Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Diethyl 2,2'-(1,4-phenylenedioxy)diacetate

Jérôme Husson, ${ }^{\text {a }}$ Michael Knorr, ${ }^{\text {a }}$ Yoann Rousselin ${ }^{\text {b }}$ and Marek M. Kubicki ${ }^{\text {b* }}$

${ }^{\text {a }}$ Institute UTINAM UMR CNRS 6213, University of Franche-Comté, 16 Route de Gray, Besançon 25030, France, and ${ }^{\mathbf{b}}$ ICMUB UMR CNRS 5260, University of Bourgogne, 9 Avenue A. Savary, Dijon 21078, France
Correspondence e-mail: marek.kubicki@u-bourgogne.fr
Received 19 April 2012; accepted 5 July 2012
Key indicators: single-crystal X-ray study; $T=115 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.045 ; w R$ factor $=0.114$; data-to-parameter ratio $=16.7$.

In the title compound, $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{6}$, a crystallographic center at the centroid of the aromatic ring generates the complete molecule which is planar within 0.085 (1) \AA for the non- H atoms. In the crystal, weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions link the molecules.

Related literature

For the syntheses and applications of aryloxyacetic acid derivatives, see: Carter \& Lawrence (1900); Moser (1950); Kassem (1997); Hodge et al. (2000). For related crystal structures, see: Zhuang \& Wang (2009); Du et al. (2006); Gao et al. (2004).

Experimental

Crystal data
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{6}$
$V=677.94(7) \AA^{3}$
$M_{r}=282.28$
Monoclinic, $P 2_{1} / c$
$a=4.9254$ (3) А
$b=9.7194$ (5) A
$c=14.9170$ (11) \AA
$\beta=108.313$ (3) ${ }^{\circ}$

Data collection

Nonius KappaCCD diffractometer 1344 reflections with $I>2 \sigma(I)$
2560 measured reflections
1536 independent reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045 \quad 92$ parameters
$w R\left(F^{2}\right)=0.114 \quad \mathrm{H}$-atom parameters constrained
$S=1.09$
1536 reflections
$\Delta \rho_{\text {max }}=0.29 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.26 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).
Cg is the centroid of the $\mathrm{C} 1-\mathrm{C} 3 / \mathrm{Cl}^{\mathrm{i}}-\mathrm{C} 3^{\mathrm{i}}$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 B \cdots C^{\mathrm{i}}$	0.99	2.57	$3.426(2)$	145
$\mathrm{C} 6-\mathrm{H} 6 B \cdots \mathrm{O}^{\mathrm{ii}}$	0.99	2.65	$3.340(2)$	127
$\mathrm{C}^{\mathrm{H}}-\mathrm{H} 6 B \cdots \mathrm{O}^{2 i}$	0.99	2.68	$3.401(2)$	130

Symmetry codes: (i) $x-1, y, z$; (ii) $-x, y-\frac{1}{2},-z+\frac{3}{2}$.
Data collection: COLLECT (Nonius, 2004); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO (Otwinowski \& Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the CNRS for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2131).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Carter, W. \& Lawrence, W. T. (1900). J. Chem. Soc. 77, 1222-1227.
Du, M., Zhang, Z.-H., Zhao, X.-J. \& Cai, H. (2006). Cryst. Growth Des. 6, 114121.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gao, S., Liu, J.-W., Huo, L.-H., Zhao, H. \& Ng, S. W. (2004). Acta Cryst. E60, m1370-m1371.
Hodge, P., Monvisade, P., Owen, G. J., Heatley, F. \& Pang, Y. (2000). New J. Chem. 24, 703-709.
Kassem, A. A. (1997). Polym. Degrad. Stabil. 56, 203-207.
Moser, C. M. (1950). J. Am. Chem. Soc. 72, 1413-1415.
Nonius (2004). COLLECT. Nonius BV, Delft, the Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Zhuang, L. \& Wang, G. (2009). Acta Cryst. E65, 0403.

supporting information

Acta Cryst. (2012). E68, o2422 [https://doi.org/10.1107/S1600536812030747]
Diethyl 2,2'-(1,4-phenylenedioxy)diacetate

