Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Redetermination of tetramethyl tetra-thiafulvalene-2,3,6,7-tetracarboxylate

Felix Katzsch and Edwin Weber*

Institut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D09596 Freiberg/Sachsen, Germany
Correspondence e-mail: edwin.weber@chemie.tu-freiberg.de

Received 13 June 2012; accepted 28 June 2012
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$;
R factor $=0.021 ; w R$ factor $=0.055$; data-to-parameter ratio $=12.8$.

An improved crystal structure of the title compound, $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{8} \mathrm{~S}_{4}$, is reported. The structure, previously solved using the heavy-atom method ($R=7.1 \%$), has now been solved using direct methods. Due to the improved quality of the data set an R value of 2.06% could be achieved. In the crystal, $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts link the molecules.

Related literature

For the first structure determination of the title compound, see: Belsky \& Voet (1976). For a previously reported experimental procedure and physical data, see: Yoneda et al. (1978). For $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, see: Desiraju \& Steiner (1999); Katzsch et al. (2011); Fischer et al. (2011). For CH. . S hydrogen bonds, see: Mata et al. (2010); Novoa et al. (1995); Lu et al. (2005); Saad et al. (2010). For a description of ring motifs, see: Bernstein et al. (1995); Petersen et al. (2007). For several steps of the synthetic procedure, see: Degani et al. (1986); O’Connor \& Jones (1970); Nguyen et al. (2010). For general background to the electroconductive behaviour of tetrathiafulvalene derivatives, see: Takase et al. (2011).

Experimental

Crystal data
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{8} \mathrm{~S}_{4}$
$\gamma=99.328(1)^{\circ}$
$M_{r}=436.48$
Triclinic, $P \overline{1}$
$a=6.8666$ (2) Å
$b=7.8783$ (2) \AA
$c=8.4335$ (2) \AA
$\alpha=100.221(1)^{\circ}$
$\beta=99.255(1)^{\circ}$

Data collection

Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)
$T_{\min }=0.705, T_{\max }=0.917$

10884 measured reflections 1534 independent reflections 1471 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.021$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$

120 parameters

$w R\left(F^{2}\right)=0.055$
H -atom parameters constrained
$S=1.08$
$\Delta \rho_{\text {max }}=0.25$ e \AA^{-3}
1534 reflections

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{~S} 1^{\mathrm{i}}$	0.96	2.83	3.735 (2)	158
C5-H5A . $\mathrm{O}^{\text {iii }}$	0.96	2.50	3.324 (2)	143
$\mathrm{C} 5-\mathrm{H} 5 \mathrm{C} \cdots \mathrm{O}^{\text {iii }}$	0.96	2.65	3.481 (2)	145
Symmetry codes: $-x+1,-y+2,-z+2$	(i) $x, y, z-1$; (ii)		$\begin{equation*} -x+2,-y+2,-z+2 \tag{iii} \end{equation*}$	

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

This work was performed and funded within the Cluster of Excellence "Structure Design of Novel High-Performance Materials via Atomic Design and Defect Engineering (ADDE)" that is financially supported by the European Union (European regional development fund) and by the Ministry of Science and Art of Saxony (SMWK).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2387).

References

Belsky, V. K. \& Voet, D. (1976). Acta Cryst. B32, 272-274.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.
Bruker (2007). SADABS, APEX2 and SAINT. AXS Inc., Madison, Wisconsin, USA.
Degani, I., Fochi, R., Gatti, A. \& Regondi, V. (1986). Synthesis, pp. 894-899.
Desiraju, G. R. \& Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Fischer, C., Gruber, T., Seichter, W. \& Weber, E. (2011). Org. Biomol. Chem. 9, 4347-4352.
Katzsch, F., Eissmann, D. \& Weber, E. (2011). Struct. Chem. 23, 245-255.
Lu, W., Yan, Z.-M., Dai, J., Zhang, Y., Zhu, Q.-Y., Jia, D.-X. \& Guo, W.-J. (2005). Inorg. Chem. pp. 2339-2345.

Mata, I., Alkorta, I., Molins, E. \& Espinosa, E. (2010). Chem. Eur. J. 16, 24422452.

