

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(*R*)-2-Methyl-5-[(*R*)-2,4,4,4-tetrachlorobutan-2-yl]cyclohex-2-enone

Brahim Boualy,^a Mohamed Anouar Harrad,^a Larbi El Firdoussi,^a* Mustapha Ait Ali^a and Helen Stoeckli-Evans^b

^aEquipe de Chimie de Coordination, Faculté des Sciences Semlalia, BP 2390, Marrakech, Morocco, and ^bInstitute of Physics, University of Neuchâtel, 2000 Neuchâtel, Switzerland

Correspondence e-mail: lafirdoussi@hotmail.com,helen.stoeckli-evans@unine.ch

Received 29 June 2012; accepted 9 July 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.029; wR factor = 0.063; data-to-parameter ratio = 16.4.

The title compound, C₁₁H₁₄Cl₄O, was efficiently synthesized by atom-transfer radical addition between (R)-carvone and tetrachloromethane. In the molecule, both chiral centres are of the absolute configuration R. The cyclohex-2-enone ring has an envelope conformation with the chiral C atom displaced by 0.633 (2) Å from the mean plane through the other five C atoms [maximum deviation = 0.036(2) Å]. In the crystal, molecules are linked via C-H···O interactions, leading to the formation of helical chains propagating along [100].

Related literature

For synthetic details, see: Boualy et al. (2011); Dragutan et al. (2007). For related structures, see: Boualy et al. (2009, 2011); Ziyat et al. (2004, 2006). For the distribution of caraway (Carum carvi L.), see: Carvalho da & Fonseca da (2006); Hornok (1992). For biological activity, see: Farag et al. (1989); Juaristi & Soloschonok (2005); Nagashima et al. (2003); Reynolds (1987); Saxena et al. (1987); Zheng et al. (1992). For carvone derivatives having olfactory properties, see: Buch & Wuest (1969); Aurrecoechea & Okamura (1987); Torii et al. (1983).

V = 1365.9 (2) Å³

Mo $K\alpha$ radiation

 $0.38 \times 0.27 \times 0.20 \text{ mm}$

9786 measured reflections

2431 independent reflections

1662 reflections with $I > 2\sigma(I)$

 $\mu = 0.84 \text{ mm}^-$

T = 293 K

 $R_{\rm int} = 0.033$

Z = 4

Experimental

Crystal data

C₁₁H₁₄Cl₄O $M_r = 304.02$ Orthorhombic, $P2_12_12_1$ a = 6.4976 (6) Å h = 13.3343 (16) Å c = 15.7648 (14) Å

Data collection

Stoe IPDS diffractometer Absorption correction: multi-scan (MULscanABS in PLATON; Spek. 2009) $T_{\min} = 0.963, T_{\max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	$\Delta \rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.063$	$\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$
S = 0.87	Absolute structure: Flack (1983),
2431 reflections	1005 Friedel pairs
148 parameters	Flack parameter: 0.00 (7)
H-atom parameters constrained	

Table 1 Hydrogen-bond geometry (Å, °).

 $D - \mathbf{H} \cdot \cdot \cdot A$ D - H $H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ $D - H \cdot \cdot \cdot A$ C8-H8A···O1ⁱ 0.97 2.51 3.394 (3) 152

Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{3}{2}, -z + 1$.

Data collection: EXPOSE in IPDS-I (Stoe & Cie, 2004); cell refinement: CELL in IPDS-I (Stoe & Cie, 2004); data reduction: INTEGRATE in IPDS-I (Stoe & Cie, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97, PLATON and publCIF (Westrip, 2010).

HSE thanks the XRD Application Laboratory of the CSEM, Neuchâtel, for access to the X-ray diffraction equipment.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2431).

