

V = 2408.0 (3) Å³

Mo $K\alpha$ radiation

 $0.46 \times 0.25 \times 0.20$ mm

18968 measured reflections

6852 independent reflections

3483 reflections with $I > I > 2\sigma(I)$

 $\mu = 0.08 \text{ mm}^-$

T = 100 K

 $R_{\rm int}=0.075$

Z = 4

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(3E,5E)-3,5-Bis(4-methylbenzylidene)-1-[3-(piperidin-1-yl)propanoyl]piperidin-4one

Yalda Kia,^a Hasnah Osman,^a‡Vikneswaran Murugaiyah,^b Suhana Arshad^c and Ibrahim Abdul Razak^{c*}§

^aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^cSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: arazaki@usm.my

Received 9 July 2012; accepted 12 July 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.078; wR factor = 0.228; data-to-parameter ratio = 22.8.

In the title compound, $C_{29}H_{34}N_2O_2$, the central piperidine ring adopts a half-chair conformation, whereas the terminal one adopts a chair conformation. The mean plane of the central piperidine ring [maximum deviation = 0.384(2) Å] makes dihedral angles of 64.82 (13) and 17.55 $(13)^{\circ}$ with the benzene rings. In the crystal, molecules are linked into a tape along the b axis via C-H···O interactions, generating $R_2^2(20)$ and $R_2^1(6)$ graph-set motifs. $C-H \cdot \cdot \pi$ interactions are observed between the tapes.

Related literature

For biological activities of α,β -unsaturated ketones, see: Tanaka et al. (2003); Nakayachi et al. (2004); Lee et al. (2004); Hertzberg et al. (1989). For ring conformations, see: Cremer & Pople (1975). For related structures, see: Aridoss et al. (2010); Kia et al. (2011). For graph-set motifs, see: Bernstein et al. (1995). For the preparation of 1-acryloyl-3,5-dibenzylidenepiperidin-4-one, see: Dimmock et al. (2001). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986).

a = 12.2913 (8) Å b = 9.9753 (8) Å c = 19.9993 (14) Å $\beta = 100.884 \ (4)^{\circ}$