Nguyen, T. L. A., Demir-Cakan, R., Devic, T., Morcrette, M., Ahnfeldt, T., Auban-Senzier, P., Stock, N., Goncalves, A.-M., Filinchuk, Y., Tarascon, J.-M. \& Férey, G. (2010). Inorg. Chem. 49, 7135-7143.

Novoa, J. J., Rovira, M. C., Rovira, C., Veciana, J. \& Tarrés, J. (1995). Adv. Mater. 7, 233-237.
O’Connor, B. R. \& Jones, F. N. (1970). J. Org. Chem. 35, 2002-2005.
Petersen, M. A., Zhu, L., Jensen, S. H., Anderson, A. S., Kadziola, A., Kilsa, K. \& Nielsen, M. B. (2007). Adv. Funct. Mater. 17, 797-804.

organic compounds

Saad, A., Jeannin, O. \& Fourmigue, M. (2010). CrystEngComm, 12, 3866-3874. Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Takase, M., Yoshida, N., Nishinaga, T. \& Iyoda, M. (2011). Org. Lett. 13, 3896 3899.

Yoneda, S., Kawase, T., Inaba, M. \& Yoshida, Z. (1978). J. Org. Chem. 43, 595598.

supporting information

Acta Cryst. (2012). E68, o2354-o2355 [https://doi.org/10.1107/S1600536812029534]

Redetermination of tetramethyl tetrathiafulvalene-2,3,6,7-tetracarboxylate

Felix Katzsch and Edwin Weber

S1. Comment

Tetrathiafulvalene derivatives are molecules of high importance relating to electroconductive behaviour (Takase et al., 2011).

The present structure of the title compound (TTF) has been refined to an R-value of 2.06% which is clearly better than 7.1% of the previous study reported in 1976 by Belsky and Voet. In particular, this enabled us to refine the positions of hydrogen atoms of the methyl groups with improved accuracy making it possible to find potential hydrogen bonds. In conformity with previous findings, the TTF scaffold is planar and the methoxycarbonyl functions are slightly twisted out of the ring plane [interplanar angles 25.60 (1) and 42.77 (2) ${ }^{\circ}$ (Fig. 1).
The refinement shows the molecules being arranged in a layered structure (Fig. 2) stabilized by C-H $\cdots \mathrm{O}$ (Desiraju et al., 1999; Katzsch et al., 2011; Fischer et al., 2011) and C—H $\cdots \mathrm{S}$ contacts (Mata et al., 2010; Novoa et al., 1995) (Table 1). Two molecules each are associated forming special dimer type species (Fig. 2). In one case, they involve two ester functions $[d(\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A} \cdots \mathrm{O} 1)=2.50 \AA]$ giving rise to a hydrogen bonded ring motif $R^{2}{ }_{2}(10)$ (Bernstein et al., 1995; Petersen et al., 2007). In the other case, adjacent molecules show hydrogen bonding interactions between ester methyl groups and sulfur atoms $[d(\mathrm{C} 7 — \mathrm{H} 7 \mathrm{~A} \cdots \mathrm{~S} 1)=2.83 \AA$] (Saad et al., 2010; Lu et al., 2005). The layers are also connected via $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts including a methyl group and a carbonyl function $[d(\mathrm{C} 5-\mathrm{H} 5 \mathrm{C} \cdots \mathrm{O} 3)=2.65 \AA]$ of superimposed molecules.