References

- Aurrecoechea, J. M. & Okamura, W. H. (1987). Tetrahedron Lett. 28, 4947-4950.
- Boualy, B., El Firdoussi, L., Ait Ali, M., Karim, A. & Spannenberg, A. (2009). Z. Kristallogr. New Cryst. Struct. 224, 631-632.
- Boualy, B., Harrad, M. A., El Firdoussi, L., Ait Ali, M., El Houssame, S. & Karim, A. (2011). Catal. Commun. 12, 1295–1297.
- Buch, G. & Wuest, H. (1969). J. Org. Chem. 34, 857-860.
- Carvalho da, C. C. C. R. & Fonseca da, M. M. R. (2006). Food Chem. 95, 413-422
- Dragutan, V., Dragutan, I., Delaude, L. & Demonceau, A. (2007). Coord. Chem. Rev. 251, 765-794.
- Farag, R. S., Daw, Z. Y. & Abo-Raya, S. H. (1989). J. Food Sci. 54, 74-76.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Hornok, L. (1992). In Cultivation and Processing of Medicinal Plants. Chichester, UK: John Wiley and Sons.

- Juaristi, E. & Soloschonok, V. A. (2005). In *Enantioselective Synthesis of β-Amino Acids*. Canada: Wiley Interscience.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Nagashima, H., Gondo, M., Masuda, S., Kondo, H., Yamaguchi, Y. & Matsubara, K. (2003). Chem. Commun. 3, 442–443.
- Reynolds, T. (1987). Ann. Bot. (Lond.), 60, 215-223.
- Saxena, D. B., Goswami, B. K. & Tomar, S. S. (1987). Indian Perfumer, 31, 150– 154.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stoe & Cie (2004). IPDS-I. Stoe & Cie GmbH, Darmstadt, Germany.
- Torii, S., Inokuchi, T. & Oi, R. (1983). J. Org. Chem. 48, 1944-1951.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zheng, G. Q., Kenney, P. M. & Lam, L. K. (1992). J. Agric. Food Chem. 40, 751–755.
- Ziyat, H., Ait Itto, M. Y., Ait Ali, M., Riahi, A., Karim, A. & Daran, J. C. (2006). Arkivoc, CXII, 152–160.
- Ziyat, H., El Houssame, S., Ait Ali, M., Ait Itto, M. Y., Karim, A., Wartchow, R. & Butenschoen, H. (2004). Z. Naturforsch. Teil B, **59**, 1177–1179.

supporting information

Acta Cryst. (2012). E68, o2451–o2452 [https://doi.org/10.1107/S1600536812031194]

(R)-2-Methyl-5-[(R)-2,4,4,4-tetrachlorobutan-2-yl]cyclohex-2-enone

Brahim Boualy, Mohamed Anouar Harrad, Larbi El Firdoussi, Mustapha Ait Ali and Helen Stoeckli-Evans

S1. Comment

Caraway (Carum carvi *L*.) is naturally found in Northern and Central Europe, Siberia, Turkey, Iran, India and North Africa (Carvalho da & Fonseca da, 2006). The main constituent (50–70%) of the essential Caraway oil is (4*S*)-(+)- carvone (Hornok, 1992). This monoterpene exhibits some interesting biological activities, such as antimicrobial (Farag *et al.*, 1989), nematicidal (Saxena *et al.*, 1987), antitumor (Zheng *et al.*, 1992) and plant growth regulatory activities (Reynolds, 1987). In fact, many syntheses from carvone were reported in order to prepare new compounds having olfactory properties suitable in various fields (Buch & Wuest, 1969; Aurrecoechea & Okamura, 1987; Torii *et al.*, 1983).