Data collection

```
Bruker SMART APEXII CCD
  area-detector diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2009)
  T_{\min} = 0.966, T_{\max} = 0.985
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.078$	300 parameters
$wR(F^2) = 0.228$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ \AA}^{-3}$
6852 reflections	$\Delta \rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the benzene C14-C19 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C16-H16A\cdots O2^{i}$	0.95	2.51	3.346 (3)	147
$C21-H21A\cdots O2^{i}$	0.98	2.44	3.371 (4)	160
$C21-H21C\cdots O1^{ii}$	0.98	2.52	3.446 (3)	157
$C4-H4A\cdots Cg1^{iii}$	0.95	2.69	3.526 (3)	148
$C27 - H27A \cdots Cg1^{iv}$	0.99	2.74	3.719 (3)	168

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) x + 1, y, z; (iv) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}.$

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for an FRGS grant (No. 203/

[‡] Additional correspondence email: ohasnah@usm.my. § Thomson Reuters ResearcherID: A-5599-2009.

Experimental Crystal data $C_{29}H_{34}N_2O_2$ $M_r = 442.58$ Monoclinic, $P2_1/c$

PKIMIA/6711179) and an RU grant (No. 1001/PFIZIK/ 811151) to conduct this work. YK thanks USM for providing research facility. SA thanks the Malaysian Government and USM for an Academic Staff Training Scheme Fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5165).

References

- Aridoss, G., Sundaramoorthy, S., Velmurugan, D., Park, K. S. & Jeong, Y. T. (2010). Acta Cryst. E66, o2005.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H.-B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavatha, E. K. (2001). J. Med. Chem. 44, 586–593.
- Hertzberg, R. P., Caranfa, M. J., Holden, K. G., Jakas, D. R., Gallagher, G., Mattern, M. R., Mong, S. M., Bartus, J. O., Johnson, R. K. & Kingsbury, W. D. (1989). J. Med. Chem. 32, 715–720.
- Kia, Y., Osman, H., Murugaiyah, V., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, 01299-01300.
- Lee, K. H., Huang, E. S., Piantadosi, C., Pagano, J. S. & Geissman, T. A. (2004). *Cancer Res.* **31**, 1649–1654.
- Nakayachi, T., Yasumoto, E., Nakano, K., Morshed, S. R. M., Hashimoto, K., Kikuchi, H., Nishikawa, H., Kawase, M. & Sakagami, H. (2004). Anticancer Res. 24, 737–742.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tanaka, T., Kawase, M. & Tani, S. (2003). Life Sci. 73, 2985-2990.

supporting information

Acta Cryst. (2012). E68, o2493–o2494 [https://doi.org/10.1107/S1600536812031820] (3E,5E)-3,5-Bis(4-methylbenzylidene)-1-[3-(piperidin-1yl)propanoyl]piperidin-4-one

Yalda Kia, Hasnah Osman, Vikneswaran Murugaiyah, Suhana Arshad and Ibrahim Abdul Razak

S1. Comment

