metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tris(ethylenediamine- $\kappa^2 N, N'$)nickel(II) bis(dimethyl phosphate)

Masoud Rafizadeh,* Hamid Reza Saadati Moshtaghin and Vahid Amani

Department of Chemistry, Share-Ray Branch, Islamic Azad University, Tehran, Iran Correspondence e-mail: m_rafizadeh83@yahoo.com

Received 26 June 2012; accepted 1 July 2012

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.003 Å; R factor = 0.034; wR factor = 0.085; data-to-parameter ratio = 18.3.

In the title compound, $[Ni(C_2H_8N_2)_3][O_2P(OCH_3)_2]_2$, the Ni^{II} atom is six-coordinated in a distorted octahedral geometry by six N atoms from three ethylenediamine ligands. The P atoms of the anions adopt a distorted tetrahedral geometry. In the crystal, intermolecular N-H···O and C-H···O hydrogen bonds link the cations and anions into a three-dimensional network.

Related literature

For related structures, see: Amani *et al.* (2006); Jun & Zhang (2010); Rafizadeh & Amani (2006*a*,*b*, 2007); Rafizadeh, Amani & Aghayan (2006); Rafizadeh, Amani & Broushaky (2006); Rafizadeh, Hoseinzadeh & Amani (2006); Rafizadeh *et al.* (2005, 2007, 2009).

Experimental

Crystal data

$$\begin{split} & [\mathrm{Ni}(\mathrm{C}_{2}\mathrm{H}_{8}\mathrm{N}_{2})_{3}](\mathrm{C}_{2}\mathrm{H}_{6}\mathrm{O}_{4}\mathrm{P})_{2} \\ & M_{r} = 489.08 \\ & \mathrm{Monoclinic}, \ P2_{1}/n \\ & a = 9.2553 \ (5) \ \mathrm{\AA} \\ & b = 12.4913 \ (5) \ \mathrm{\AA} \\ & c = 18.190 \ (1) \ \mathrm{\AA} \\ & \beta = 90.156 \ (4)^{\circ} \end{split}$$

Data collection

Stoe IPDS-2T diffractometer Absorption correction: numerical (X-SHAPE and X-RED; Stoe & Cie, 2002) $T_{min} = 0.590, T_{max} = 0.650$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	H atoms treated by a mixture of
$wR(F^2) = 0.085$	independent and constrained
S = 1.08	refinement
5205 reflections	$\Delta \rho_{\rm max} = 0.51 \text{ e } \text{\AA}^{-3}$
284 parameters	$\Delta \rho_{\rm min} = -0.40 \ {\rm e} \ {\rm \AA}^{-3}$

9338 measured reflections

 $R_{\rm int} = 0.031$

5205 independent reflections

4555 reflections with $I > 2\sigma(I)$

		. •	
TT 1 1 1		/ A	\circ
Hvarogen_hona	geometry	1 4	~ 1
II yul Ogen-bonu	geometry	11.	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1−H1 <i>C</i> ···O2	0.90 (3)	2.17 (3)	3.057 (2)	171 (2)
$N1 - H1D \cdots O5^{i}$	0.93 (4)	2.36 (4)	3.263 (2)	165 (3)
$N2 - H2C \cdots O6$	0.87 (3)	2.35 (3)	3.111 (2)	146 (2)
$N2 - H2D \cdots O6^{ii}$	0.84 (3)	2.19 (3)	3.015 (2)	169 (2)
$N3-H3C\cdots O2^{iii}$	0.92 (3)	2.11 (3)	2.971 (2)	157 (2)
$N3 - H3D \cdots O6$	0.90 (3)	2.13 (3)	3.002 (2)	163 (2)
N4−H4 <i>C</i> ···O1	0.92 (3)	2.00 (3)	2.910 (2)	176 (3)
$N4 - H4D \cdots O8^{ii}$	0.88 (3)	2.40 (3)	3.205 (2)	152 (2)
$N5-H5C\cdots O5^{i}$	0.87 (3)	2.11 (3)	2.911 (2)	154 (2)
N6−H6C···O4	0.90	2.35	3.243 (2)	175
$N6-H6D\cdots O2^{iii}$	0.90	2.20	3.064 (2)	160
$C9-H9C\cdotsO1^{iv}$	0.96	2.41	3.305 (3)	155

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (iv) $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We are grateful to the Islamic Azad University, Shahre-Rey Branch, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2566).

References

- Amani, V., Rafizadeh, M., Yousefi, M. & Zargar, N. S. (2006). Anal. Sci. 22, x303-x304.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Jun, Q. & Zhang, C. (2010). Acta Cryst. E66, m24-m25.

Rafizadeh, M. & Amani, V. (2006a). Acta Cryst. E62, m1776-m1777.

- Rafizadeh, M. & Amani, V. (2006b). Anal. Sci. 22, x211-x212.
- Rafizadeh, M. & Amani, V. (2007). Z. Anorg. Allg. Chem. 633, 2738–2741.
 Rafizadeh, M., Amani, V. & Aghayan, H. (2006). Acta Cryst. E62, m2450– m2452.
- Rafizadeh, M., Amani, V. & Broushaky, M. (2006). Anal. Sci. 22, x213-x214.
- Rafizadeh, M., Amani, V. & Farajian, H. (2007). Z. Anorg. Allg. Chem. 633, 1143–1145.
- Rafizadeh, M., Amani, V. & Mortazavi, N. S. (2009). Bull. Korean Chem. Soc. 30, 489–492.
- Rafizadeh, M., Hoseinzadeh, F. & Amani, V. (2006). Anal. Sci. 22, x3-x4.
- Rafizadeh, M., Tayebee, R., Amani, V. & Nasseh, M. (2005). Bull. Korean Chem. Soc. 26, 594–598.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Stoe & Cie (2002). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.