The Kharasch addition or atom transfer radical addition (ATRA) is a synthetically useful process for functionalizing organic compounds by means of halogen derivatives (Dragutan *et al.*, 2007). They are applied in the synthesis of polyfunctional acyclic and heterocyclic compounds, such as β -aminoacids (Juaristi & Soloschonok, 2005) and alkaloids (Nagashima *et al.*, 2003). As a part of our interest in the synthesis of optically actives polyhalogenated products from terpenes (Boualy *et al.*, 2009; Ziyat *et al.*, 2004; Ziyat *et al.*, 2006; Boualy *et al.*, 2011) we report herein on the synthesis and crystal structure of the title compound. It is a new polyhalogenated terpene from (*R*)-carvone, which could be a valuable precursor for the synthesis of new polyfunctional terpenic compounds.

The title compound (Fig. 1) was obtained as a colourless solid by addition of tetrachloromethane to (*R*)-carvone catalyzed by $Fe(acac)_3$ in toluene at 353 K (Boualy *et al.*, 2011). The two chiral centres, C1 and C7, have *R* absolute configurations (Fig. 1). The cyclohex-2-enone ring (C1—C6) has an envelope conformation with the chiral C atom, C1, displaced by 0.633 (2) Å from the mean plane through the other five C atoms [C2—C6; maximum deviation 0.036 (2) Å]. In the molecule there is a short C2—H2A···Cl1 contact (H2a···Cl1 = 2.72 Å; C2···Cl1 = 3.167 (2) Å).

In the crystal, C—H···O interactions (Table 1 and Fig. 2) are present and lead to the formation of helical chains propagating along [100].

The structure of the title molecule was also characterized by ¹H, ¹³C NMR spectroscopy and by mass spectroscopy. ¹H NMR data of the isolated product indicated the presence of an olefinic proton at 6.77 p.p.m. corresponding to the group (C=CH), which indicated also the absence of the olefinic protons of the group (C=CH₂). In the ¹³C NMR spectrum, the signal of the carbonyl group was observed at $\delta = 199$ p.p.m., the olefinic carbons appeared at 144.5 and 135.5 p.p.m. and the quaternary carbon containing three chlorine atoms appeared at 98.4 p.p.m. The conservation of the carbonyl group was also confirmed by the IR absorption at 1720 cm⁻¹. The mass spectrum of the compound confirmed the proposed structure exhibiting a molecular ion peak at m/z 304 and the base peak at m/z 136, which originated from the monoterpene fragment.

The X-ray single-crystal analysis of the title compound clearly shows the absolute configuration at atoms C1 and C7 to be (R, R)(Fig.1).

S2. Experimental

The synthesis of the title compound (Boualy *et al.*, 2011) is illustrated in Fig. 3. A mixture of Fe(acac)₃ (4.87 mg, 0.0138 mmol), NEt₃ (4.485 mg, 0.044 mmol), (*R*)-Carvone (207.30 mg, 1.38 mmol) and CCl₄ (849.09 mg, 5.52 mmol), was stirred in 353 K in 5 mL of toluene for 6 h and then hydrolyzed by addition of 20 mL of water. The organic layer was separated and the aqueous layer was washed with 3×10 mL of dichloromethane. The combined organic extracts were dried over Na₂SO₄ and concentred in a rotary evaporator at reduced pressure. Column chromatography (hexane / ethyl acetate: 5:1 *v/v*) of the residue on silica gel gave 285.76 mg (0.94 mmol, 68%) of the title compound as a colourless solid. Recrystallization in chloroform at rt afforded colourless rod-like crystals suitable for X-ray crystallographic analysis. *M*. p. 411 K; [α]²⁰_D = +14.2 (c = 1.01, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ = 1.70 (S, 3H); 1.85 (S, 3H), 2.24–2.67 (m, 5H), 3.35 (S, éH), 6.50 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): δ = 15.55 (CH₃–), 27.37 (CH₃–), 27.89 (–CH₂–), 39.83 (– CH₂–), 45.74 (–CH–), 62.50 (–CH₂––CCl₃), 73.31 (–C––Cl), 96.15 (–CCl₃), 135.68 (=Cq), 142.52 (=CH), 197.26 (C=O); MS (EI, 70 eV): m/z (%) = 304 [*M*+].