Claisen-Schmidt condensation reaction between aldehyde and ketone, leads to biological active class of compound, namely α,β -unsaturated ketones. These compounds show a wide range of biological activities such as enzyme inhibitory (Tanaka *et al.*, 2003), cytotoxic and antitumor (Nakayachi *et al.*, 2004). This conjugated system, O=CH—CH=CH₂ is the key moiety which promotes the bioactivities in the title compound (Lee *et al.*, 2004). α, β -unsaturated ketones can be considered as a Michael acceptor which is an active moiety showing enzyme inhibitory activity (Hertzberg *et al.*, 1989). Due to these reasons, the crystal structure determination of the title compound was carried out and the results are presented in this paper.

The molecular structure is shown in Fig. 1. The bond lengths and angles are within normal ranges and comparable to the related structures (Aridoss *et al.*, 2010; Kia *et al.*, 2011). The piperidine rings (N1/C8–C12 and N2/C25–C29) adopt different conformations (Cremer & Pople, 1975). N1/C8–C12 adopts a half-chair conformation [puckering parameters, Q= 0.556 (3) Å, Θ = 117.4 (3)° and Φ = 157.4 (3)°], whereas, N2/C25–C29 adopts a chair conformation [puckering parameters, Q= 0.573 (3) Å, Θ = 3.3 (3)° and Φ = 329 (5)°]. The least square plane through both rings form a dihedral angle of 18.29 (13)° between them. The least-square plane of the central piperidine ring [N1/C8–C12, maximum deviation of 0.384 (2) Å at atom N1] forms dihedral angles of 64.82 (13) and 17.55 (13)°, respectively, with the pendant benzene rings (C1–C6 and C14–C19).

In the crystal packing (Fig. 2), molecules are linked into a tape along the *b* axis *via* intermolecular C16—H16A···O2, C21—H21A···O2 and C21—H21C···O1 interactions (Table 1), generating $R^2_2(20)$ and $R^1_2(6)$ graph-set motifs (Bernstein *et al.*, 1995). The crystal structure is further stabilized by the intermolecular C4—H4A···*Cg*1 and C27—H27A···*Cg*1 (Table 1) interactions (*Cg*1 is the centroid of the benzene ring, C14–C19).

S2. Experimental

1-Acryloyl-3,5-dibenzylidenepiperidin-4-one was synthesized as reported in the literature (Dimmock *et al.*, 2001). The title compound was prepared by refluxing 1-acryloyl-3,5-dibenzylidenepiperidin-4-one (0.6 mmol) with piperidine (0.6 mmol) in ethanol. After completion of the reaction as evident from TLC, the mixture was poured into ice. The precipitated solid was filtered and washed with water. The pure solid was then recrystallized from ethanol to afford the title compound as yellow crystals.

S3. Refinement

All H atoms were positioned geometrically (C—H = 0.95–0.99 Å) and refined using a riding model with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. A rotating group model was applied to the methyl groups.

Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

(3E,5E)-3,5-Bis(4-methylbenzylidene)-1-[3-(piperidin-1-yl)propanoyl]piperidin-4-one

Crystal data

C₂₉H₃₄N₂O₂ $M_r = 442.58$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 12.2913 (8) Å b = 9.9753 (8) Å c = 19.9993 (14) Å $\beta = 100.884$ (4)° V = 2408.0 (3) Å³ Z = 4 F(000) = 952 $D_x = 1.221 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3337 reflections $\theta = 2.3-29.9^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 100 KBlock, yellow $0.46 \times 0.25 \times 0.20 \text{ mm}$ Data collection

Bruker SMART APEXII CCD area-detector	18968 measured reflections
diffractometer	6852 independent reflections
Radiation source: fine-focus sealed tube	3483 reflections with $I > I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.075$
φ and ω scans	$\theta_{max} = 30.0^{\circ}, \theta_{min} = 1.7^{\circ}$
Absorption correction: multi-scan	$h = -17 \rightarrow 17$
(<i>SADABS</i> ; Bruker, 2009)	$k = -13 \rightarrow 11$
$T_{\min} = 0.966, T_{\max} = 0.985$	$l = -26 \rightarrow 28$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.078$	Hydrogen site location: inferred from
$wR(F^2) = 0.228$	neighbouring sites
S = 1.04	H-atom parameters constrained
6852 reflections	$w = 1/[\sigma^2(F_o^2) + (0.097P)^2 + 0.6841P]$
300 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.38 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta\rho_{min} = -0.37 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.33838 (15)	0.3747 (2)	0.18190 (10)	0.0257 (5)	
O2	0.26832 (17)	-0.1316 (2)	0.11812 (11)	0.0389 (6)	
N1	0.39181 (18)	-0.0171 (2)	0.19541 (11)	0.0226 (5)	
N2	0.58294 (18)	-0.2400(2)	0.05042 (11)	0.0229 (5)	
C1	0.6704 (2)	0.2560 (3)	0.07841 (14)	0.0243 (6)	
H1A	0.6163	0.2964	0.0442	0.029*	
C2	0.7717 (2)	0.2198 (3)	0.06313 (15)	0.0249 (6)	
H2A	0.7854	0.2341	0.0185	0.030*	
C3	0.8540 (2)	0.1623 (3)	0.11272 (15)	0.0236 (6)	
C4	0.8308 (2)	0.1435 (3)	0.17715 (14)	0.0246 (6)	
H4A	0.8863	0.1065	0.2118	0.030*	
C5	0.7293 (2)	0.1768 (3)	0.19258 (14)	0.0243 (6)	
H5A	0.7155	0.1608	0.2371	0.029*	
C6	0.6463 (2)	0.2343 (3)	0.14288 (13)	0.0205 (6)	

C7	0 5366 (2)	0.2710(3)	0 15616 (13)	0.0215(6)
U7A	0.5500 (2)	0.2719 (3)	0.13010 (13)	0.0213 (0)
11/A	0.5085	0.3302 0.2015 (2)	0.1307 0.19094 (12)	0.020
C8	0.4/1/(2) 0.2625 (2)	0.2013(3)	0.10904(13) 0.10912(12)	0.0192(0)
C9	0.3023(2)	0.2380(3) 0.1705(3)	0.19013(13) 0.22882(12)	0.0199(0)
C10	0.2001(2)	0.1703(3)	0.22003(13) 0.22278(14)	0.0191(0)
	0.3073 (2)	0.0209 (3)	0.25578 (14)	0.0222 (0)
	0.3320	-0.0040	0.2821	0.027*
HIIB	0.2380	-0.02/9	0.2158	0.027*