supporting information

Acta Cryst. (2012). E68, m1032 [https://doi.org/10.1107/S1600536812029984] Tris(ethylenediamine- $\kappa^2 N, N'$)nickel(II) bis(dimethyl phosphate)

Masoud Rafizadeh, Hamid Reza Saadati Moshtaghin and Vahid Amani

S1. Comment

In recent years, we reported the synthesis and crystal structure of $[Ni(H_2O)_6](DMP)_2$ (Rafizadeh & Amani, 2006*a*) (DMP = dimethylphosphate anion, $[O_2P(OCH_3)_2]^-$). In this compound, DMP is not bonded to the metal but acts as a counterion. Also, we reported the syntheses and crystal structures of $[Cu_2(\mu-DMP)_4(\mu-DMSO)]_n$ (Rafizadeh *et al.*, 2005), $[UO_2(\mu-DMP)_2(DMSO)]_n$ (Rafizadeh, Hoseinzadeh & Amani, 2006), $[La(\mu-DMP)_2(\mu_3-NO_3)(DMSO)]_n$ (Rafizadeh, Amani & Broushaky, 2006), $[UO_2(\mu-DEP)_2(DMSO)]_n$ (Rafizadeh & Amani, 2006*b*), $\{[Mn_2(\mu-DMP)_3(\mu-DMSO)_2(DMSO)]$ (H₂O)]NO₃.H₂O}_n (Rafizadeh, Amani, & Aghayan, 2006), $[Ce_2(\mu-DEP)_6(TEP)]_n$ (Amani *et al.*, 2006), $[Mn_2(\mu_3-DMP)_2(\mu-DMP)_2]_n$ (Rafizadeh *et al.*, 2007), $[Nd(\mu-DEP)_3]_n$ and $[Pr(\mu-DMP)_2(\mu-NO_3)(DMSO)]_n$ (Rafizadeh *et al.*, 2009) (DMSO = dimethylsulfoxide, DEP = diethylphosphate and TEP = triethylphosphate). DMP and DEP act as O-donor ligands, thus forming coordination polymers in solid state. We have also reported the synthesis and crystal structure of $[Fe_{16}(\mu_3-O)_8(\mu_3-OH)_4(\mu-OH)_4(\mu-DMP)_{12} (\mu-OAc)_{12}(DMSO)_4].2DMSO.1.5H_2O$ (Rafizadeh & Amani, 2007), which consists of sixteen iron ions connected by twelve bridging dimethylphosphates, twelve bridging acetates, eight μ_3 -oxo, four μ_3 -OH, four μ -OH groups and four DMSO ligands. We now report the synthesis and structure of the title compound, which was synthesized by the reaction of $[Ni(H_2O)_6](DMP)_2$ and ethylenediamine (en).

In the title compound (Fig. 1), the Ni^{II} atom is six-coordinated in a distorted octahedral geometry by six N atoms from three en ligands. The Ni—N bond lengths and angles are within normal range as observed in $[Ne(en)_3]_2[Mo(CN)_6].5H_2O$ (Jun & Zhang, 2010). Also, in the $[O_2P(OCH_3)_2]^-$ anions, the P atom is four-coordinated in a distorted tetrahedral geometry. The P—O bond lengths and angles are within normal range as observed in $[Ni(H_2O)_6](DMP)_2$ (Rafizadeh & Amani, 2006*a*). In the crystal, intermolecular N—H···O and C—H···O hydrogen bonds form a three-dimensional network (Table 1, Fig. 2).

S2. Experimental

For the preparation of the title compound, en (0.40 ml, 6.0 mmol) was added to a solution of $[Ni(H_2O)_6](DMP)_2$ (0.83 g, 2.0 mmol) in DMSO (10 ml) and the resulting violet solution was stirred for 2 h at room temperature. This solution was left to evaporate slowly at room temperature. After 2 months, violet block crystals of the title compound were isolated (yield: 0.71 g, 72.6%).

S3. Refinement

H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.97 (CH₂) and 0.96 (CH₃) Å and with $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms on N atoms were located from a difference Fourier map and refined isotropically, except those on N6. They were refined as riding atoms, with N—H = 0.90 Å and $U_{iso}(H) = 1.2U_{eq}(N)$.

Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Crystal packing diagram for the title compound. Hydrogen bonds are shown as dashed lines.

Tris(ethylenediamine- $\kappa^2 N, N'$)nickel(II) bis(dimethyl phosphate)

Crystal data

[Ni(C₂H₈N₂)₃](C₂H₆O₄P)₂ $M_r = 489.08$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 9.2553 (5) Å b = 12.4913 (5) Å c = 18.190 (1) Å $\beta = 90.156$ (4)° V = 2102.95 (18) Å³ Z = 4

Data collection

9338 measured reflections
5205 independent reflections
4555 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.031$
$\theta_{\rm max} = 29.2^\circ, \ \theta_{\rm min} = 2.7^\circ$
$h = -12 \rightarrow 10$
$k = -17 \rightarrow 14$
$l = -21 \rightarrow 24$
Secondary atom site location: difference F
map
Hydrogen site location: inferred from
neighbouring sites
H atoms treated by a mixture of independent
and constrained refinement

F(000) = 1040

 $\theta = 2.7 - 29.2^{\circ}$ $\mu = 1.12 \text{ mm}^{-1}$

Block, violet

 $0.49 \times 0.40 \times 0.38 \text{ mm}$

T = 120 K

 $D_{\rm x} = 1.545 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9338 reflections

284 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0434P)^2 + 1.1522P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.014$ $\Delta\rho_{max} = 0.51$ e Å⁻³ $\Delta\rho_{min} = -0.40$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.7792 (2)	0.35678 (14)	0.35218 (10)	0.0138 (3)	
H1A	0.8421	0.2961	0.3434	0.017*	
H1B	0.6870	0.3428	0.3286	0.017*	