S3. Refinement

C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93, 0.98, 0.97 and 0.96 Å for CH(allyl), CH(methine), CH₂, and CH₃ H-atoms, respectively, with $U_{iso}(H) = k \times U_{eq}(C)$, where k = 1.5 for CH₃ H-atoms and = 1.2 for other H-atoms.

Figure 1

The molecular structure of the title molecule, showing the crystallographic atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A view along the *a* axis of the crystal packing of the title compound, showing the C—H…O interactions (dashed lines) leading to the formation of helical chains propagating along [100].

Figure 3

Synthesis of the title compound (Boualy et al., 2011).

(R)-2-Methyl-5-[(R)-2,4,4,4-tetrachlorobutan-2-yl]cyclohex-2-enone

Crystal data

C₁₁H₁₄Cl₄O $M_r = 304.02$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 6.4976 (6) Å b = 13.3343 (16) Å c = 15.7648 (14) Å V = 1365.9 (2) Å³ Z = 4

Data collection

Stoe IPDS diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ rotation scans Absorption correction: multi-scan (MULscanABS in *PLATON*; Spek, 2009) $T_{\min} = 0.963, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.063$ S = 0.872431 reflections 148 parameters 0 restraints F(000) = 624 $D_x = 1.478 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6130 reflections $\theta = 2.5-21.9^{\circ}$ $\mu = 0.84 \text{ mm}^{-1}$ T = 293 KRod, colourless $0.38 \times 0.27 \times 0.20 \text{ mm}$

9786 measured reflections 2431 independent reflections 1662 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 25.1^\circ, \theta_{min} = 2.6^\circ$ $h = -7 \rightarrow 7$ $k = -15 \rightarrow 15$ $l = -18 \rightarrow 18$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0338P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

$(\Delta/\sigma)_{\rm max} < 0.001$	Absolute structure: Flack (1983), 1005 Friedel
$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$	pairs
$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$	Absolute structure parameter: 0.00 (7)

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cl1	0.83987 (14)	0.40824 (6)	0.52522 (6)	0.0812 (3)
Cl2	0.52828 (15)	0.48377 (7)	0.24964 (5)	0.0845 (3)
C13	0.23706 (13)	0.38341 (7)	0.35431 (5)	0.0834 (3)
Cl4	0.65044 (18)	0.31020 (7)	0.34378 (6)	0.1061 (4)
01	0.8569 (3)	0.77674 (13)	0.61294 (12)	0.0671 (7)
C1	0.5690 (4)	0.55138 (18)	0.56903 (14)	0.0423 (8)
C2	0.7126 (4)	0.63646 (17)	0.54387 (15)	0.0474 (9)
C3	0.7060 (4)	0.72331 (18)	0.60355 (14)	0.0471 (9)
C4	0.5098 (4)	0.74598 (18)	0.64494 (14)	0.0502 (9)
C5	0.3492 (5)	0.6861 (2)	0.63074 (14)	0.0545 (10)
C6	0.3522 (4)	0.59286 (19)	0.57915 (15)	0.0518 (9)
C7	0.5809 (4)	0.45906 (18)	0.51053 (15)	0.0474 (9)
C8	0.5589 (4)	0.49132 (17)	0.41742 (13)	0.0468 (9)
C9	0.4989 (4)	0.41885 (19)	0.34799 (16)	0.0561 (9)
C10	0.4985 (6)	0.8381 (2)	0.69942 (18)	0.0788 (14)
C11	0.4329 (5)	0.3768 (2)	0.54069 (17)	0.0696 (10)
H1	0.61290	0.52900	0.62540	0.0510*
H2A	0.85230	0.61100	0.54130	0.0570*
H2B	0.67570	0.65950	0.48750	0.0570*
Н5	0.22450	0.70430	0.65520	0.0650*
H6A	0.29500	0.60680	0.52350	0.0620*
H6B	0.26610	0.54270	0.60610	0.0620*
H8A	0.45870	0.54520	0.41630	0.0560*
H8B	0.68970	0.52050	0.40090	0.0560*
H10A	0.52610	0.89630	0.66540	0.1180*
H10B	0.59880	0.83350	0.74400	0.1180*
H10C	0.36350	0.84340	0.72370	0.1180*
H11A	0.45650	0.36340	0.59970	0.1050*
H11B	0.45610	0.31680	0.50840	0.1050*
H11C	0.29350	0.39880	0.53280	0.1050*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0681 (6)	0.0751 (5)	0.1004 (6)	0.0255 (5)	-0.0196 (5)	-0.0134 (4)
Cl2	0.0987 (7)	0.1091 (7)	0.0457 (3)	-0.0243 (5)	0.0049 (4)	-0.0112 (4)
Cl3	0.0705 (6)	0.1037 (6)	0.0760 (5)	-0.0304 (4)	-0.0028 (5)	-0.0140 (5)