S2. Experimental

The titled tetramethyl tetrathiafulvalene-2,3,6,7-tetracarboxylate was synthesized via a four step reaction sequence: (1) 1,3-Dithiolane-2-thione was prepared from carbon disulfide, sodium sulfide and 1,2-dichloroethane under phase transfer catalyzed condition following literature protocol (I. Degani et al., 1986). (2) Reflux of 1,3-dithiolane-2-thione and dimethyl acetylenedicarboxylate in toluene yielded dimethyl 1,3-dithiole-2-thione-4,5-dicarboxylate (O'Connor \& Jones, 1970). (3) This latter compound was treated with mercury(II) acetate in acetic acid/chloroform to obtain dimethyl 1,3-di-thiole-2-one-4,5-dicarboxylate (Nguyen et al., 2010). (4) In the final step, the 1,3-dithiol-2-one compound was coupled by a trimethyl phosphite induced reaction according to a literature protocol (Nguyen et al., 2010). For this purpose methyl 1,3-dithiol-2-one-4,5-dicarboxylate ($3.00 \mathrm{~g}, 12.8 \mathrm{mmol}$) was dissolved in trimethyl phosphite ($7.94 \mathrm{~g}, 64.0 \mathrm{mmol}$) and stirred for 8 h at $100^{\circ} \mathrm{C}$. After cooling, a fine red precipitate had formed which was filtered and washed with a small amount of cold ethanol to yield $1.62 \mathrm{~g}(58 \%)$ of the substituted TTF. Physical data of the compound correspond to reported values (Yoneda et al., 1978). Suitable dark red single crystals for X-ray diffraction were grown by slow evaporation from a solution of the title compound in chloroform.

S3. Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.96 \AA$, and $U_{\mathrm{is} 0}=1.5 U_{\text {eq }}$ (parent atom).

Figure 1
Perspective view of the title compound showing thermal ellipsoids at the 50% probability level.

Figure 2

Hydrogen-bonds within the layer structure of tetra-substituted TTF.

Tetramethyl tetrathiafulvalene-2,3,6,7-tetracarboxylate

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{8} \mathrm{~S}_{4}$
$M_{r}=436.48$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=6.8666$ (2) \AA
$b=7.8783$ (2) \AA
$c=8.4335$ (2) \AA
$\alpha=100.221(1)^{\circ}$
$\beta=99.255(1)^{\circ}$
$\gamma=99.328(1)^{\circ}$
$V=434.53(2) \AA^{3}$

$$
Z=1
$$

$$
F(000)=224
$$

$$
D_{\mathrm{x}}=1.668 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$$
\text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA
$$

Cell parameters from 9962 reflections
$\theta=2.5-45.3^{\circ}$
$\mu=0.59 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Needle, red
$0.64 \times 0.16 \times 0.15 \mathrm{~mm}$

Data collection

Bruker APEXII CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
$T_{\text {min }}=0.705, T_{\text {max }}=0.917$

> 10884 measured reflections
> 1534 independent reflections
> 1471 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.021$
> $\theta_{\max }=25.0^{\circ}, \theta_{\min }=2.5^{\circ}$
> $h=-7 \rightarrow 8$
> $k=-9 \rightarrow 9$
> $l=-10 \rightarrow 10$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0273 P)^{2}+0.222 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.026$
$\Delta \rho_{\text {max }}=0.25 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.23$ e \AA^{-3}

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
S1	$0.30978(5)$	$0.63798(4)$	$1.10656(4)$	$0.01479(11)$