	0.4938 (2)	0.0595 (3)	0.21510 (14)	0.0234 (6)
HI2A	0.5536	0.0192	0.1947	0.028*
HI2B	0.5174	0.0590	0.2652	0.028*
C13	0.2031 (2)	0.2322 (3)	0.25215 (13)	0.0203 (6)
H13A	0.1985	0.3258	0.2431	0.024*
C14	0.1187 (2)	0.1830 (3)	0.28866 (13)	0.0199 (6)
C15	0.0454 (2)	0.2783 (3)	0.30679 (14)	0.0226 (6)
H15A	0.0513	0.3689	0.2933	0.027*
C16	-0.0347 (2)	0.2446 (3)	0.34341 (14)	0.0225 (6)
H16A	-0.0828	0.3120	0.3547	0.027*
C17	-0.0461 (2)	0.1121 (3)	0.36419 (14)	0.0207 (6)
C18	0.0264 (2)	0.0167 (3)	0.34587 (14)	0.0234 (6)
H18A	0.0196	-0.0739	0.3590	0.028*
C19	0.1072 (2)	0.0493 (3)	0.30944 (13)	0.0220 (6)
H19A	0.1552	-0.0182	0.2983	0.026*
C20	0.9643 (2)	0.1219 (3)	0.09596 (16)	0.0323 (7)
H20A	1.0236	0.1417	0.1348	0.049*
H20B	0.9771	0.1720	0.0560	0.049*
H20C	0.9637	0.0256	0.0861	0.049*
C21	-0.1308 (2)	0.0747 (3)	0.40574 (15)	0.0285 (7)
H21A	-0.1806	0.1507	0.4076	0.043*
H21B	-0.0935	0.0511	0.4520	0.043*
H21C	-0.1737	-0.0024	0.3848	0.043*
C22	0.3612 (2)	-0.0824(3)	0.13444 (15)	0.0255 (7)
C23	0.4436 (2)	-0.0929(3)	0.08775 (14)	0.0260(7)
H23A	0.4927	-0.0134	0.0940	0.031*
H23B	0.4036	-0.0938	0.0399	0.031*
C24	0.5139(2)	-0.2201(3)	0.10200 (14)	0.0262 (7)
H24A	0.5620	-0.2133	0.1475	0.031*
H24B	0.4646	-0.2986	0.1022	0.031*
C25	0.6299 (2)	-0.3755(3)	0.05634(14)	0.0249 (6)
H25A	0.5691	-0.4418	0.0525	0.030*
H25B	0.6777	-0.3862	0.1017	0.030*
C26	0.6971(2)	-0.4027(3)	0.00178(15)	0.0262(7)
H26A	0.6476	-0.4022	-0.0434	0.031*
H26R	0.7315	-0.4925	0.0091	0.031*
C27	0.7874(2)	-0.2969 (3)	0.00328 (16)	0.0202 (7)
H27A	0.8437	-0.3069	0.0455	0.0252(7)
H27R	0.8245	-0.3100	-0.0361	0.035*
C28	0.0243	-0.1587(2)	0.0001	0.033°
0.20	0.7380 (2)	-0.1387 (3)	0.00037 (10)	0.0292 (7)

supporting information

H28A	0.6891	-0.1447	-0.0443	0.035*
H28B	0.7979	-0.0911	0.0057	0.035*
C29	0.6719 (2)	-0.1403 (3)	0.05646 (15)	0.0255 (6)
H29A	0.7215	-0.1495	0.1013	0.031*
H29B	0.6396	-0.0491	0.0536	0.031*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
01	0.0260 (10)	0.0216 (11)	0.0307 (11)	0.0049 (9)	0.0085 (9)	0.0044 (9)
O2	0.0363 (12)	0.0433 (15)	0.0414 (13)	-0.0166 (11)	0.0183 (11)	-0.0151 (11)
N1	0.0239 (11)	0.0220 (13)	0.0249 (12)	0.0008 (10)	0.0120 (10)	-0.0035 (10)
N2	0.0246 (11)	0.0216 (14)	0.0245 (12)	0.0006 (10)	0.0098 (10)	-0.0003 (10)
C1	0.0259 (14)	0.0223 (16)	0.0255 (14)	0.0006 (12)	0.0070 (12)	0.0005 (12)
C2	0.0298 (15)	0.0238 (16)	0.0232 (14)	-0.0056 (12)	0.0101 (12)	0.0028 (12)
C3	0.0223 (13)	0.0180 (15)	0.0325 (16)	-0.0036 (11)	0.0103 (12)	-0.0052 (12)
C4	0.0192 (13)	0.0281 (17)	0.0256 (15)	-0.0023 (12)	0.0019 (11)	-0.0021 (13)
C5	0.0292 (15)	0.0244 (16)	0.0194 (14)	-0.0030 (12)	0.0044 (12)	-0.0027 (12)
C6	0.0225 (13)	0.0160 (14)	0.0228 (14)	-0.0038 (11)	0.0036 (11)	-0.0015 (11)