supporting information

Cl4	0.1214 (8)	0.0882 (6)	0.1088 (7)	0.0334 (6)	-0.0023 (6)	-0.0402 (6)
01	0.0625 (14)	0.0576 (11)	0.0812 (12)	-0.0165 (11)	-0.0107 (11)	-0.0027 (9)
C1	0.0386 (17)	0.0511 (14)	0.0371 (12)	-0.0032 (12)	-0.0011 (10)	0.0052 (10)
C2	0.0364 (16)	0.0561 (15)	0.0498 (14)	-0.0051 (12)	0.0052 (12)	-0.0003 (12)
C3	0.0510 (19)	0.0434 (14)	0.0469 (13)	-0.0009 (13)	-0.0095 (13)	0.0082 (11)
C4	0.0541 (18)	0.0535 (15)	0.0429 (12)	0.0091 (14)	-0.0050 (14)	0.0011 (12)
C5	0.0459 (18)	0.0702 (17)	0.0473 (15)	0.0167 (15)	0.0057 (13)	0.0083 (13)
C6	0.0377 (16)	0.0712 (17)	0.0464 (14)	-0.0053 (15)	0.0029 (12)	0.0042 (12)
C7	0.0454 (18)	0.0475 (14)	0.0493 (13)	0.0012 (12)	-0.0038 (11)	0.0022 (11)
C8	0.0461 (17)	0.0507 (15)	0.0436 (12)	-0.0038 (13)	0.0023 (12)	-0.0030 (11)
C9	0.0516 (18)	0.0648 (16)	0.0519 (14)	-0.0021 (14)	0.0015 (14)	-0.0167 (13)
C10	0.093 (3)	0.066 (2)	0.0774 (19)	0.0220 (19)	-0.0065 (19)	-0.0139 (16)
C11	0.089 (2)	0.0573 (16)	0.0624 (16)	-0.0234 (16)	-0.0038 (17)	0.0118 (14)

Geometric parameters (Å, °)

