Structure Reports

Online
ISSN 1600-5368

1-(2,4-Difluorophenyl)thiourea

Hoong-Kun Fun, ${ }^{\mathbf{a} *} \ddagger$ Ching Kheng Quah, ${ }^{\text {a }} \S$ Prakash S. Nayak, ${ }^{\text {b }}$ B. Narayana ${ }^{\text {b }}$ and B. K. Sarojini ${ }^{\text {c }}$
${ }^{\text {a }}$-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ${ }^{\text {b }}$ Department of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and ${ }^{\text {c }}$ Department of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India
Correspondence e-mail: hkfun@usm.my

Received 10 July 2012; accepted 11 July 2012
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; disorder in main residue; R factor $=0.033 ; w R$ factor $=0.077$; data-to-parameter ratio $=13.9$.

The asymmetric unit of the title compound, $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{~S}$, consists of two independent molecules, with comparable geometries. In one molecule, the thiourea moiety is essentially planar (r.m.s. deviation $=0.014 \AA$) and it forms a dihedral angle of $78.67(9)^{\circ}$ with the benzene ring. The corresponding r.m.s. deviation and dihedral angle for the other molecule are $0.011 \AA$ and $81.71(8)^{\circ}$, respectively. In both molecules, one of the F atoms is disordered over two positions with refined site occupancies of $0.572(3): 0.428$ (3) and $0.909(2): 0.091(2)$, respectively. In the crystal, molecules are linked via N $\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds into two-dimensional networks parallel to (010).

Related literature

For general background to and the related structures of the title compound, see: Fun et al. (2012a,b); Sarojini et al. (2007). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier \& Glazer (1986).

Experimental

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{~S}$
$a=6.4260(7) \AA$
$M_{r}=188.20$
$b=36.908$ (4) \AA
Monoclinic, $P 2_{1} / c$
$c=6.6821$ (7) \AA
$\beta=100.464$
$V=1558.4$ (3) \AA^{3}
$Z=8$
$\mu=0.39 \mathrm{~mm}^{-1}$
$0.36 \times 0.14 \times 0.09 \mathrm{~mm}$
Mo $K \alpha$ radiation
Data collection
Bruker SMART APEXII DUO
CCD area-detector
diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2009)
$T_{\text {min }}=0.874, T_{\text {max }}=0.967$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.077$
$S=1.06$
3553 reflections
255 parameters
4 restraints

H atoms treated by a mixture of independent and constrained refinement
13654 measured reflections
3553 independent reflections 3082 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.031$
$\Delta \rho_{\max }=0.55 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.36 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 A-\mathrm{H} 1 \mathrm{~N} A \cdots \mathrm{~S} 1 B$	$0.794(19)$	$2.586(19)$	$3.3485(15)$	$161.7(19)$
$\mathrm{N} 2 A-\mathrm{H} 2 \mathrm{~N} A \cdots \mathrm{~S} 1 B$	$0.81(2)$	$2.77(3)$	$3.499(2)$	$151(2)$
$\mathrm{N} 2 A-\mathrm{H} 3 \mathrm{~N} A \cdots \mathrm{~S} 1 B^{\mathrm{i}}$	$0.85(2)$	$2.65(2)$	$3.504(2)$	$175.2(16)$
$\mathrm{N} 1 B-\mathrm{H} 1 \mathrm{~N} B \cdots \mathrm{~S} 1 A^{\mathrm{ii}}$	$0.88(2)$	$2.49(2)$	$3.3273(15)$	$158.9(17)$
$\mathrm{N} 2 B-\mathrm{H} 2 \mathrm{~N} B \cdots \mathrm{~S} 1 A^{\mathrm{ii}}$	$0.88(2)$	$2.76(2)$	$3.5179(19)$	$146.4(18)$
$\mathrm{N} 2 B-\mathrm{H} 3 \mathrm{~N} B \cdots \mathrm{~S} 1 A^{\mathrm{iii}}$	$0.82(3)$	$2.66(3)$	$3.4592(19)$	$167(2)$
$\mathrm{C} 4 B-\mathrm{H} 4 B A \cdots \mathrm{~F} 1 B^{\mathrm{i}}$	0.95	2.50	$3.094(2)$	121
$\mathrm{C} 5 B-\mathrm{H} 5 B A \cdots \mathrm{~F} 1 B^{\mathrm{i}}$	0.95	2.52	$3.111(2)$	121