Jérôme Husson, Michael Knorr, Yoann Rousselin and Marek M. Kubicki

S1. Comment

The title compound has been synthesized by different paths including the reaction of hydroquinone with sodium ethoxide followed by a Williamson reaction of the resulting dianion with ethyl bromoacetate (Carter \& Lawrence, 1900), or the esterification of the corresponding diacid in the presence of $\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}$ complex as a catalyst (Moser, 1950). It has been used in the preparation of polymers (Kassem, 1997) and polyrotaxanes (Hodge et al., 2000).
A crystallographic center at the centroid of the central aromatic ring generates the complete molecule which is planar within 0.085 (1) \AA without the H atoms (Fig. 1). The largest deviation from planarity among the ten non-hydrogen atoms is derived from $\mathrm{O} 1(0.085(1) \AA)$. A similar molecular geometry has been reported for the analogous dimethyl 1,4- $(p-$ phenylenedioxy)diacetate molecule (Zhuang \& Wang, 2009) as well as for the corresponding diacid (Du et al., 2006) and dianion (Gao et al., 2004). Weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$-ring (methylene \cdots aryl) interactions (Table 1, Cg is the centroid of the $\mathrm{C} 1-\mathrm{C} 3 / \mathrm{C} 1 \mathrm{i}-\mathrm{C} 3 \mathrm{i} \pi$-ring) are observed which contribute to crystal packing in the crystal (Fig. 2).

S2. Experimental

Sodium ($4.60 \mathrm{~g} ; 0.2 \mathrm{~mol}$) was added portionwise to absolute ethanol (250 ml). Once all sodium reacted, hydroquinone $(11.00 \mathrm{~g} ; 0.1 \mathrm{~mol})$ was added and the solution refluxed for five minutes. After cooling to room temperature, ethyl chloroacetate $(21.3 \mathrm{ml} ; 0.1 \mathrm{~mol})$ was added and the reaction mixture refluxed for five hours. The mixture was then poured onto distilled water $(250 \mathrm{ml})$ and pH adjusted to 3 by addition of few drops of concentrated hydrochloric acid. The aqueous layer was extracted with methyl-tertbutyl ether (4τ imes 100 ml). The organic layers were then combined, washed with saturated sodium hydrogencarbonate $(3 \tau \mathrm{imes} 100 \mathrm{ml})$ and water $(100 \mathrm{ml})$. The ethereal layer was dried over calcium sulfate and concentrated under vacuum to afford the title compound as a beige solid. The crude product was recrystallized from dilute ethanol to afford the pure compound as colorless needles ($5.58 \mathrm{~g}, 47 \%$).

S3. Refinement

All H atoms were placed in calculated positions and treated in a riding model. $\mathrm{C}-\mathrm{H}$ distances were set to $0.95 \AA$ (aromatic), $0.99 \AA$ (methylene) and $0.98 \AA$ (methyl) with $U_{\text {iso }}(\mathrm{H})=x U_{e q}(\mathrm{C})$, where $x=1.5$ for methyl and 1.2 for aromatic and methylene H atoms.

Figure 1
Molecular structure of title compound(I) showing the atom labeling scheme of the asymmetric unit and 50% probability displacement ellipsoids. A crystallographic inversion center at the centroid of the central aromatic ring generates the complete molecule.

Figure 2
Packing diagram of the title compound viewed roughly along the a axis. Dashed lines indicate weak $\mathrm{C}-\mathrm{H} \cdots \pi$ (represented by the centroid of aromatic ring) and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermoleclar interactions. Hydrogen atoms not involved in these interactions have been removed for clarity.

Diethyl 2,2'-(1,4-phenylenedioxy)diacetate

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{6}$
$M_{r}=282.28$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=4.9254$ (3) A
$b=9.7194$ (5) \AA
$c=14.9170(11) \AA$
$\beta=108.313(3)^{\circ}$

$$
\begin{aligned}
& V=677.94(7) \AA^{3} \\
& Z=2 \\
& F(000)=300 \\
& D_{\mathrm{x}}=1.383 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 1387 \text { reflections } \\
& \theta=1.0-27.5^{\circ} \\
& \mu=0.11 \mathrm{~mm}^{-1}
\end{aligned}
$$