C2 $0.7579 (2)$ $0.37245 (14)$ $0.43420 (10)$ H2A 0.7108 0.3102 0.4552 H2B 0.8506 0.3818 0.4583 C3 $0.4548 (2)$ $0.69465 (15)$ $0.39362 (11)$ H3A 0.4030 0.7614 0.4005 H3B 0.4050 0.6391 0.4209 C4 $0.4576 (2)$ $0.66600 (16)$ $0.31238 (10)$ H4A 0.3602 0.6530 0.2948 H4B 0.4984 0.7246 0.2843 C5 $0.9829 (2)$ $0.72847 (15)$ $0.40027 (11)$ H5A 1.0827 0.7361 0.4159 H5B 0.9296 0.7907 0.4169 C6 $0.9750 (2)$ $0.72044 (16)$ $0.31718 (11)$ H6A 1.0093 0.7863 0.2951 H6B 1.0355 0.6621 0.3001 C7 $0.6815 (3)$ $0.55279 (17)$ $-0.01227 (11)$ H7A 0.7315 0.6196 -0.0064 H7B 0.5815 0.5621 0.0001 H7C 0.6891 0.5295 -0.0624 C8 $0.9788 (3)$ $0.61156 (19)$ $0.10517 (15)$ H8A 0.9829 0.5941 0.0538 H8B 1.0351 0.5608 0.1326 H8B 1.0351 0.5608 0.1326 H9A 0.7931 0.8165 0.6626 H9B 0.7737 0.8144 0.5770 H9C 0.9242 0.8434 0.6114	0.0142 (4) 0.017* 0.017* 0.0158 (4) 0.019* 0.019* 0.019* 0.019* 0.019* 0.019* 0.019* 0.0178 (4) 0.021* 0.021* 0.0186 (4) 0.022* 0.022* 0.0222* 0.0242 (4)
H2A0.71080.31020.4552H2B0.85060.38180.4583C30.4548 (2)0.69465 (15)0.39362 (11)H3A0.40300.76140.4005H3B0.40500.63910.4209C40.4576 (2)0.66600 (16)0.31238 (10)H4A0.36020.65300.2948H4B0.49840.72460.2843C50.9829 (2)0.72847 (15)0.40027 (11)H5A1.08270.73610.4159H5B0.92960.79070.4169C60.9750 (2)0.72044 (16)0.31718 (11)H6A1.00930.78630.2951H6B1.03550.66210.3001C70.6815 (3)0.55279 (17)-0.01227 (11)H7A0.73150.6196-0.0064H7B0.58150.56210.0001H7C0.68910.5295-0.0624C80.9788 (3)0.61156 (19)0.10517 (15)H8A0.98290.59410.0538H8B1.03510.56080.1326H8C1.01690.68220.1128C90.8392 (3)0.79999 (16)0.61676 (13)H9A0.79310.81650.6626H9B0.77370.81440.5770H9C0.92420.84340.6114	0.017* 0.017* 0.0158 (4) 0.019* 0.019* 0.0162 (4) 0.019* 0.019* 0.0178 (4) 0.021* 0.0186 (4) 0.022* 0.022* 0.0222* 0.0242 (4)
H2B0.85060.38180.4583C30.4548 (2)0.69465 (15)0.39362 (11)H3A0.40300.76140.4005H3B0.40500.63910.4209C40.4576 (2)0.66600 (16)0.31238 (10)H4A0.36020.65300.2948H4B0.49840.72460.2843C50.9829 (2)0.72847 (15)0.40027 (11)H5A1.08270.73610.4159H5B0.92960.79070.4169C60.9750 (2)0.72044 (16)0.31718 (11)H6A1.00930.78630.2951H6B1.03550.66210.3001C70.6815 (3)0.55279 (17)-0.01227 (11)H7A0.73150.6196-0.0064H7B0.58150.56210.0001H7C0.68910.5295-0.0624C80.9788 (3)0.61156 (19)0.10517 (15)H8A0.98290.59410.0538H8B1.03510.56080.1326H8C1.01690.68220.1128C90.8392 (3)0.79999 (16)0.61676 (13)H9A0.79310.81650.6626H9B0.77370.81440.5770H9C0.92420.84340.6114	0.017* 0.0158 (4) 0.019* 0.019* 0.0162 (4) 0.019* 0.019* 0.0178 (4) 0.021* 0.0186 (4) 0.022* 0.022* 0.022* 0.0242 (4)
C30.4548 (2)0.69465 (15)0.39362 (11)H3A0.40300.76140.4005H3B0.40500.63910.4209C40.4576 (2)0.66600 (16)0.31238 (10)H4A0.36020.65300.2948H4B0.49840.72460.2843C50.9829 (2)0.72847 (15)0.40027 (11)H5A1.08270.73610.4159H5B0.92960.79070.4169C60.9750 (2)0.72044 (16)0.31718 (11)H6A1.00930.78630.2951H6B1.03550.66210.3001C70.6815 (3)0.55279 (17)-0.01227 (11)H7A0.73150.6196-0.0064H7B0.58150.56210.0001H7C0.68910.5295-0.0624C80.9788 (3)0.61156 (19)0.10517 (15)H8A0.98290.59410.0538H8B1.03510.56080.1326H8C1.01690.68220.1128C90.8392 (3)0.79999 (16)0.61676 (13)H9A0.79310.81650.6626H9B0.77370.81440.5770H9C0.92420.84340.6114	0.0158 (4) 0.019* 0.019* 0.0162 (4) 0.019* 0.019* 0.0178 (4) 0.021* 0.021* 0.0186 (4) 0.022* 0.022* 0.022* 0.0242 (4)