C7	0.0226 (13)	0.0195 (15)	0.0220 (14)	-0.0009 (11)	0.0033 (11)	-0.0020 (11)
C8	0.0197 (13)	0.0198 (15)	0.0185 (13)	-0.0001 (11)	0.0047 (11)	-0.0007 (11)
C9	0.0219 (13)	0.0228 (16)	0.0149 (12)	0.0025 (11)	0.0027 (10)	-0.0031 (11)
C10	0.0204 (13)	0.0211 (15)	0.0156 (13)	-0.0008 (11)	0.0033 (10)	-0.0004 (11)
C11	0.0264 (14)	0.0184 (15)	0.0252 (14)	-0.0029 (12)	0.0137 (12)	-0.0001 (12)
C12	0.0221 (13)	0.0235 (16)	0.0253 (15)	0.0031 (11)	0.0064 (12)	0.0009 (12)
C13	0.0219 (13)	0.0161 (14)	0.0231 (14)	-0.0004 (11)	0.0043 (11)	-0.0015 (11)
C14	0.0176 (12)	0.0221 (15)	0.0203 (13)	-0.0016 (11)	0.0041 (11)	-0.0027 (11)
C15	0.0229 (13)	0.0172 (15)	0.0292 (15)	0.0047 (11)	0.0085 (12)	0.0018 (12)
C16	0.0224 (13)	0.0226 (16)	0.0240 (14)	0.0023 (12)	0.0078 (11)	0.0003 (12)
C17	0.0200 (13)	0.0217 (16)	0.0219 (14)	0.0011 (11)	0.0075 (11)	-0.0023 (12)
C18	0.0280 (14)	0.0188 (15)	0.0250 (14)	-0.0031 (12)	0.0093 (12)	0.0021 (12)
C19	0.0267 (14)	0.0183 (15)	0.0223 (14)	0.0002 (11)	0.0080 (12)	-0.0018 (11)
C20	0.0296 (15)	0.0337 (19)	0.0368 (18)	-0.0018 (14)	0.0143 (14)	-0.0030 (15)
C21	0.0287 (15)	0.0249 (17)	0.0342 (17)	0.0016 (13)	0.0121 (13)	-0.0002 (13)
C22	0.0286 (15)	0.0220 (16)	0.0280 (15)	-0.0002 (12)	0.0105 (12)	-0.0013 (13)
C23	0.0286 (14)	0.0266 (17)	0.0253 (15)	-0.0003 (13)	0.0113 (12)	-0.0013 (13)
C24	0.0287 (15)	0.0274 (17)	0.0247 (15)	0.0014 (13)	0.0108 (12)	0.0014 (13)
C25	0.0283 (14)	0.0202 (16)	0.0274 (15)	0.0015 (12)	0.0082 (12)	0.0013 (12)
C26	0.0292 (15)	0.0232 (16)	0.0296 (15)	0.0041 (12)	0.0142 (13)	0.0011 (13)
C27	0.0277 (15)	0.0261 (17)	0.0368 (17)	0.0033 (13)	0.0135 (13)	-0.0010 (14)
C28	0.0301 (15)	0.0251 (17)	0.0355 (17)	-0.0019 (13)	0.0143 (14)	0.0001 (14)
C29	0.0295 (14)	0.0208 (16)	0.0284 (15)	-0.0047 (12)	0.0116 (13)	-0.0009 (12)

Geometric parameters (Å, °)

01	1.230 (3)	C15—C16	1.375 (4)
O2—C22	1.229 (3)	C15—H15A	0.9500
N1—C22	1.371 (4)	C16—C17	1.400 (4)

N1—C11	1.451 (3)	C16—H16A	0.9500
N1—C12	1.457 (3)	C17—C18	1.399 (4)
N2—C25	1.465 (4)	C17—C21	1.496 (4)
N2—C29	1.466 (3)	C18—C19	1.377 (4)
N2—C24	1.468 (4)	C18—H18A	0.9500
C1—C2	1.384 (4)	С19—Н19А	0.9500
C1-C6	1 394 (4)	C20—H20A	0.9800
C1—H1A	0.9500	C20—H20B	0.9800
$C^2 - C^3$	1 399 (4)	C_{20} H20C	0.9800
$C_2 - H_2 A$	0.9500	C_{21} H21A	0.9800
$C_2 = C_4$	1.384(4)	C21_H21R	0.9800
$C_3 - C_7$	1 511 (4)	C_{21} H21C	0.9800
$C_3 = C_{20}$	1.311(4) 1 381(4)	C^{22} C^{23}	1.505(4)
$C_4 = H_4 \Lambda$	0.9500	$C_{22} = C_{23}$	1.505(4) 1.532(4)
C_{-}	1.405(4)	$C_{23} = C_{24}$	0.0000
C5_H5A	0.0500	C23—1123A	0.9900
C6 C7	1.471(4)	C24 H24A	0.9900
$C_0 = C_1$	1.4/1(4) 1.226(4)	C_{24} H_{24} H_{24}	0.9900
$C_{1} = C_{0}$	1.550 (4)	C24—H24B	0.9900
