

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-[(*E*)-(4-Fluorobenzyl)iminomethyl]-6-methoxyphenol

Hong Yu, Yue-Bao Jin, Yong-Kang Chang and Ke-Wei Lei*

State Key Lab. Base of Novel Functional Materials and Preparation Science, Institute of Solid Materials Chemistry, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China Correspondence e-mail: leikeweipublic@hotmail.com

Received 5 June 2012; accepted 17 June 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.042; wR factor = 0.125; data-to-parameter ratio = 9.7.

In the title Schiff base, $C_{15}H_{14}FNO_2$, the dihedral angle between the benzene rings is 53.32 (8)°. In the crystal, molecules related by a twofold rotation axis are linked by pairs of $C-H\cdots O$ hydrogen bonds into dimers with $R_2^2(18)$ ring motifs. An intramolecular $O-H\cdots N$ hydrogen bond is also observed.

Related literature

For general background to Schiff base complexs which show photochromism and thermochromism in the solid state, see: Cohen *et al.* (1964). For a related structure, see: Li *et al.* (2007).

Experimental

Crystal data

C ₁₅ H ₁₄ FNO ₂
$M_r = 259.27$
Monoclinic, C2
a = 20.5577 (15) Å
b = 5.5281 (3) Å

c = 13.1315 (9) Å $\beta = 118.477 (9)^{\circ}$ $V = 1311.77 (19) \text{ Å}^{3}$ Z = 4Mo K α radiation 5883 measured reflections

1902 independent reflections

1525 reflections with $I > 2\sigma(I)$

 $0.43 \times 0.25 \times 0.16 \text{ mm}$

 $R_{\rm int} = 0.021$

 $\mu = 0.10 \text{ mm}^{-1}$ T = 293 K

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\rm min} = 0.971, T_{\rm max} = 0.985$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.042 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.125 & \text{independent and constrained} \\ S &= 1.17 & \text{refinement} \\ 1902 \text{ reflections} & \Delta\rho_{\max} &= 0.12 \text{ e } \text{ Å}^{-3} \\ 175 \text{ parameters} & \Delta\rho_{\min} &= -0.15 \text{ e } \text{ Å}^{-3} \\ 2 \text{ restraints} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1\cdots N1$ $C15-H15A\cdots O1^{i}$	0.85 (4) 0.93	1.81 (4) 2.53	2.597 (4) 3.442 (4)	154 (3) 166

Symmetry code: (i) -x + 2, y, -z.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

This project was sponsored by the K. C. Wong Magna Fund in Ningbo University, the Talent Fund of Ningbo Municipal Natural Science Foundation (No. 2010 A610187) and the Talent Fund of Ningbo University (No. Xkl09070).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5154).

References

Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2043.

- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Li, Z.-F., Wang, S.-W., Zhang, Q. & Yu, X.-J. (2007). Acta Cryst. E63, 03930.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, o2401 [https://doi.org/10.1107/S1600536812027419] 2-[(*E*)-(4-Fluorobenzyl)iminomethyl]-6-methoxyphenol

Hong Yu, Yue-Bao Jin, Yong-Kang Chang and Ke-Wei Lei

S1. Comment

Schiff bases ligands have been used with remarkable success in inorganic and organometallic chemistry over past decades. Some of the reasons are that Schiff bases have good coordination ability with transition metals and that Schiff bases complexs show photochromism and thermochromism in the solid state by proton transfer from the hydroxyl O atom to the imine N atom (Cohen *et al.*, 1964). Here, we report the structure of a new Schiff base. A similar Schiff base molecule has been reported by Li *et al.* (2007). The molecular structure is illustrated in Fig. 1. The dihedral angle between two benzenes rings is 53.32 (8)°. There are an intramolecular O1—H1…N1 hydrogen bond and an intermolecular C15—H15A…O1 hydrogen bond (Table 1).