H3A0.40300.76140.4005H3B0.40500.63910.4209C40.4576 (2)0.66600 (16)0.31238 (10)H4A0.36020.65300.2948H4B0.49840.72460.2843C50.9829 (2)0.72847 (15)0.40027 (11)H5A1.08270.73610.4159H5B0.92960.79070.4169C60.9750 (2)0.72044 (16)0.31718 (11)H6A1.00930.78630.2951H6B1.03550.66210.3001C70.6815 (3)0.55279 (17)-0.01227 (11)H7A0.73150.6196-0.0064H7B0.58150.56210.0001H7C0.68910.5295-0.0624C80.9788 (3)0.61156 (19)0.10517 (15)H8A0.98290.59410.0538H8B1.03510.56080.1326H8C1.01690.68220.1128C90.8392 (3)0.79999 (16)0.61676 (13)H9A0.79310.81650.6626H9B0.77370.81440.5770H9C0.92420.84340.6114	0.019* 0.019* 0.0162 (4) 0.019* 0.019* 0.0178 (4) 0.021* 0.021* 0.0186 (4) 0.022* 0.022* 0.0222* 0.0242 (4)
H3B0.40500.63910.4209C40.4576 (2)0.66600 (16)0.31238 (10)H4A0.36020.65300.2948H4B0.49840.72460.2843C50.9829 (2)0.72847 (15)0.40027 (11)H5A1.08270.73610.4159H5B0.92960.79070.4169C60.9750 (2)0.72044 (16)0.31718 (11)H6A1.00930.78630.2951H6B1.03550.66210.3001C70.6815 (3)0.55279 (17)-0.01227 (11)H7A0.73150.6196-0.0064H7B0.58150.56210.0001H7C0.68910.5295-0.0624C80.9788 (3)0.61156 (19)0.10517 (15)H8A0.98290.59410.0538H8B1.03510.56080.1326H8C1.01690.68220.1128C90.8392 (3)0.79999 (16)0.61676 (13)H9A0.79310.81650.6626H9B0.77370.81440.5770H9C0.92420.84340.6114	0.019* 0.0162 (4) 0.019* 0.019* 0.0178 (4) 0.021* 0.0186 (4) 0.022* 0.022* 0.0222* 0.0242 (4)
C4 $0.4576(2)$ $0.66600(16)$ $0.31238(10)$ H4A 0.3602 0.6530 0.2948 H4B 0.4984 0.7246 0.2843 C5 $0.9829(2)$ $0.72847(15)$ $0.40027(11)$ H5A 1.0827 0.7361 0.4159 H5B 0.9296 0.7907 0.4169 C6 $0.9750(2)$ $0.72044(16)$ $0.31718(11)$ H6A 1.0093 0.7863 0.2951 H6B 1.0355 0.6621 0.3001 C7 $0.6815(3)$ $0.55279(17)$ $-0.01227(11)$ H7A 0.7315 0.6196 -0.0064 H7B 0.5815 0.5621 0.0001 H7C 0.6891 0.5295 -0.0624 C8 $0.9788(3)$ $0.61156(19)$ $0.10517(15)$ H8A 0.9829 0.5941 0.0538 H8B 1.0351 0.5608 0.1326 H8C 1.0169 0.6822 0.1128 C9 $0.8392(3)$ $0.79999(16)$ $0.61676(13)$ H9A 0.7931 0.8165 0.6626 H9B 0.7737 0.8144 0.5770 H9C 0.9242 0.8434 0.6114	0.0162 (4) 0.019* 0.019* 0.0178 (4) 0.021* 0.021* 0.0186 (4) 0.022* 0.022* 0.0222* 0.0242 (4)
H4A0.36020.65300.2948H4B0.49840.72460.2843C50.9829 (2)0.72847 (15)0.40027 (11)H5A1.08270.73610.4159H5B0.92960.79070.4169C60.9750 (2)0.72044 (16)0.31718 (11)H6A1.00930.78630.2951H6B1.03550.66210.3001C70.6815 (3)0.55279 (17)-0.01227 (11)H7A0.73150.6196-0.0064H7B0.58150.56210.0001H7C0.68910.5295-0.0624C80.9788 (3)0.61156 (19)0.10517 (15)H8A0.98290.59410.0538H8B1.03510.56080.1326H8C1.01690.68220.1128C90.8392 (3)0.79999 (16)0.61676 (13)H9A0.79310.81650.6626H9B0.77370.81440.5770H9C0.92420.84340.6114	0.019* 0.019* 0.0178 (4) 0.021* 0.021* 0.0186 (4) 0.022* 0.022* 0.0222* 0.0242 (4)