$C = \Pi / A$	0.9300	$C_{23} = C_{20}$	1.313 (4)
$C_8 = C_9$	1.495 (4)	C25—H25A	0.9900
C_{0}	1.311 (4)	C25—H25B	0.9900
C_{9}	1.497 (4)	C_{20}	1.527 (4)
	1.549 (4)	C20—H20A	0.9900
	1.515 (4)	C26—H26B	0.9900
CII—HIIA	0.9900	$C_2 / - C_{28}$	1.504 (4)
CII—HIIB	0.9900	$C_2/-H_2/A$	0.9900
CI2—HI2A	0.9900	$C_2/-H_2/B$	0.9900
CI2—HI2B	0.9900	C28—C29	1.512 (4)
C13—C14	1.462 (4)	C28—H28A	0.9900
С13—Н13А	0.9500	C28—H28B	0.9900
C14—C15	1.403 (4)	С29—Н29А	0.9900
C14—C19	1.412 (4)	C29—H29B	0.9900
C22—N1—C11	119.4 (2)	C19—C18—C17	122.5 (3)
C22—N1—C12	124.6 (2)	C19—C18—H18A	118.8
C11—N1—C12	112.6 (2)	C17—C18—H18A	118.8
C25—N2—C29	110.1 (2)	C18—C19—C14	120.1 (3)
C25—N2—C24	109.8 (2)	C18—C19—H19A	120.0
C29—N2—C24	111.8 (2)	C14—C19—H19A	120.0
C2—C1—C6	121.4 (3)	C3—C20—H20A	109.5
C2—C1—H1A	119.3	C3—C20—H20B	109.5
C6—C1—H1A	119.3	H20A—C20—H20B	109.5
C1—C2—C3	120.7 (3)	С3—С20—Н20С	109.5
C1—C2—H2A	119.7	H20A—C20—H20C	109.5
C3—C2—H2A	119.7	H20B—C20—H20C	109.5
C4—C3—C2	117.8 (2)	C17—C21—H21A	109.5
C4—C3—C20	121.4 (3)	C17—C21—H21B	109.5
C2—C3—C20	120.7 (3)	H21A—C21—H21B	109.5

C5—C4—C3	121.9 (3)	C17—C21—H21C	109.5
C5—C4—H4A	119.0	H21A—C21—H21C	109.5
C3—C4—H4A	119.0	H21B—C21—H21C	109.5
C4—C5—C6	120.4 (3)	O2—C22—N1	120.8 (3)
С4—С5—Н5А	119.8	O2—C22—C23	120.5 (3)
С6—С5—Н5А	119.8	N1—C22—C23	118.7 (2)
C1—C6—C5	117.7 (2)	C22—C23—C24	111.3 (2)
C1—C6—C7	119.4 (2)	C22—C23—H23A	109.4
C5—C6—C7	123.0 (3)	C24—C23—H23A	109.4
C8—C7—C6	127.7 (3)	C22—C23—H23B	109.4
С8—С7—Н7А	116.1	C24—C23—H23B	109.4
С6—С7—Н7А	116.1	H23A—C23—H23B	108.0
C7 - C8 - C9	119.5 (2)	N2-C24-C23	111 2 (2)
C7-C8-C12	125.1 (2)	N2-C24-H24A	109.4
C9-C8-C12	115 2 (2)	C23—C24—H24A	109.4
01 - C9 - C8	120.4(3)	N2-C24-H24B	109.4
01 - C9 - C10	120.1(3) 121.5(2)	C^{23} C^{24} H^{24B}	109.4
C8 - C9 - C10	121.3(2) 1181(2)	H24A - C24 - H24B	108.0
C_{13} C_{10} C_{9}	116.7(2)	N_{2} C_{25} C_{26}	111.6(2)
C_{13} C_{10} C_{11}	1241(2)	N2-C25-H25A	109.3
C9-C10-C11	124.1(2) 119.2(2)	$C_{26} - C_{25} - H_{25A}$	109.3
N1-C11-C10	119.2(2) 110.8(2)	N2-C25-H25B	109.3
N1-C11-H11A	109 5	C26—C25—H25B	109.3
C10-C11-H11A	109.5	$H_{25}A = C_{25} = H_{25}B$	109.5
N1-C11-H11B	109.5	C_{25} C_{26} C_{27}	110.8(2)
C10—C11—H11B	109.5	$C_{25} = C_{26} = C_{27}$	109.5
H11A_C11_H11B	108.1	C_{27} C_{26} H_{26A}	109.5
N1-C12-C8	108.1	C_{25} C_{26} H_{26B}	109.5
N1_C12_H12A	110.1	C27_C26_H26B	109.5
C8 - C12 - H12A	110.1	$H_{26} = C_{26} = H_{26} = H_{26}$	109.5
N1_C12_H12B	110.1	C_{28} C_{27} C_{26}	100.1 110.2(2)
C8-C12-H12B	110.1	$C_{20} = C_{27} = C_{20}$	109.6
$H_{12} = C_{12} = H_{12} = H_{12}$	108.4	$C_{26} - C_{27} - H_{27A}$	109.6
C10-C13-C14	132.4 (3)	$C_{20} = C_{27} = H_{27} R$	109.6
C10-C13-H13A	113.8	C26-C27-H27B	109.6