S2. Experimental

2-Hydroxy-3-methoxybenzaldehyde (20 mmol,3.0 g) and (4-fluorophenyl)methanamine (20 mmol,2.5 g) dissolved in ethanol respectively. Then put them together and the solution was refluxed for 1 h. After evaporation, a crude product was recrystallized twice from ethanol to give a pure yellow product (yield 88.3%). Calcd. for $C_{15}H_{14}FNO_2$: C 69.49, H 5.44, O 12.34, N 5.40%; Found: C 69.71, H 5.46, O 12.35, N 5.41%

S3. Refinement

O-bound H atom was located in a difference Fourier map and its position was refined with a restraint of O—H = 0.82 (2) Å and with $U_{iso}(H) = 1.5U_{eq}(O)$. Other H atoms were placed in geometrically idealized positions (C—H = 0.93–0.97 Å) and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C_{methyl})$.

Figure 1

The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

2-[(E)-(4-Fluorobenzyl)iminomethyl]-6-methoxyphenol

Crystal data

C₁₅H₁₄FNO₂ $M_r = 259.27$ Monoclinic, C2 Hall symbol: C 2y a = 20.5577 (15) Å b = 5.5281 (3) Å c = 13.1315 (9) Å $\beta = 118.477$ (9)° V = 1311.77 (19) Å³ Z = 4

Data collection

Rigaku R-AXIS RAPID	5883 measured reflections
diffractometer	1902 independent reflections
Radiation source: fine-focus sealed tube	1525 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.021$
ω scans	$\theta_{\rm max} = 28.9^{\circ}, \ \theta_{\rm min} = 3.2^{\circ}$
Absorption correction: multi-scan	$h = -25 \rightarrow 27$
(ABSCOR; Higashi, 1995)	$k = -6 \rightarrow 7$
$T_{\min} = 0.971, \ T_{\max} = 0.985$	$l = -16 \rightarrow 17$

F(000) = 544

 $\theta = 1.0-28.9^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$ T = 293 K

Block, yellow

 $0.43 \times 0.25 \times 0.16 \text{ mm}$

 $D_{\rm x} = 1.313 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3354 reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from
$wR(F^2) = 0.125$	neighbouring sites
S = 1.17	H atoms treated by a mixture of independent
1902 reflections	and constrained refinement
175 parameters	$w = 1/[\sigma^2(F_o^2) + (0.049P)^2 + 0.4613P]$
2 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.12 \ m e \ m \AA^{-3}$
	$\Delta \rho_{\rm min} = -0.15 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
F1	0.61623 (12)	0.1593 (6)	-0.32616 (19)	0.1177 (10)	
01	1.02596 (11)	0.0073 (5)	0.12995 (15)	0.0681 (6)	
H1	0.9934 (18)	0.112 (6)	0.091 (3)	0.102*	