H4B0.49840.72460.2843C50.9829 (2)0.72847 (15)0.40027 (11)H5A1.08270.73610.4159H5B0.92960.79070.4169C60.9750 (2)0.72044 (16)0.31718 (11)H6A1.00930.78630.2951H6B1.03550.66210.3001C70.6815 (3)0.55279 (17)-0.01227 (11)H7A0.73150.6196-0.0064H7B0.58150.56210.0001H7C0.68910.5295-0.0624C80.9788 (3)0.61156 (19)0.10517 (15)H8A0.98290.59410.0538H8B1.03510.56080.1326H8C1.01690.68220.1128C90.8392 (3)0.79999 (16)0.61676 (13)H9A0.79310.81650.6626H9B0.77370.81440.5770H9C0.92420.84340.6114	0.019* 0.0178 (4) 0.021* 0.021* 0.0186 (4) 0.022* 0.022* 0.0222* 0.0242 (4)
C50.9829 (2)0.72847 (15)0.40027 (11)H5A1.08270.73610.4159H5B0.92960.79070.4169C60.9750 (2)0.72044 (16)0.31718 (11)H6A1.00930.78630.2951H6B1.03550.66210.3001C70.6815 (3)0.55279 (17)-0.01227 (11)H7A0.73150.6196-0.0064H7B0.58150.56210.0001H7C0.68910.5295-0.0624C80.9788 (3)0.61156 (19)0.10517 (15)H8A0.98290.59410.0538H8B1.03510.56080.1326H8C1.01690.68220.1128C90.8392 (3)0.79999 (16)0.61676 (13)H9A0.79310.81650.6626H9B0.77370.81440.5770H9C0.92420.84340.6114	0.0178 (4) 0.021* 0.021* 0.0186 (4) 0.022* 0.022* 0.0222* 0.0242 (4)
H5A1.08270.73610.4159H5B0.92960.79070.4169C60.9750 (2)0.72044 (16)0.31718 (11)H6A1.00930.78630.2951H6B1.03550.66210.3001C70.6815 (3)0.55279 (17)-0.01227 (11)H7A0.73150.6196-0.0064H7B0.58150.56210.0001H7C0.68910.5295-0.0624C80.9788 (3)0.61156 (19)0.10517 (15)H8A0.98290.59410.0538H8B1.03510.56080.1326H8C1.01690.68220.1128C90.8392 (3)0.79999 (16)0.61676 (13)H9A0.79310.81650.6626H9B0.77370.81440.5770H9C0.92420.84340.6114	0.021* 0.021* 0.0186 (4) 0.022* 0.022* 0.0222* 0.0242 (4)
H5B0.92960.79070.4169C60.9750 (2)0.72044 (16)0.31718 (11)H6A1.00930.78630.2951H6B1.03550.66210.3001C70.6815 (3)0.55279 (17)-0.01227 (11)H7A0.73150.6196-0.0064H7B0.58150.56210.0001H7C0.68910.5295-0.0624C80.9788 (3)0.61156 (19)0.10517 (15)H8A0.98290.59410.0538H8B1.03510.56080.1326H8C1.01690.68220.1128C90.8392 (3)0.79999 (16)0.61676 (13)H9A0.79310.81650.6626H9B0.77370.81440.5770H9C0.92420.84340.6114	0.021* 0.0186 (4) 0.022* 0.022* 0.0242 (4)
C60.9750 (2)0.72044 (16)0.31718 (11)H6A1.00930.78630.2951H6B1.03550.66210.3001C70.6815 (3)0.55279 (17)-0.01227 (11)H7A0.73150.6196-0.0064H7B0.58150.56210.0001H7C0.68910.5295-0.0624C80.9788 (3)0.61156 (19)0.10517 (15)H8A0.98290.59410.0538H8B1.03510.56080.1326H8C1.01690.68220.1128C90.8392 (3)0.79999 (16)0.61676 (13)H9A0.79310.81650.6626H9B0.77370.81440.5770H9C0.92420.84340.6114	0.0186 (4) 0.022* 0.022* 0.0242 (4)
H6A1.00930.78630.2951H6B1.03550.66210.3001C70.6815 (3)0.55279 (17)-0.01227 (11)H7A0.73150.6196-0.0064H7B0.58150.56210.0001H7C0.68910.5295-0.0624C80.9788 (3)0.61156 (19)0.10517 (15)H8A0.98290.59410.0538H8B1.03510.56080.1326H8C1.01690.68220.1128C90.8392 (3)0.79999 (16)0.61676 (13)H9A0.79310.81650.6626H9B0.77370.81440.5770H9C0.92420.84340.6114	0.022* 0.022* 0.0242 (4)
H6B 1.0355 0.6621 0.3001 C7 $0.6815(3)$ $0.55279(17)$ $-0.01227(11)$ H7A 0.7315 0.6196 -0.0064 H7B 0.5815 0.5621 0.0001 H7C 0.6891 0.5295 -0.0624 C8 $0.9788(3)$ $0.61156(19)$ $0.10517(15)$ H8A 0.9829 0.5941 0.0538 H8B 1.0351 0.5608 0.1326 H8C 1.0169 0.6822 0.1128 C9 $0.8392(3)$ $0.79999(16)$ $0.61676(13)$ H9A 0.7737 0.8144 0.5770 H9C 0.9242 0.8434 0.6114	0.022* 0.0242 (4)