C14— $C13$ — $H13A$	113.8	$H_{27} = C_{27} = H_{27} = H_{27}$	109.0
C_{15} C_{14} C_{19} C_{19}	117.3 (3)	$C_{27} - C_{28} - C_{29}$	110.1
C_{15} C_{14} C_{13}	117.5(3)	C_{27} C_{28} H_{284}	109.5
C19-C14-C13	125.7(3)	C_{29} C_{28} H_{28A}	109.5
C_{16} C_{15} C_{14} C_{15} C_{14}	123.7(3) 122.1(3)	C_{27} C_{28} H_{28B}	109.5
C_{16} C_{15} H_{15A}	122.1 (5)	C_{29} C_{28} H_{28B}	109.5
C14-C15-H15A	119.0	$H_{28} = C_{28} = H_{28B}$	109.5
C_{15} C_{16} C_{17}	120.7 (3)	$N_2 - C_2 - C_2 R_2$	110 7 (2)
C15 - C16 - H16A	119.6	N2-C29-H29A	109.5
C17 - C16 - H16A	119.6	C_{28} C_{29} H_{29A}	109.5
C18 - C17 - C16	117.0 117.4(3)	N2-C29-H29R	109.5
C18 - C17 - C21	121 3 (3)	C_{28} C_{29} H_{208}	109.5
C16-C17-C21	121.3 (3)	H29A-C29-H29B	108.1
$\cup 10 \cup 11 \cup 21$			100.1

C6—C1—C2—C3	-1.2 (4)	C11—C10—C13—C14	3.1 (4)
C1—C2—C3—C4	-0.2 (4)	C10-C13-C14-C15	178.4 (3)
C1—C2—C3—C20	179.6 (3)	C10-C13-C14-C19	1.0 (5)
C2—C3—C4—C5	1.4 (4)	C19—C14—C15—C16	0.2 (4)
C20—C3—C4—C5	-178.3 (3)	C13—C14—C15—C16	-177.5 (2)
C3—C4—C5—C6	-1.3 (4)	C14—C15—C16—C17	0.0 (4)
C2—C1—C6—C5	1.3 (4)	C15—C16—C17—C18	-0.3 (4)
C2-C1-C6-C7	-178.7 (3)	C15-C16-C17-C21	178.3 (3)
C4—C5—C6—C1	0.0 (4)	C16—C17—C18—C19	0.6 (4)
C4—C5—C6—C7	179.9 (3)	C21—C17—C18—C19	-178.0(2)
C1—C6—C7—C8	136.4 (3)	C17—C18—C19—C14	-0.5 (4)
C5—C6—C7—C8	-43.5 (4)	C15-C14-C19-C18	0.1 (4)
C6—C7—C8—C9	179.7 (2)	C13—C14—C19—C18	177.6 (2)
C6—C7—C8—C12	-7.0 (4)	C11—N1—C22—O2	-14.0 (4)
C7—C8—C9—O1	-9.2 (4)	C12—N1—C22—O2	-171.4 (3)
C12—C8—C9—O1	176.9 (2)	C11—N1—C22—C23	166.0 (2)
C7—C8—C9—C10	173.0 (2)	C12—N1—C22—C23	8.7 (4)
C12—C8—C9—C10	-1.0 (3)	O2—C22—C23—C24	-89.8 (3)
O1—C9—C10—C13	-14.8 (4)	N1-C22-C23-C24	90.2 (3)
C8—C9—C10—C13	163.1 (2)	C25—N2—C24—C23	-167.5 (2)
O1—C9—C10—C11	166.9 (2)	C29—N2—C24—C23	70.0 (3)
C8—C9—C10—C11	-15.3 (3)	C22—C23—C24—N2	171.9 (2)
C22—N1—C11—C10	-105.7 (3)	C29—N2—C25—C26	-59.3 (3)
C12—N1—C11—C10	54.2 (3)	C24—N2—C25—C26	177.2 (2)
C13—C10—C11—N1	171.5 (2)	N2-C25-C26-C27	55.5 (3)
C9-C10-C11-N1	-10.3 (3)	C25—C26—C27—C28	-52.5 (3)
C22—N1—C12—C8	87.9 (3)	C26—C27—C28—C29	54.1 (3)
C11—N1—C12—C8	-70.9 (3)	C25—N2—C29—C28	60.6 (3)
C7—C8—C12—N1	-132.5 (3)	C24—N2—C29—C28	-177.1 (2)
C9—C8—C12—N1	41.0 (3)	C27—C28—C29—N2	-58.7 (3)
C9—C10—C13—C14	-175.2 (2)		

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the benzene C14–C19 ring.

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
C16—H16A····O2 ⁱ	0.95	2.51	3.346 (3)	147
C21—H21 <i>A</i> ···O2 ⁱ	0.98	2.44	3.371 (4)	160
С21—Н21С…О1 ^{іі}	0.98	2.52	3.446 (3)	157
C4—H4 A ··· $Cg1^{iii}$	0.95	2.69	3.526 (3)	148
C27—H27 A ···· $Cg1^{iv}$	0.99	2.74	3.719 (3)	168

Symmetry codes: (i) -x, y+1/2, -z+1/2; (ii) -x, y-1/2, -z+1/2; (iii) x+1, y, z; (iv) -x+1, y-1/2, -z+1/2.