O2	1.12802 (12)	-0.2598 (5)	0.29122 (16)	0.0744 (6)
N1	0.93995 (12)	0.3831 (5)	0.07357 (19)	0.0660 (7)
C1	1.18810 (18)	-0.3918 (8)	0.3777 (3)	0.0859 (11)
H1C	1.2044	-0.5110	0.3417	0.129*
H1D	1.1725	-0.4706	0.4276	0.129*
H1E	1.2281	-0.2832	0.4225	0.129*
C2	1.09825 (14)	-0.0822 (6)	0.3284 (2)	0.0560 (6)
C3	1.11648 (16)	-0.0370 (6)	0.4429 (2)	0.0656 (8)
H3A	1.1504	-0.1362	0.5013	0.079*
C4	1.08473 (18)	0.1536 (8)	0.4710 (2)	0.0787 (10)
H4A	1.0971	0.1801	0.5480	0.094*
C5	1.03524 (16)	0.3046 (7)	0.3869 (2)	0.0712 (9)
H5A	1.0154	0.4355	0.4072	0.085*
C6	1.01464 (13)	0.2608 (6)	0.2699 (2)	0.0560 (6)
C7	1.04497 (13)	0.0636 (5)	0.24101 (19)	0.0523 (6)
C8	0.96436 (14)	0.4252 (6)	0.1806 (2)	0.0622 (7)
H8A	0.9496	0.5659	0.2027	0.075*
C9	0.89012 (17)	0.5601 (7)	-0.0103 (3)	0.0749 (9)
H9A	0.9126	0.6235	-0.0550	0.090*
H9B	0.8825	0.6939	0.0307	0.090*
C10	0.81621 (15)	0.4466 (6)	-0.0912 (2)	0.0582 (7)
C11	0.75116 (18)	0.5559 (7)	-0.1113 (3)	0.0716 (8)
H11A	0.7524	0.6962	-0.0713	0.086*
C12	0.68320 (17)	0.4581 (8)	-0.1912 (3)	0.0822 (11)
H12A	0.6392	0.5332	-0.2055	0.099*
C13	0.68242 (18)	0.2542 (8)	-0.2471 (3)	0.0759 (9)
C14	0.7451 (2)	0.1359 (7)	-0.2279 (3)	0.0770 (9)
H14A	0.7427	-0.0069	-0.2669	0.092*
C15	0.81264 (17)	0.2330 (7)	-0.1487 (2)	0.0698 (8)
H15A	0.8561	0.1536	-0.1339	0.084*

Atomic displacement parameters $(Å^2)$

	r 711	T 1))	T 733	T 712	T 713	1 723
	$U^{\prime\prime}$	U^{22}	U^{33}	U^{12}	U^{15}	U^{23}
F1	0.0827 (12)	0.156 (3)	0.0899 (13)	-0.0452 (16)	0.0215 (11)	0.0028 (16)
01	0.0649 (11)	0.0837 (15)	0.0414 (9)	0.0055 (11)	0.0138 (8)	-0.0017 (10)
O2	0.0735 (12)	0.0749 (14)	0.0549 (10)	0.0165 (12)	0.0144 (9)	-0.0033 (10)
N1	0.0544 (12)	0.0786 (17)	0.0537 (12)	0.0012 (12)	0.0166 (10)	0.0137 (12)
C1	0.0739 (19)	0.088 (3)	0.0702 (18)	0.022 (2)	0.0138 (15)	-0.0022 (19)
C2	0.0492 (12)	0.0625 (16)	0.0497 (12)	-0.0032 (12)	0.0182 (10)	-0.0007 (12)
C3	0.0625 (15)	0.080(2)	0.0453 (12)	0.0042 (16)	0.0181 (11)	0.0115 (14)
C4	0.083 (2)	0.107 (3)	0.0460 (13)	0.017 (2)	0.0306 (14)	0.0048 (17)
C5	0.0669 (16)	0.092 (2)	0.0543 (14)	0.0140 (17)	0.0285 (13)	0.0026 (16)
C6	0.0465 (12)	0.0715 (18)	0.0467 (11)	-0.0016 (13)	0.0196 (10)	0.0037 (13)
C7	0.0447 (11)	0.0636 (16)	0.0421 (11)	-0.0078 (11)	0.0154 (9)	0.0000 (11)
C8	0.0511 (13)	0.0699 (18)	0.0619 (14)	0.0007 (14)	0.0240 (11)	0.0071 (14)
C9	0.0664 (16)	0.076 (2)	0.0617 (16)	-0.0017 (16)	0.0134 (13)	0.0197 (16)
C10	0.0582 (14)	0.0603 (17)	0.0491 (12)	0.0050 (13)	0.0199 (11)	0.0135 (12)

supporting information

C11	0.0760 (18)	0.0661 (18)	0.0674 (17)	0.0123 (16)	0.0300 (15)	0.0097 (15)
C12	0.0578 (16)	0.100 (3)	0.085 (2)	0.0137 (19)	0.0313 (15)	0.023 (2)
C13	0.0671 (18)	0.092 (3)	0.0594 (15)	-0.014 (2)	0.0224 (14)	0.0133 (19)
C14	0.093 (2)	0.071 (2)	0.0661 (16)	-0.012 (2)	0.0372 (16)	-0.0023 (17)
C15	0.0680 (17)	0.0727 (19)	0.0660 (16)	0.0116 (17)	0.0297 (14)	0.0089 (16)