Symmetry codes: (i) $x, y, z+1$; (ii) $x-1, y, z-1$; (iii) $x, y, z-1$.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The authors would like to thank Universiti Sains Malaysia for a Research University Grant (No. 1001/PFIZIK/811160). BN thanks the UGC for financial assistance through SAP and a BSR one-time grant for the purchase of chemicals.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2208).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. \& Sarojini, B. K. (2012a). Acta Cryst. E68, o2423.
Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. \& Sarojini, B. K. (2012b). Acta Cryst. E68, o2462.
Sarojini, B. K., Narayana, B., Sunil, K., Yathirajan, H. S. \& Bolte, M. (2007). Acta Cryst. E63, o3754.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
\ddagger Thomson Reuters ResearcherID: A-3561-2009.
§ Thomson Reuters ResearcherID: A-5525-2009

supporting information

Acta Cryst. (2012). E68, o2460 [https://doi.org/10.1107/S1600536812031625]

1-(2,4-Difluorophenyl)thiourea

Hoong-Kun Fun, Ching Kheng Quah, Prakash S. Nayak, B. Narayana and B. K. Sarojini

S1. Comment

In continuation of our work on the synthesis of thiourea derivatives (Fun et al., 2012a, 2012b; Sarojini et al., 2007), the title compound is prepared and its crystal structure is reported here.

The asymmetric unit (Fig. 1) of the title compound consists of two independent molecules (A and B), with comparable geometries. In molecule A, thiourea moiety (S1A/N1A/N2A/C7A) is essentially planar (r.m.s. deviation $=0.014 \AA$) and it forms a dihedral angle of 78.67 (9$)^{\circ}$ with the benzene ring (C1A-C6A). The corresponding r.m.s. deviation and dihedral angle for molecule B are $0.011 \AA$ and $81.71(8)^{\circ}$, respectively. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Fun et al., 2012a, 2012b). The fluorine atoms (F1A/F1B) of both molecules are disordered over two positions with refined site-occupancies of 0.572 (3):0.428 (3) and 0.909 (2): 0.091 (2), respectively.
In the crystal structure, Fig. 2, molecules are linked via intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds (Table 1) into two-dimensional networks parallel to (010).

S2. Experimental

2,4-Difluoroaniline ($0.84 \mathrm{~mL}, 0.0081 \mathrm{~mol}$) was refluxed with potassium thiocyanate ($1.4 \mathrm{~g}, 0.0142 \mathrm{~mol}$) in 20 mL of water and 1.6 mL of concentrated HCl for 3 h . The reaction mixture was then cooled to room temperature and stirred overnight. The precipitated product was then filetred, washed with water, dried and recrystallised from acetone and toluene (1:1) mixture by slow evaporation method (m.p. 441-443K).

S3. Refinement

N -bound hydrogen atoms were located in a difference Fourier map and refined freely with $\mathrm{N}-\mathrm{H}=0.79$ (2)-0.88 (2) \AA.
The remaining H atoms were positioned geometrically and refined using a riding model with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C})$. The fluorine atoms (F1A/F1B) of both molecules are disordered over two positions with refined siteoccupancies of 0.572 (3):0.428 (3) and 0.909 (2): 0.091 (2), respectively. The same U_{ij} parameters were used for atom pair F1B/F1BX.

Figure 1
The asymmetric unit of the title compound showing 50% probability displacement ellipsoids for non-H atoms. Both major and minor disorder component are shown.

Figure 2
The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity. Only major component of disorder is shown.

1-(2,4-Difluorophenyl)thiourea

Crystal data
$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{~S}$
$M_{r}=188.20$
Monoclinic, $P 2_{1} / c$

Hall symbol: -P 2ybc
$a=6.4260$ (7) \AA
$b=36.908(4) \AA$
$c=6.6821$ (7) \AA
$\beta=100.464(2)^{\circ}$
$V=1558.4$ (3) \AA^{3}
$Z=8$
$F(000)=768$
$D_{\mathrm{x}}=1.604 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$

Data collection

Bruker SMART APEXII DUO CCD areadetector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\min }=0.874, T_{\text {max }}=0.967$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.077$
$S=1.06$
3553 reflections
255 parameters
4 restraints
Primary atom site location: structure-invariant direct methods