C7 $0.6815(3)$ $0.55279(17)$ $-0.01227(11)$ H7A 0.7315 0.6196 -0.0064 H7B 0.5815 0.5621 0.0001 H7C 0.6891 0.5295 -0.0624 C8 $0.9788(3)$ $0.61156(19)$ $0.10517(15)$ H8A 0.9829 0.5941 0.0538 H8B 1.0351 0.5608 0.1326 H8C 1.0169 0.6822 0.1128 C9 $0.8392(3)$ $0.79999(16)$ $0.61676(13)$ H9A 0.7737 0.8144 0.5770 H9C 0.9242 0.8434 0.6114	0.0242 (4)
H7A0.73150.6196-0.0064H7B0.58150.56210.0001H7C0.68910.5295-0.0624C80.9788 (3)0.61156 (19)0.10517 (15)H8A0.98290.59410.0538H8B1.03510.56080.1326H8C1.01690.68220.1128C90.8392 (3)0.79999 (16)0.61676 (13)H9A0.79310.81650.6626H9B0.77370.81440.5770H9C0.92420.84340.6114	
H7B0.58150.56210.0001H7C0.68910.5295-0.0624C80.9788 (3)0.61156 (19)0.10517 (15)H8A0.98290.59410.0538H8B1.03510.56080.1326H8C1.01690.68220.1128C90.8392 (3)0.79999 (16)0.61676 (13)H9A0.79310.81650.6626H9B0.77370.81440.5770H9C0.92420.84340.6114	0.029*
H7C0.68910.5295-0.0624C80.9788 (3)0.61156 (19)0.10517 (15)H8A0.98290.59410.0538H8B1.03510.56080.1326H8C1.01690.68220.1128C90.8392 (3)0.79999 (16)0.61676 (13)H9A0.79310.81650.6626H9B0.77370.81440.5770H9C0.92420.84340.6114	0.029*
C80.9788 (3)0.61156 (19)0.10517 (15)H8A0.98290.59410.0538H8B1.03510.56080.1326H8C1.01690.68220.1128C90.8392 (3)0.79999 (16)0.61676 (13)H9A0.79310.81650.6626H9B0.77370.81440.5770H9C0.92420.84340.6114	0.029*
H8A0.98290.59410.0538H8B1.03510.56080.1326H8C1.01690.68220.1128C90.8392 (3)0.79999 (16)0.61676 (13)H9A0.79310.81650.6626H9B0.77370.81440.5770H9C0.92420.84340.6114	0.0301 (5)
H8B1.03510.56080.1326H8C1.01690.68220.1128C90.8392 (3)0.79999 (16)0.61676 (13)H9A0.79310.81650.6626H9B0.77370.81440.5770H9C0.92420.84340.6114	0.036*
H8C1.01690.68220.1128C90.8392 (3)0.79999 (16)0.61676 (13)H9A0.79310.81650.6626H9B0.77370.81440.5770H9C0.92420.84340.6114	0.036*
C90.8392 (3)0.79999 (16)0.61676 (13)H9A0.79310.81650.6626H9B0.77370.81440.5770H9C0.92420.84340.6114	0.036*
H9A0.79310.81650.6626H9B0.77370.81440.5770H9C0.92420.84340.6114	0.0242 (5)
H9B0.77370.81440.5770H9C0.92420.84340.6114	0.029*
H9C 0.9242 0.8434 0.6114	0.029*
	0.029*
C10 0.7784 (3) 0.56998 (19) 0.76650 (11)	0.0250 (5)
H10A 0.8726 0.6021 0.7677	0.030*
H10B 0.7877 0.4939 0.7607	0.030*
H10C 0.7290 0.5852 0.8116	0.030*
N1 0.84434 (19) 0.45511 (12) 0.32143 (9)	0.0126 (3)
H1C 0.837 (3) 0.449 (2) 0.2723 (16)	0.022 (6)*
H1D 0.940 (4) 0.456 (3) 0.3362 (18)	0.042 (9)*
N2 0.66754 (19) 0.46838 (12) 0.44496 (9)	0.0118 (3)
H2C 0.682 (3) 0.491 (2) 0.4897 (16)	0.024 (7)*
H2D 0.581 (3) 0.451 (2) 0.4390 (16)	0.026 (7)*
N3 0.60386 (18) 0.70561 (12) 0.42125 (9)	0.0130 (3)
H3C 0.636 (3) 0.773 (2) 0.4098 (14)	0.019 (6)*
H3D 0.606 (3) 0.696 (2) 0.4703 (15)	0.019 (6)*
N4 0.54660 (18) 0.56862 (13) 0.30284 (9)	0.0136 (3)
H4C 0.565 (3) 0.557 (2) 0.2541 (17)	0.029 (7)*
H4D 0.495 (3) 0.512 (2) 0.3150 (15)	0.025 (7)*
N5 0.92017 (18) 0.63031 (13) 0.43245 (9)	
H5C 0.981 (3) 0.578 (2) 0.4283 (15)	0.0133 (3)
H5D 0.903 (3) 0.638 (2) 0.4756 (15)	0.0133 (3) 0.021 (7)*
N6 0.82331 (18) 0.70111 (12) 0.29583 (9)	0.0133 (3) 0.021 (7)* 0.020 (6)*
H6C 0.8192 0.6762 0.2495	0.0133 (3) 0.021 (7)* 0.020 (6)* 0.0135 (3)