Geometric parameters (Å, °)

F1—C13	1.363 (4)	С5—Н5А	0.9300	
O1—C7	1.354 (3)	C6—C7	1.396 (4)	
01—H1	0.846 (19)	C6—C8	1.454 (4)	
O2—C2	1.364 (4)	C8—H8A	0.9300	
O2—C1	1.418 (4)	C9—C10	1.514 (4)	
N1-C8	1.269 (4)	С9—Н9А	0.9700	
N1—C9	1.464 (4)	С9—Н9В	0.9700	
C1—H1C	0.9600	C10—C11	1.374 (4)	
C1—H1D	0.9600	C10—C15	1.384 (5)	
C1—H1E	0.9600	C11—C12	1.396 (5)	
С2—С3	1.388 (4)	C11—H11A	0.9300	
С2—С7	1.403 (4)	C12—C13	1.341 (6)	
C3—C4	1.379 (5)	C12—H12A	0.9300	
С3—НЗА	0.9300	C13—C14	1.356 (5)	
C4—C5	1.371 (5)	C14—C15	1.386 (4)	
C4—H4A	0.9300	C14—H14A	0.9300	
С5—С6	1.406 (4)	C15—H15A	0.9300	
C7—O1—H1	103 (3)	N1C8C6	122.2 (3)	
C2—O2—C1	116.9 (2)	N1—C8—H8A	118.9	
C8—N1—C9	118.4 (3)	C6—C8—H8A	118.9	
O2—C1—H1C	109.5	N1-C9-C10	111.1 (3)	
O2—C1—H1D	109.5	N1—C9—H9A	109.4	
H1C—C1—H1D	109.5	С10—С9—Н9А	109.4	
O2—C1—H1E	109.5	N1—C9—H9B	109.4	
H1C—C1—H1E	109.5	С10—С9—Н9В	109.4	
H1D—C1—H1E	109.5	H9A—C9—H9B	108.0	
O2—C2—C3	125.6 (3)	C11—C10—C15	118.5 (3)	
O2—C2—C7	115.4 (2)	C11—C10—C9	120.8 (3)	
С3—С2—С7	119.0 (3)	C15—C10—C9	120.7 (3)	
C4—C3—C2	120.6 (3)	C10-C11-C12	120.5 (3)	
С4—С3—Н3А	119.7	C10-C11-H11A	119.7	
С2—С3—Н3А	119.7	C12-C11-H11A	119.7	
C5—C4—C3	121.0 (3)	C13—C12—C11	118.9 (3)	
C5—C4—H4A	119.5	C13—C12—H12A	120.5	
C3—C4—H4A	119.5	C11—C12—H12A	120.5	
C4—C5—C6	119.7 (3)	C12—C13—C14	122.8 (3)	
C4—C5—H5A	120.1	C12—C13—F1	119.2 (4)	
С6—С5—Н5А	120.1	C14—C13—F1	118.1 (4)	
C7—C6—C5	119.4 (3)	C13—C14—C15	118.4 (3)	

supporting information

C7—C6—C8	120.5 (2)	C13—C14—H14A	120.8
C5—C6—C8	120.1 (3)	C15—C14—H14A	120.8
O1—C7—C6	122.4 (2)	C10-C15-C14	120.9 (3)
O1—C7—C2	117.4 (2)	C10-C15-H15A	119.6
C6—C7—C2	120.2 (2)	C14—C15—H15A	119.6

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
01—H1…N1	0.85 (4)	1.81 (4)	2.597 (4)	154 (3)
C15— $H15A$ ···O1 ⁱ	0.93	2.53	3.442 (4)	166

Symmetry code: (i) -x+2, y, -z.