S2	$0.06589(5)$	$0.56717(4)$	$0.76932(4)$	$0.01637(11)$
O1	$0.69629(14)$	$0.93615(13)$	$0.94082(12)$	$0.0194(2)$
O2	$0.72198(13)$	$0.79160(12)$	$1.14884(11)$	$0.0167(2)$
O3	$0.27914(16)$	$0.78034(15)$	$0.55357(13)$	$0.0265(3)$
O4	$0.56544(14)$	$0.69314(13)$	$0.64417(11)$	$0.0181(2)$
C1	$0.0779(2)$	$0.54255(17)$	$0.97428(16)$	$0.0140(3)$
C2	$0.4249(2)$	$0.71176(17)$	$0.95464(16)$	$0.0131(3)$
C3	$0.31610(19)$	$0.67605(17)$	$0.80137(16)$	$0.0138(3)$
C4	$0.62881(19)$	$0.82552(17)$	$1.00955(16)$	$0.0138(3)$
C5	$0.9200(2)$	$0.90095(19)$	$1.21844(18)$	$0.0196(3)$
H5A	1.0006	0.8996	1.1353	0.029^{*}
H5B	0.9840	0.8560	1.3075	0.029^{*}
H5C	0.9061	1.0194	1.2584	0.029^{*}
C6	$0.3832(2)$	$0.72501(17)$	$0.65299(16)$	$0.0153(3)$
C7	$0.6552(2)$	$0.7573(2)$	$0.51653(17)$	$0.0226(3)$
H7A	0.5790	0.6946	0.4108	0.034^{*}
H7B	0.7911	0.7391	0.5270	0.034^{*}
H7C	0.6548	0.8805	0.5272	0.034^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.01005(18)$	$0.02032(19)$	$0.01379(18)$	$-0.00123(13)$	$0.00238(12)$	$0.00683(13)$
S2	$0.01129(18)$	$0.02217(19)$	$0.01518(18)$	$-0.00117(13)$	$0.00129(13)$	$0.00788(13)$
O1	$0.0162(5)$	$0.0197(5)$	$0.0233(5)$	$-0.0007(4)$	$0.0067(4)$	$0.0087(4)$
O2	$0.0108(5)$	$0.0206(5)$	$0.0168(5)$	$-0.0020(4)$	$0.0011(4)$	$0.0055(4)$
O3	$0.0216(6)$	$0.0423(7)$	$0.0225(5)$	$0.0111(5)$	$0.0064(4)$	$0.0184(5)$
O4	$0.0158(5)$	$0.0265(5)$	$0.0161(5)$	$0.0054(4)$	$0.0076(4)$	$0.0096(4)$
C1	$0.0116(6)$	$0.0158(6)$	$0.0147(6)$	$0.0017(5)$	$0.0017(5)$	$0.0049(5)$
C2	$0.0127(6)$	$0.0131(6)$	$0.0160(6)$	$0.0035(5)$	$0.0064(5)$	$0.0053(5)$
C3	$0.0109(6)$	$0.0133(6)$	$0.0184(7)$	$0.0019(5)$	$0.0046(5)$	$0.0050(5)$
C4	$0.0126(6)$	$0.0143(6)$	$0.0157(6)$	$0.0035(5)$	$0.0062(5)$	$0.0022(5)$
C5	$0.0104(7)$	$0.0216(7)$	$0.0231(7)$	$-0.0023(5)$	$0.0002(5)$	$0.0024(6)$
C6	$0.0154(7)$	$0.0147(6)$	$0.0152(7)$	$0.0009(5)$	$0.0032(5)$	$0.0032(5)$
C7	$0.0188(7)$	$0.0342(8)$	$0.0176(7)$	$0.0022(6)$	$0.0087(6)$	$0.0110(6)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

S1-C2	$1.7452(13)$	$\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$1.343(3)$
$\mathrm{S} 1-\mathrm{C} 1$	$1.7570(13)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.3419(19)$
$\mathrm{S} 2-\mathrm{C} 3$	$1.7468(13)$	$\mathrm{C} 2-\mathrm{C} 4$	$1.4882(18)$
$\mathrm{S} 2-\mathrm{C} 1$	$1.7636(13)$	$\mathrm{C} 3-\mathrm{C} 6$	$1.4921(18)$
$\mathrm{O} 1-\mathrm{C} 4$	$1.2022(16)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9600
$\mathrm{O} 2-\mathrm{C} 4$	$1.3363(16)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	0.9600
$\mathrm{O} 2-\mathrm{C} 5$	$1.4559(16)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{C}$	0.9600
$\mathrm{O} 3-\mathrm{C} 6$	$1.2007(17)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	0.9600
$\mathrm{O} 4-\mathrm{C} 6$	$1.3263(16)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	0.9600
$\mathrm{O} 4-\mathrm{C} 7$	$1.4487(16)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	0.9600