Cl1—C7	1.829 (3)	C8—C9	1.511 (3)
Cl2—C9	1.786 (3)	C1—H1	0.9800
Cl3—C9	1.769 (3)	C2—H2A	0.9700
Cl4—C9	1.753 (3)	C2—H2B	0.9700
O1—C3	1.221 (3)	С5—Н5	0.9300
C1—C2	1.522 (3)	С6—Н6А	0.9700
C1—C6	1.522 (4)	C6—H6B	0.9700
C1—C7	1.540 (3)	C8—H8A	0.9700
C2—C3	1.493 (3)	C8—H8B	0.9700
C3—C4	1.464 (4)	C10—H10A	0.9600
C4—C5	1.333 (4)	C10—H10B	0.9600
C4—C10	1.501 (4)	C10—H10C	0.9600
C5—C6	1.486 (4)	C11—H11A	0.9600
C7—C8	1.536 (3)	C11—H11B	0.9600
C7—C11	1.534 (4)	C11—H11C	0.9600
C2—C1—C6	108.9 (2)	C1—C2—H2B	109.00
C2—C1—C7	114.2 (2)	C3—C2—H2A	109.00
C6—C1—C7	113.6 (2)	С3—С2—Н2В	109.00
C1—C2—C3	113.4 (2)	H2A—C2—H2B	108.00
O1—C3—C2	120.4 (2)	C4—C5—H5	117.00
O1—C3—C4	121.7 (2)	С6—С5—Н5	117.00
C2—C3—C4	117.8 (2)	C1—C6—H6A	109.00
C3—C4—C5	118.9 (2)	C1—C6—H6B	109.00
C3—C4—C10	117.8 (2)	С5—С6—Н6А	109.00
C5—C4—C10	123.2 (3)	С5—С6—Н6В	109.00
C4—C5—C6	125.7 (3)	H6A—C6—H6B	108.00
C1—C6—C5	111.9 (2)	С7—С8—Н8А	107.00
Cl1—C7—C1	105.46 (17)	С7—С8—Н8В	107.00
Cl1—C7—C8	108.08 (17)	C9—C8—H8A	107.00
Cl1—C7—C11	105.82 (18)	C9—C8—H8B	107.00
C1—C7—C8	110.10 (19)	H8A—C8—H8B	107.00

C1—C7—C11	110.8 (2)	C4C10H10A	109.00
C8—C7—C11	116.0 (2)	C4C10H10B	109.00
C7—C8—C9	122.5 (2)	C4—C10—H10C	109.00
Cl2—C9—Cl3	106.34 (14)	H10A-C10-H10B	109.00
Cl2—C9—Cl4	107.92 (14)	H10A-C10-H10C	110.00
Cl2—C9—C8	106.93 (17)	H10B-C10-H10C	109.00
Cl3—C9—Cl4	108.76 (14)	C7—C11—H11A	109.00
Cl3—C9—C8	112.22 (18)	C7—C11—H11B	109.00
Cl4—C9—C8	114.27 (18)	C7—C11—H11C	109.00
C2—C1—H1	107.00	H11A—C11—H11B	109.00
С6—С1—Н1	107.00	H11A—C11—H11C	109.00
C7—C1—H1	107.00	H11B—C11—H11C	110.00
C1—C2—H2A	109.00		
C6—C1—C2—C3	54.6 (3)	O1—C3—C4—C10	0.4 (3)
C7—C1—C2—C3	-177.3 (2)	C2—C3—C4—C5	3.0 (3)
C2-C1-C6-C5	-47.4 (3)	C2-C3-C4-C10	-175.2 (2)
C7—C1—C6—C5	-175.77 (19)	C3—C4—C5—C6	3.5 (4)
C2-C1-C7-Cl1	65.6 (2)	C10—C4—C5—C6	-178.5 (2)
C2-C1-C7-C8	-50.8 (3)	C4C5C1	20.2 (3)
C2-C1-C7-C11	179.6 (2)	Cl1—C7—C8—C9	84.7 (3)
C6-C1-C7-Cl1	-168.79 (16)	C1—C7—C8—C9	-160.6 (2)
C6—C1—C7—C8	74.8 (3)	C11—C7—C8—C9	-33.9 (3)
C6-C1-C7-C11	-54.8 (3)	C7—C8—C9—Cl2	-171.8 (2)
C1—C2—C3—O1	151.4 (2)	C7—C8—C9—Cl3	71.9 (3)
C1—C2—C3—C4	-33.0 (3)	C7—C8—C9—Cl4	-52.5 (3)
O1—C3—C4—C5	178.5 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H··· <i>A</i>	$D \cdots A$	D—H···A
C8—H8A···O1 ⁱ	0.97	2.51	3.394 (3)	152

Symmetry code: (i) x-1/2, -y+3/2, -z+1.