H6D	0.7729	0.7627	0.2979	0.016*
01	0.59564 (17)	0.52152 (13)	0.14823 (8)	0.0218 (3)
O2	0.82725 (16)	0.40819 (10)	0.15670 (7)	0.0163 (3)
O3	0.74502 (17)	0.47356 (11)	0.03552 (7)	0.0173 (3)
O4	0.83165 (17)	0.60793 (11)	0.12947 (8)	0.0185 (3)
O5	0.83257 (17)	0.49601 (11)	0.61469 (8)	0.0210 (3)
O6	0.62989 (16)	0.62537 (11)	0.57626 (8)	0.0171 (3)
07	0.87916 (16)	0.68872 (11)	0.61572 (8)	0.0182 (3)
O8	0.69760 (16)	0.61289 (11)	0.70610 (7)	0.0176 (3)
P1	0.74375 (5)	0.49734 (4)	0.12224 (2)	0.01149 (10)
P2	0.75573 (5)	0.59976 (4)	0.62379 (2)	0.01087 (10)
Ni1	0.73359 (2)	0.587559 (17)	0.369019 (12)	0.00877 (7)

Atomic displacement parameters $(Å^2)$

	<i>U</i> /11	<i>U</i> ²²	<i>L</i> /33	1/12	1/13	1/23
$\overline{C1}$	0.0156 (0)	0.0121 (8)	0.0126 (8)	0,0000 (6)		(6)
	0.0130(9)	0.0121(6)	0.0130(8)	0.0000(0)	-0.0000(7)	-0.0019(0)
C2	0.0162 (9)	0.0140 (8)	0.0124 (8)	0.0002(7)	-0.0028(7)	0.0014 (6)
C3	0.0129 (9)	0.0195 (9)	0.0149 (8)	0.0036 (7)	0.0019 (8)	0.0002 (7)
C4	0.0121 (9)	0.0218 (9)	0.0147 (8)	0.0028 (7)	-0.0018 (8)	0.0016 (7)
C5	0.0148 (9)	0.0152 (8)	0.0235 (10)	-0.0036 (7)	-0.0054 (8)	-0.0002(7)
C6	0.0146 (9)	0.0205 (9)	0.0209 (9)	-0.0031 (7)	0.0030 (8)	0.0054 (7)
C7	0.0346 (13)	0.0236 (10)	0.0144 (9)	-0.0012 (9)	-0.0034 (9)	0.0051 (7)
C8	0.0210 (11)	0.0258 (11)	0.0435 (14)	-0.0081 (9)	-0.0027 (11)	0.0073 (10)
C9	0.0250 (11)	0.0149 (9)	0.0328 (11)	-0.0060(8)	-0.0085 (10)	0.0026 (8)
C10	0.0312 (13)	0.0319 (11)	0.0118 (9)	0.0004 (9)	-0.0040 (9)	0.0039 (8)
N1	0.0143 (8)	0.0147 (7)	0.0088 (7)	-0.0001 (6)	-0.0005 (7)	-0.0010 (5)
N2	0.0132 (8)	0.0122 (7)	0.0101 (7)	-0.0021 (6)	0.0008 (7)	-0.0006(5)
N3	0.0140 (8)	0.0135 (7)	0.0115 (7)	0.0008 (6)	0.0008 (6)	0.0006 (5)
N4	0.0118 (7)	0.0172 (7)	0.0120 (7)	-0.0008 (6)	0.0009 (6)	-0.0006 (6)
N5	0.0122 (8)	0.0167 (7)	0.0109 (7)	0.0002 (6)	-0.0007 (6)	-0.0017 (6)
N6	0.0149 (8)	0.0135 (7)	0.0121 (7)	-0.0005 (5)	0.0008 (7)	0.0012 (5)
01	0.0172 (7)	0.0314 (8)	0.0168 (7)	0.0059 (6)	0.0028 (6)	0.0006 (6)
O2	0.0215 (7)	0.0128 (6)	0.0145 (6)	0.0022 (5)	-0.0014 (6)	0.0010 (5)
O3	0.0269 (8)	0.0160 (6)	0.0089 (6)	0.0010 (5)	-0.0006 (6)	-0.0001 (5)
O4	0.0225 (8)	0.0123 (6)	0.0206 (7)	-0.0010 (5)	-0.0036 (6)	-0.0013 (5)
O5	0.0211 (7)	0.0174 (7)	0.0244 (7)	0.0039 (6)	0.0023 (7)	-0.0039(5)
O6	0.0147 (7)	0.0219 (7)	0.0147 (6)	-0.0020 (5)	-0.0037 (6)	0.0006 (5)
O7	0.0129 (7)	0.0181 (6)	0.0236 (7)	-0.0030 (5)	-0.0005 (6)	0.0022 (5)
O8	0.0187 (7)	0.0240 (7)	0.0101 (6)	0.0038 (5)	0.0024 (6)	0.0011 (5)
P1	0.0146 (2)	0.0111 (2)	0.00880 (19)	0.00133 (16)	-0.00036 (18)	-0.00062 (15)
P2	0.0095 (2)	0.0136 (2)	0.0095 (2)	-0.00065 (15)	0.00064 (18)	-0.00094 (15)
Ni1	0.00858 (12)	0.00985 (11)	0.00788 (11)	-0.00036 (8)	0.00025 (9)	0.00034 (7)

Geometric parameters (Å, °)

C1—N1	1.479 (2)	С9—Н9С	0.9600
C1—C2	1.518 (2)	C10—O8	1.431 (3)

supporting information

C1—H1A	0.9700	C10—H10A	0.9600
C1—H1B	0.9700	C10—H10B	0.9600
C2—N2	1.475 (2)	C10—H10C	0.9600
C2—H2A	0 9700	N1—Ni1	2 1313 (15)
C_2 -H2B	0.9700	N1—H1C	0.90(3)
C2 N2	1.474(3)	NI HID	0.90(3)
$C_3 = C_4$	1.474(3)		0.93(4)
C_{2} U_{2}	1.321 (3)	N2 U2C	2.1220(13)
	0.9700	N2—H2C	0.87(3)
C3—H3B	0.9700	N2—H2D	0.83(3)
C4—N4	1.4/9 (2)	N3—N11	2.12/2(15)
C4—H4A	0.9700	N3—H3C	0.92 (3)
C4—H4B	0.9700	N3—H3D	0.90 (3)
C5—N5	1.478 (2)	N4—Nil	2.1187 (18)
C5—C6	1.516 (3)	N4—H4C	0.91 (3)
С5—Н5А	0.9700	N4—H4D	0.89 (3)
C5—H5B	0.9700	N5—Ni1	2.1418 (18)
C6—N6	1.476 (3)	N5—H5C	0.86 (3)
С6—Н6А	0.9700	N5—H5D	0.81 (3)
С6—Н6В	0.9700	N6—Ni1	2.1166 (15)
С7—О3	1.442 (2)	N6—H6C	0.9000
С7—Н7А	0.9600	N6—H6D	0.9000
С7—Н7В	0.9600	O1—P1	1.4824 (15)
C7—H7C	0.9600	O2—P1	1.4925 (14)
C8—O4	1,434 (3)	O3—P1	1.6052 (14)
C8—H8A	0.9600	04—P1	1.6084 (14)
C8—H8B	0.9600	05—P2	1 4878 (14)
C8—H8C	0.9600	O6-P2	1.4835(16)
C_{9}	1.438(2)	07_P2	1.4055 (10)
C_{0} H0A	0.0600	O_{12}	1.0008(14)
C0 H0R	0.9000	06-12	1.0008 (15)
С9—П9В	0.9000		
N1 C1 C2	109 50 (14)	NGI NI HID	100(2)
NI - CI - UIA	108.39 (14)		109(2)
NI—CI—HIA	110.0	HIC—NI—HID	111(3)
C2—CI—HIA	110.0	$C_2 = N_2 = N_1 I$	108.62 (11)
NI—CI—HIB	110.0	C2—N2—H2C	107.3 (19)
C2—C1—H1B	110.0	N11—N2—H2C	109.7 (18)
H1A—C1—H1B	108.4	C2—N2—H2D	108.2 (19)
N2—C2—C1	108.08 (15)	Ni1—N2—H2D	112 (2)
N2—C2—H2A	110.1	H2C—N2—H2D	111 (3)
C1—C2—H2A	110.1	C3—N3—Ni1	108.20 (11)
N2—C2—H2B	110.1	C3—N3—H3C	108.0 (17)
C1—C2—H2B	110.1	Ni1—N3—H3C	110.7 (16)
H2A—C2—H2B	108.4	C3—N3—H3D	109.8 (17)
N3—C3—C4	109.55 (15)	Ni1—N3—H3D	109.7 (16)
N3—C3—H3A	109.8	H3C—N3—H3D	110 (2)
С4—С3—Н3А	109.8	C4—N4—Ni1	107.20 (12)
N3—C3—H3B	109.8	C4—N4—H4C	110.2 (19)
С4—С3—Н3В	109.8	Nil—N4—H4C	115 (2)