$\mathrm{C} 2-\mathrm{S} 1-\mathrm{C} 1$	$94.90(6)$
$\mathrm{C} 3-\mathrm{S} 2-\mathrm{C} 1$	$94.65(6)$
$\mathrm{C} 4-\mathrm{O} 2-\mathrm{C} 5$	$115.25(10)$
$\mathrm{C} 6-\mathrm{O} 4-\mathrm{C} 7$	$115.57(11)$
$\mathrm{C} 1-\mathrm{C} 1-\mathrm{S} 1$	$122.42(14)$
$\mathrm{C} 1-\mathrm{C} 1-\mathrm{S} 2$	$122.68(14)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{S} 2$	$114.90(7)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 4$	$125.13(12)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{S} 1$	$117.68(10)$
$\mathrm{C} 4-\mathrm{C} 2-\mathrm{S} 1$	$116.86(10)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 6$	$126.96(12)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{S} 2$	$117.78(10)$
$\mathrm{C} 6-\mathrm{C} 3-\mathrm{S} 2$	$115.23(10)$
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{O} 2$	$125.14(12)$
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 2$	$110.33(12)$
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 2$	$178.58(16)$
$\mathrm{C} 2-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 1 \mathrm{C}^{\mathrm{i}}$	$-1.44(8)$
$\mathrm{C} 2-\mathrm{S} 1-\mathrm{C} 1-\mathrm{S} 2$	$-177.53(16)$
$\mathrm{C} 3-\mathrm{S} 2-\mathrm{C} 1-\mathrm{C} 1{ }^{\mathrm{i}}$	$2.49(8)$
$\mathrm{C} 3-\mathrm{S} 2-\mathrm{C} 1-\mathrm{S} 1$	$-0.67(11)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 2-\mathrm{C} 3$	$173.05(10)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 2-\mathrm{C} 4$	$7.2(2)$
$\mathrm{C} 4-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 6$	$-179.69(10)$
$\mathrm{S} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 6$	$-170.52(10)$
$\mathrm{C} 4-\mathrm{C} 2-\mathrm{C} 3-\mathrm{S} 2$	$2.63(15)$
$\mathrm{S} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{S} 2$	$-3.06(11)$
$\mathrm{C} 1-\mathrm{S} 2-\mathrm{C} 3-\mathrm{C} 2$	$178.99(10)$
$\mathrm{C} 1-\mathrm{S} 2-\mathrm{C} 3-\mathrm{C} 6$	

O2- $\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	109.5
O2-C5-H5B	109.5
H5A-C5-H5B	109.5
O2- $\mathrm{C} 5-\mathrm{H} 5 \mathrm{C}$	109.5
H5A-C5-H5C	109.5
H5B-C5-H5C	109.5
O3-C6-O4	125.74 (12)
O3-C6-C3	122.87 (12)
O4-C6-C3	111.34 (11)
$\mathrm{O} 4-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	109.5
O4-C7-H7B	109.5
H7A-C7-H7B	109.5
O4-C7-H7C	109.5
H7A-C7- 77 C	109.5
H7B-C7- 77 C	109.5
C5-O2-C4-O1	0.21 (18)
C5-O2-C4-C2	-177.38 (10)
C3-C2-C4-O1	22.1 (2)
S1-C2-C4-O1	-151.10 (11)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 4-\mathrm{O} 2$	-160.29 (12)
$\mathrm{S} 1-\mathrm{C} 2-\mathrm{C} 4-\mathrm{O} 2$	26.51 (14)
C7-O4-C6-O3	10.1 (2)
C7-O4-C6-C3	-172.26 (11)
C2-C3-C6-O3	-137.60 (15)
S2-C3-C6-O3	40.13 (17)
C2-C3-C6-O4	44.73 (18)
S2-C3-C6-O4	-137.54 (10)

Symmetry code: (i) $-x,-y+1,-z+2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 7 — \mathrm{H} 7 A \cdots \mathrm{~S}^{\mathrm{ii}}$	0.96	2.83	$3.735(2)$	158
$\mathrm{C} 5 — \mathrm{H} 5 A \cdots 1^{\mathrm{iii}}$	0.96	2.50	$3.324(2)$	143
$\mathrm{C}^{\mathrm{H}} \mathrm{H} 5 C \cdots \mathrm{O}^{\text {iv }}$	0.96	2.65	$3.481(2)$	145

Symmetry codes: (ii) $x, y, z-1$; (iii) $-x+2,-y+2,-z+2$; (iv) $-x+1,-y+2,-z+2$.

