(10)
$C_{1} = C_{1} = C_{1} = C_{1}$	170.77 (11)	06 C22 C23 C24	17828(17)
$C_{1} = C_{10} = C_{10} = C_{10}$	1.75 (10)	C_{21} C_{22} C_{23} C_{24}	-0.6(2)
$C_{11} = C_{11} = C_{10} = C_{10}$	1/3.0/(11)	$C_{21} - C_{22} - C_{23} - C_{24}$	-0.0(2)
UII-UI-UI0-U9	-12.26 (17)	$C_{22} - C_{23} - C_{24} - C_{19}$	-0.13 (19)

C2-C1-C10-C5	-2.18 (16)	C20—C19—C24—C23	0.77 (18)
C11—C1—C10—C5	169.88 (10)	C18—C19—C24—C23	-177.63 (11)
C2-C1-C11-O1	107.36 (12)	C15—O5—C27—C28	-59.83 (15)
C10-C1-C11-O1	-64.98 (14)	O5—C27—C28—C29	-49.10 (15)
C2-C1-C11-C12	-71.92 (13)	C27—C28—C29—C30	178.19 (11)
C10-C1-C11-C12	115.74 (12)	C22—O6—C30—C29	-65.93 (17)
O1-C11-C12-C17	178.41 (11)	C28—C29—C30—O6	-45.27 (16)
C1—C11—C12—C17	-2.33 (16)		

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C12–C17 ring.

D—H···A	D—H	H···A	D··· A	D—H···A
C3—H3…O2 ⁱ	0.95	2.47	3.3241 (15)	150
C6—H6…O1 ⁱⁱ	0.95	2.38	3.3245 (16)	172
С7—Н7…О3 ^{іі}	0.95	2.59	3.3910 (17)	143
C14—H14····O5 ⁱⁱⁱ	0.95	2.40	3.3328 (15)	169
C21—H21···O1 S^{iv}	0.95	2.54	3.482 (2)	172
C2S—H2S2···C g^{v}	0.98	2.86	3.830 (2)	171

Symmetry codes: (i) x-1/2, y, -z+1/2; (ii) -x+2, y-1/2, -z+1/2; (iii) -x+2, -y+1, -z; (iv) x+1/2, -y+1/2, -z; (v) -x+3/2, y-1/2, z.