Cell parameters from 5197 reflections
$\theta=3.2-32.0^{\circ}$
$\mu=0.39 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Plate, colourless
$0.36 \times 0.14 \times 0.09 \mathrm{~mm}$

> 13654 measured reflections
> 3553 independent reflections
> 3082 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.031$
> $\theta_{\max }=27.5^{\circ}, \theta_{\min }=1.1^{\circ}$
> $h=-8 \rightarrow 8$
> $k=-47 \rightarrow 47$
> $l=-8 \rightarrow 8$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier \& Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
F1A	$0.9955(3)$	$0.14057(5)$	$0.6462(3)$	$0.0235(5)$	$0.572(3)$
F1AX	$0.4561(4)$	$0.21131(7)$	$0.3297(4)$	$0.0259(7)$	$0.428(3)$
F2A	$1.13116(19)$	$0.26104(3)$	$0.46796(18)$	$0.0356(3)$	
S1A	$0.59786(6)$	$0.167502(10)$	$0.91274(6)$	$0.01619(10)$	
N1A	$0.5812(2)$	$0.14793(4)$	$0.5240(2)$	$0.0209(3)$	
N2A	$0.4287(3)$	$0.10890(4)$	$0.7173(3)$	$0.0227(3)$	

C1A	0.9376 (3)	0.17296 (5)	0.5676 (3)	0.0223 (4)	
H1AA	0.9899	0.1505	0.6251	0.027*	0.428 (3)
C2A	1.0788 (3)	0.20077 (5)	0.5578 (3)	0.0240 (4)	
H2AA	1.2258	0.1980	0.6090	0.029*	
C3A	0.9968 (3)	0.23273 (5)	0.4704 (3)	0.0227 (4)	
C4A	0.7859 (3)	0.23758 (5)	0.3885 (3)	0.0221 (4)	
H4AA	0.7357	0.2597	0.3246	0.027*	
C5A	0.6497 (3)	0.20898 (5)	0.4030 (3)	0.0207 (4)	
H5AA	0.5035	0.2116	0.3475	0.025*	0.572 (3)
C6A	0.7219 (3)	0.17666 (4)	0.4967 (3)	0.0193 (3)	
C7A	0.5343 (2)	0.13960 (4)	0.7068 (3)	0.0167 (3)	
F1B	-0.1368 (2)	0.05450 (3)	-0.13223 (17)	0.0289 (3)	0.909 (2)
F1BX	-0.1259 (12)	0.0838 (3)	0.5203 (17)	0.0289 (3)	0.091 (2)
F2B	-0.33235 (18)	-0.03440 (3)	0.29943 (18)	0.0313 (3)	
S1B	0.32399 (6)	0.086866 (11)	0.19944 (6)	0.01690 (10)	
N1B	-0.0833 (2)	0.10552 (4)	0.1680 (2)	0.0178 (3)	
N2B	0.1372 (3)	0.15004 (4)	0.0948 (2)	0.0204 (3)	
C1B	-0.1715 (2)	0.04402 (5)	0.0510 (3)	0.0195 (3)	
H1BA	-0.1484	0.0513	-0.0796	0.023*	0.091 (2)
C2B	-0.2367 (2)	0.00890 (5)	0.0765 (3)	0.0207 (3)	
H2BA	-0.2598	-0.0080	-0.0327	0.025*	
C3B	-0.2663 (2)	-0.00024 (4)	0.2694 (3)	0.0201 (3)	
C4B	-0.2367 (3)	0.02342 (5)	0.4308 (3)	0.0226 (4)	
H4BA	-0.2606	0.0161	0.5610	0.027*	
C5B	-0.1706 (3)	0.05838 (5)	0.3979 (3)	0.0205 (3)	
H5BA	-0.1474	0.0752	0.5074	0.025*	0.909 (2)
C6B	-0.1382 (2)	0.06909 (4)	0.2074 (3)	0.0163 (3)	
C7B	0.1138 (3)	0.11572 (4)	0.1495 (2)	0.0157 (3)	
H1NA	0.538 (3)	0.1354 (5)	0.429 (3)	0.018 (5)*	
H2NA	0.390 (3)	0.0967 (6)	0.617 (4)	0.026 (6)*	
H3NA	0.396 (3)	0.1029 (5)	0.831 (3)	0.020 (5)*	
H1NB	-0.190 (3)	0.1202 (6)	0.124 (3)	0.024 (5)*	
H2NB	0.028 (3)	0.1640 (6)	0.052 (3)	0.026 (5)*	
H3NB	0.249 (4)	0.1570 (6)	0.067 (3)	0.025 (6)*	