$T=115 \mathrm{~K}$
Prism, colourless

Data collection

Nonius KappaCCD diffractometer
Radiation source: Enraf-Nonius FR590
Horizonally mounted graphite crystal monochromator
Detector resolution: 9 pixels mm^{-1}
CCD rotation images, thick slices scans
2560 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.114$
$S=1.09$
1536 reflections
92 parameters
0 restraints
0 constraints
Primary atom site location: structure-invariant direct methods
$0.40 \times 0.27 \times 0.15 \mathrm{~mm}$

$$
\begin{aligned}
& 1536 \text { independent reflections } \\
& 1344 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.029 \\
& \theta_{\max }=27.4^{\circ}, \theta_{\min }=2.5^{\circ} \\
& h=-6 \rightarrow 6 \\
& k=-9 \rightarrow 12 \\
& l=-19 \rightarrow 19
\end{aligned}
$$

```
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0388 P)^{2}+0.4496 P\right]\)
where \(P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3\)
\((\Delta / \sigma)_{\max }<0.001\)
\(\Delta \rho_{\text {max }}=0.29 \mathrm{e}_{\AA^{-3}}\)
\(\Delta \rho_{\text {min }}=-0.26\) e \(\AA^{-3}\)
```


Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors $(\mathrm{gt}) \mathrm{etc}$. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$0.2542(2)$	$0.85579(11)$	$0.61485(7)$	$0.0183(3)$
O2	$0.0149(3)$	$0.73769(12)$	$0.73286(7)$	$0.0253(3)$
O3	$-0.2554(2)$	$0.60124(11)$	$0.61710(7)$	$0.0204(3)$
C1	$0.3679(3)$	$0.92498(14)$	$0.55420(10)$	$0.0153(3)$
C2	$0.2808(3)$	$0.90691(14)$	$0.45650(10)$	$0.0160(3)$
H2	0.1321	0.8440	0.4268	0.019^{*}
C3	$0.4152(3)$	$0.98254(15)$	$0.40315(10)$	$0.0162(3)$
H3	0.3575	0.9706	0.3366	0.019^{*}
C4	$0.0340(3)$	$0.76022(14)$	$0.57334(10)$	$0.0164(3)$
H4A	0.1066	0.6860	0.5415	0.020^{*}
H4B	-0.1269	0.8066	0.5259	0.020^{*}
C5	$-0.0652(3)$	$0.70087(15)$	$0.65171(10)$	$0.0174(3)$
C6	$-0.3690(3)$	$0.53564(16)$	$0.68587(10)$	$0.0207(3)$
H6A	-0.4725	0.6039	0.7122	0.025^{*}

H6B	-0.2112	0.4965	0.7384	0.025^{*}
C7	$-0.5696(4)$	$0.42320(16)$	$0.63551(11)$	$0.0235(3)$
H7A	-0.7226	0.4628	0.5829	0.035^{*}
H7B	-0.6530	0.3786	0.6797	0.035^{*}
H7C	-0.4639	0.3550	0.6112	0.035^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0220(5)$	$0.0212(5)$	$0.0149(5)$	$-0.0062(4)$	$0.0106(4)$	$0.0001(4)$
O2	$0.0311(6)$	$0.0298(6)$	$0.0172(6)$	$-0.0089(5)$	$0.0106(5)$	$0.0001(5)$
O3	$0.0268(6)$	$0.0205(5)$	$0.0179(5)$	$-0.0062(4)$	$0.0128(4)$	$0.0005(4)$
C1	$0.0176(7)$	$0.0154(6)$	$0.0170(7)$	$0.0024(5)$	$0.0114(5)$	$0.0030(5)$
C2	$0.0177(7)$	$0.0154(6)$	$0.0175(7)$	$0.0001(5)$	$0.0091(5)$	$-0.0011(5)$
C3	$0.0182(7)$	$0.0183(7)$	$0.0141(6)$	$0.0007(5)$	$0.0080(5)$	$-0.0008(5)$
C4	$0.0198(7)$	$0.0157(6)$	$0.0167(7)$	$-0.0023(5)$	$0.0099(5)$	$0.0001(5)$
C5	$0.0187(7)$	$0.0169(7)$	$0.0193(7)$	$0.0013(5)$	$0.0100(5)$	$0.0031(5)$
C6	$0.0254(8)$	$0.0218(7)$	$0.0190(7)$	$-0.0027(6)$	$0.0130(6)$	$0.0041(6)$
C7	$0.0268(8)$	$0.0194(7)$	$0.0263(8)$	$-0.0036(6)$	$0.0111(6)$	$0.0008(6)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