Atomic displacement parameters (A^{2})

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	$U^{1^{23}}$
F1A	$0.0242(9)$	$0.0180(9)$	$0.0258(10)$	$0.0068(7)$	$-0.0019(7)$	$0.0057(7)$
F1AX	$0.0195(12)$	$0.0277(14)$	$0.0287(14)$	$0.0035(9)$	$0.0000(10)$	$0.0036(11)$
F2A	$0.0395(6)$	$0.0311(6)$	$0.0365(7)$	$-0.0152(5)$	$0.0080(5)$	$0.0054(5)$
S1A	$0.01840(19)$	$0.01375(19)$	$0.0162(2)$	$-0.00093(14)$	$0.00254(15)$	$-0.00129(15)$
N1A	$0.0306(8)$	$0.0157(7)$	$0.0157(7)$	$-0.0058(6)$	$0.0022(6)$	$-0.0030(6)$
N2A	$0.0322(8)$	$0.0169(7)$	$0.0195(8)$	$-0.0079(7)$	$0.0057(7)$	$-0.0034(6)$
C1A	$0.0331(9)$	$0.0172(8)$	$0.0179(8)$	$0.0043(7)$	$0.0081(7)$	$0.0019(7)$
C2A	$0.0246(9)$	$0.0289(9)$	$0.0195(9)$	$0.0003(7)$	$0.0072(7)$	$0.0013(7)$
C3A	$0.0323(9)$	$0.0200(8)$	$0.0180(8)$	$-0.0069(7)$	$0.0101(7)$	$-0.0009(7)$
C4A	$0.0350(9)$	$0.0161(8)$	$0.0162(8)$	$0.0014(7)$	$0.0070(7)$	$0.0025(7)$

C5A	$0.0277(9)$	$0.0205(8)$	$0.0136(8)$	$0.0010(7)$	$0.0025(7)$	$-0.0015(7)$
C6A	$0.0297(9)$	$0.0151(8)$	$0.0137(8)$	$-0.0027(6)$	$0.0060(7)$	$-0.0024(6)$
C7A	$0.0167(7)$	$0.0144(7)$	$0.0180(8)$	$0.0028(6)$	$0.0006(6)$	$-0.0005(6)$
F1B	$0.0454(7)$	$0.0278(6)$	$0.0145(6)$	$-0.0080(5)$	$0.0084(5)$	$-0.0017(5)$
F1BX	$0.0454(7)$	$0.0278(6)$	$0.0145(6)$	$-0.0080(5)$	$0.0084(5)$	$-0.0017(5)$
F2B	$0.0443(7)$	$0.0172(5)$	$0.0334(6)$	$-0.0111(5)$	$0.0098(5)$	$0.0002(5)$
S1B	$0.01641(18)$	$0.01577(19)$	$0.0178(2)$	$0.00075(14)$	$0.00125(15)$	$-0.00053(16)$
N1B	$0.0161(7)$	$0.0138(7)$	$0.0231(7)$	$0.0012(5)$	$0.0029(6)$	$0.0021(6)$
N2B	$0.0190(7)$	$0.0161(7)$	$0.0265(8)$	$0.0003(6)$	$0.0053(6)$	$0.0039(6)$
C1B	$0.0200(8)$	$0.0221(8)$	$0.0171(8)$	$-0.0005(6)$	$0.0050(6)$	$0.0015(7)$
C2B	$0.0230(8)$	$0.0189(8)$	$0.0205(8)$	$-0.0031(6)$	$0.0044(7)$	$-0.0052(7)$
C3B	$0.0203(8)$	$0.0143(8)$	$0.0255(9)$	$-0.0026(6)$	$0.0034(7)$	$0.0014(7)$
C4B	$0.0285(9)$	$0.0215(9)$	$0.0176(8)$	$-0.0020(7)$	$0.0034(7)$	$0.0022(7)$
C5B	$0.0236(8)$	$0.0185(8)$	$0.0181(8)$	$0.0002(6)$	$0.0003(7)$	$-0.0028(7)$
C6B	$0.0125(7)$	$0.0137(7)$	$0.0224(9)$	$0.0004(6)$	$0.0020(6)$	$0.0002(6)$
C7B	$0.0197(8)$	$0.0166(8)$	$0.0104(7)$	$-0.0011(6)$	$0.0020(6)$	$-0.0022(6)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

F1A-C1A	1.331 (2)	F1B-C1B	1.341 (2)
F1AX-C5A	1.254 (3)	F1BX-C5B	1.242 (12)
F2A-C3A	1.3572 (19)	F2B-C3B	1.3567 (19)
S1A-C7A	1.7079 (17)	S1B-C7B	1.7049 (16)
N1A-C7A	1.346 (2)	N1B-C7B	1.348 (2)
N1A-C6A	1.427 (2)	N1B-C6B	1.427 (2)
N1A-H1NA	0.79 (2)	N1B-H1NB	0.88 (2)
N2A-C7A	1.329 (2)	N2B-C7B	1.334 (2)
N2A-H2NA	0.81 (2)	$\mathrm{N} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{NB}$	0.88 (2)
N2A-H3NA	0.85 (2)	N2B-H3NB	0.82 (2)
C1A-C2A	1.379 (3)	C1B-C2B	1.382 (2)
C1A-C6A	1.387 (3)	C1B-C6B	1.383 (2)
C1A-H1AA	0.9500	C1B-H1BA	0.9500
C2A-C3A	1.377 (3)	C2B-C3B	1.378 (3)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{AA}$	0.9500	$\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{BA}$	0.9500
C3A-C4A	1.379 (3)	C3B-C4B	1.374 (2)
C4A-C5A	1.386 (2)	C4B-C5B	1.389 (2)
C4A-H4AA	0.9500	C4B-H4BA	0.9500
C5A-C6A	1.387 (2)	C5B-C6B	1.384 (2)
C5A-H5AA	0.9500	C5B-H5BA	0.9500
C7A-N1A-C6A	122.52 (15)	C7B-N1B-C6B	123.25 (14)
C7A-N1A-H1NA	119.4 (15)	C7B-N1B-H1NB	118.8 (14)
C6A-N1A-H1NA	117.9 (15)	C6B-N1B-H1NB	116.1 (13)
C7A-N2A-H2NA	121.1 (16)	C7B-N2B-H2NB	121.6 (14)
C7A-N2A-H3NA	118.6 (14)	$\mathrm{C} 7 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}-\mathrm{H} 3 \mathrm{NB}$	120.5 (15)
H2NA - N2A-H3NA	120 (2)	$\mathrm{H} 2 \mathrm{NB}-\mathrm{N} 2 \mathrm{~B}-\mathrm{H} 3 \mathrm{NB}$	115 (2)
F1A-C1A-C2A	123.22 (18)	F1B-C1B-C2B	119.17 (15)
F1A-C1A-C6A	114.43 (17)	F1B-C1B-C6B	117.95 (15)

$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}$	122.35 (16)
C2A-C1A-H1AA	118.8
C6A-C1A-H1AA	118.8
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	116.96 (17)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{AA}$	121.5
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{AA}$	121.5
F2A-C3A-C2A	117.99 (16)
$\mathrm{F} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	118.49 (16)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	123.51 (17)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	117.47 (16)
C3A-C4A-H4AA	121.3
C5A-C4A-H4AA	121.3
F1AX-C5A-C4A	120.96 (19)
F1AX-C5A-C6A	117.52 (19)
C4A-C5A-C6A	121.52 (17)
C4A-C5A-H5AA	119.2
C6A-C5A-H5AA	119.2
C5A-C6A-C1A	118.07 (16)
C5A-C6A-N1A	121.93 (16)
C1A-C6A-N1A	120.00 (15)
$\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}$	116.32 (16)
N2A-C7A-S1A	121.39 (14)
N1A-C7A-S1A	122.25 (13)
$\mathrm{F} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	179.30 (18)
C6A-C1A-C2A-C3A	-1.0 (3)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{F} 2 \mathrm{~A}$	176.87 (16)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	-2.1 (3)
F2A-C3A-C4A-C5A	-176.43 (15)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	2.5 (3)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{F} 1 \mathrm{AX}$	-179.1 (2)
C3A-C4A-C5A-C6A	0.2 (3)
F1AX-C5A-C6A-C1A	176.2 (2)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	-3.1 (3)
F1AX-C5A-C6A-N1A	-4.8(3)
C4A-C5A-C6A-N1A	175.88 (16)
F1A-C1A-C6A-C5A	-176.79 (16)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	3.5 (3)
F1A-C1A-C6A-N1A	4.3 (2)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}$	-175.43 (16)
C7A-N1A-C6A-C5A	-107.0 (2)
C7A-N1A-C6A-C1A	71.9 (2)
C6A-N1A-C7A-N2A	-169.70 (16)
$\mathrm{C} 6 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{S} 1 \mathrm{~A}$	12.6 (2)