O1-C1	1.3796 (16)	C3-H3	0.9500
$\mathrm{O} 1-\mathrm{C} 4$	1.4145 (17)	C4-C5	1.5157 (19)
O2-C5	1.2037 (18)	C4-H4A	0.9900
O3-C5	1.3334 (18)	C4-H4B	0.9900
O3-C6	1.4603 (16)	C6-C7	1.506 (2)
C1-C3 ${ }^{\text {i }}$	1.388 (2)	C6-H6A	0.9900
C1-C2	1.395 (2)	C6-H6B	0.9900
C2-C3	1.3939 (19)	C7-H7A	0.9800
C2-H2	0.9500	C7-H7B	0.9800
$\mathrm{C} 3-\mathrm{Cl}^{\mathrm{i}}$	1.388 (2)	C7-H7C	0.9800
C1-O1-C4	116.52 (11)	$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	108.5
C5-O3-C6	115.01 (11)	$\mathrm{O} 2-\mathrm{C} 5-\mathrm{O} 3$	125.01 (13)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 3{ }^{\text {i }}$	115.31 (12)	$\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 4$	125.40 (13)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	124.67 (13)	O3-C5-C4	109.59 (12)
C3 ${ }^{\text {i }}$ - $\mathrm{C} 1-\mathrm{C} 2$	120.02 (13)	O3-C6-C7	107.61 (12)
C3-C2-C1	118.99 (13)	O3-C6-H6A	110.2
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.5	C7-C6-H6A	110.2
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.5	O3-C6-H6B	110.2
C1- ${ }^{\text {i }} 3-\mathrm{C} 2$	120.99 (13)	C7-C6-H6B	110.2
C1 ${ }^{\text {i }}$ - $\mathrm{C} 3-\mathrm{H} 3$	119.5	H6A-C6-H6B	108.5
C2-C3-H3	119.5	C6-C7-H7A	109.5
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5$	107.51 (11)	C6-C7-H7B	109.5
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	110.2	H7A-C7-H7B	109.5
C5-C4-H4A	110.2	C6-C7- H 7 C	109.5
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	110.2	H7A-C7-H7C	109.5

$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	110.2	$\mathrm{H} 7 \mathrm{~B}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	109.5
$\mathrm{C} 4-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C}^{\mathrm{i}}$	$-179.61(12)$	$\mathrm{C} 6-\mathrm{O} 3-\mathrm{C} 5-\mathrm{O} 2$	$0.2(2)$
$\mathrm{C} 4-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$0.03(19)$	$\mathrm{C} 6-\mathrm{O} 3-\mathrm{C} 5-\mathrm{C} 4$	$-179.79(11)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-179.44(13)$	$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 2$	$5.5(2)$
$\mathrm{C} 3-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$0.2(2)$	$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 3$	$-174.54(11)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 1^{\mathrm{i}}$	$-0.2(2)$	$\mathrm{C} 5-\mathrm{O} 3-\mathrm{C} 6-\mathrm{C} 7$	$-177.83(12)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5$	$-178.01(11)$		

Symmetry code: (i) $-x+1,-y+2,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)
Cg is the centroid of the $\mathrm{C} 1-\mathrm{C} 3 / \mathrm{C} 1 i-\mathrm{C} 3 \mathrm{i}$ ring.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4 — \mathrm{H} 4 B \cdots C g^{\mathrm{ii}}$	0.99	2.57	$3.426(2)$	145
$\mathrm{C} 6 — \mathrm{H} 6 B \cdots 1^{\mathrm{iii}}$	0.99	2.65	$3.340(2)$	127
$\mathrm{C} 6 — \mathrm{H} 6 B \cdots \mathrm{O}^{\mathrm{iii}}$	0.99	2.68	$3.401(2)$	130

Symmetry codes: (ii) $x-1, y, z ;$ (iii) $-x, y-1 / 2,-z+3 / 2$.