C2B-C1B-C6B	122.88 (16)
C2B-C1B-H1BA	118.6
C6B-C1B-H1BA	118.6
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	116.17 (16)
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{BA}$	121.9
$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{BA}$	121.9
F2B-C3B-C4B	118.46 (16)
F2B-C3B-C2B	117.77 (15)
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	123.76 (16)
C3B-C4B-C5B	117.95 (16)
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{H} 4 \mathrm{BA}$	121.0
C5B-C4B-H4BA	121.0
F1BX-C5B-C6B	109.6 (6)
F1BX-C5B-C4B	129.6 (6)
C6B-C5B-C4B	120.84 (16)
C6B-C5B-H5BA	119.6
C4B-C5B-H5BA	119.6
C1B-C6B-C5B	118.40 (15)
C1B-C6B-N1B	120.01 (15)
C5B-C6B-N1B	121.51 (15)
$\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}$	116.42 (15)
N2B-C7B-S1B	121.45 (13)
N1B-C7B-S1B	122.11 (12)
$\mathrm{F} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	179.05 (14)
$\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	-0.44 (14)
$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{F} 2 \mathrm{~B}$	179.36 (14)
$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	0.66 (15)
$\mathrm{F} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	-179.51 (14)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	-0.8 (2)
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{F} 1 \mathrm{BX}$	-176.9 (4)
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}$	0.7 (2)
F1B-C1B-C6B-C5B	-179.09 (14)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	0.4 (2)
F1B-C1B-C6B-N1B	4.3 (2)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}$	-176.21 (13)
F1BX-C5B-C6B-C1B	177.5 (4)
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	-0.6 (2)
F1BX-C5B-C6B-N1B	-5.9 (4)
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}$	176.01 (15)
$\mathrm{C} 7 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	-79.0 (2)
C7B-N1B-C6B-C5B	104.47 (19)
$\mathrm{C} 6 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}$	174.25 (15)
C6B-N1B-C7B-S1B	-7.4 (2)

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 A-\mathrm{H} 1 N A \cdots \mathrm{~S} 1 B$	$0.794(19)$	$2.586(19)$	$3.3485(15)$	$161.7(19)$
$\mathrm{N} 2 A — \mathrm{H} 2 N A \cdots \mathrm{~S} 1 B$	$0.81(2)$	$2.77(3)$	$3.499(2)$	$151(2)$
$\mathrm{N} 2 A — \mathrm{H} 3 N A \cdots \mathrm{~S} 1 B^{\mathrm{i}}$	$0.85(2)$	$2.65(2)$	$3.504(2)$	$175.2(16)$
$\mathrm{N} 1 B — \mathrm{H} 1 N B \cdots \mathrm{~S} 1 A^{\mathrm{ii}}$	$0.88(2)$	$2.49(2)$	$3.3273(15)$	$158.9(17)$
$\mathrm{N} 2 B — \mathrm{H} 2 N B \cdots \mathrm{~S} 1 A^{\mathrm{ii}}$	$0.88(2)$	$2.76(2)$	$3.5179(19)$	$146.4(18)$
$\mathrm{N} 2 B — \mathrm{H} 3 N B \cdots \mathrm{~S} 1 A^{\mathrm{iii}}$	$0.82(3)$	$2.66(3)$	$3.4592(19)$	$167(2)$
$\mathrm{C} 4 B — \mathrm{H} 4 B A \cdots \mathrm{~F} 1 B^{\mathrm{i}}$	0.95	2.50	$3.094(2)$	121
$\mathrm{C} 5 B — \mathrm{H} 5 B A \cdots \mathrm{~F} 1 B^{\mathrm{i}}$	0.95	2.52	$3.111(2)$	121

Symmetry codes: (i) $x, y, z+1$; (ii) $x-1, y, z-1$; (iii) $x, y, z-1$.