НЗА—СЗ—НЗВ	108.2	C4—N4—H4D	109.3 (17)
N4—C4—C3	108.57 (16)	Ni1—N4—H4D	112.8 (19)
N4—C4—H4A	110.0	H4C—N4—H4D	103 (2)
C3—C4—H4A	110.0	C5—N5—Ni1	108.09 (12)
N4—C4—H4B	110.0	C5—N5—H5C	109.6 (18)
C3—C4—H4B	110.0	Ni1—N5—H5C	106.7 (19)
H4A—C4—H4B	108.4	C5—N5—H5D	111.3 (19)
N5—C5—C6	108.79 (16)	Ni1—N5—H5D	113 (2)
N5—C5—H5A	109.9	H5C—N5—H5D	108 (3)
С6—С5—Н5А	109.9	C6—N6—Nil	108.58 (12)
N5—C5—H5B	109.9	C6—N6—H6C	110.0
С6—С5—Н5В	109.9	Ni1—N6—H6C	110.0
H5A—C5—H5B	108.3	C6—N6—H6D	110.0
N6—C6—C5	108.44 (15)	Ni1—N6—H6D	110.0
N6—C6—H6A	110.0	H6C—N6—H6D	108.4
С5—С6—Н6А	110.0	C7—O3—P1	117.49 (12)
N6—C6—H6B	110.0	C8—O4—P1	118.86 (13)
С5—С6—Н6В	110.0	C9—O7—P2	119.09 (13)
H6A—C6—H6B	108.4	C10—O8—P2	120.22 (13)
O3—C7—H7A	109.5	O1—P1—O2	119.76 (8)
O3—C7—H7B	109.5	O1—P1—O3	111.12 (9)
H7A—C7—H7B	109.5	O2—P1—O3	105.64 (8)
O3—C7—H7C	109.5	O1—P1—O4	105.48 (9)
H7A—C7—H7C	109.5	O2—P1—O4	110.20 (8)
H7B—C7—H7C	109.5	O3—P1—O4	103.54 (8)
O4—C8—H8A	109.5	O6—P2—O5	119.85 (9)
O4—C8—H8B	109.5	O6—P2—O7	110.87 (8)
H8A—C8—H8B	109.5	O5—P2—O7	104.66 (8)
O4—C8—H8C	109.5	O6—P2—O8	104.94 (8)
H8A—C8—H8C	109.5	O5—P2—O8	110.81 (8)
H8B—C8—H8C	109.5	O7—P2—O8	104.86 (8)
О7—С9—Н9А	109.5	N6—Ni1—N4	92.22 (6)
O7—C9—H9B	109.5	N6—Ni1—N2	173.64 (7)
H9A—C9—H9B	109.5	N4—Ni1—N2	93.17 (7)
07—С9—Н9С	109.5	N6—Ni1—N3	92.25 (6)
Н9А—С9—Н9С	109.5	N4—Ni1—N3	82.53 (6)
Н9В—С9—Н9С	109.5	N2—Ni1—N3	91.81 (6)
O8—C10—H10A	109.5	N6—Ni1—N1	94.29 (6)
O8—C10—H10B	109.5	N4—Ni1—N1	94.33 (6)
H10A—C10—H10B	109.5	N2—Ni1—N1	81.93 (6)
O8—C10—H10C	109.5	N3—Ni1—N1	172.86 (6)
H10A—C10—H10C	109.5	N6—Ni1—N5	81.64 (6)
H10B—C10—H10C	109.5	N4—Ni1—N5	171.90 (6)
C1—N1—Ni1	107.09 (11)	N2—Ni1—N5	93.30 (7)
C1—N1—H1C	105.9 (17)	N3—Ni1—N5	92.40 (7)
Nil—Nl—HlC	116.1 (17)	N1—Ni1—N5	91.40 (7)
C1—N1—H1D	107 (2)		

N1-C1-C2-N2	56.9 (2)	C6—N6—Ni1—N1	-74.78 (13)
N3—C3—C4—N4	55.1 (2)	C6—N6—Ni1—N5	16.01 (12)
N5-C5-C6-N6	55.6 (2)	C4—N4—Ni1—N6	-73.62 (11)
C2-C1-N1-Ni1	-43.53 (17)	C4—N4—Ni1—N2	109.78 (11)
C1—C2—N2—Ni1	-40.33 (18)	C4—N4—Ni1—N3	18.36 (11)
C4—C3—N3—Ni1	-37.22 (17)	C4—N4—Ni1—N1	-168.09 (11)
C3—C4—N4—Ni1	-43.55 (17)	C2—N2—Ni1—N4	107.14 (13)
C6—C5—N5—Ni1	-39.95 (18)	C2—N2—Ni1—N3	-170.24 (13)
C5—C6—N6—Ni1	-42.24 (17)	C2—N2—Ni1—N1	13.21 (13)
C7—O3—P1—O1	53.70 (17)	C2—N2—Ni1—N5	-77.74 (13)
C7—O3—P1—O2	-174.96 (15)	C3—N3—Ni1—N6	102.42 (12)
C7—O3—P1—O4	-59.09 (16)	C3—N3—Ni1—N4	10.48 (12)
C8—O4—P1—O1	-177.29 (16)	C3—N3—Ni1—N2	-82.48 (12)
C8—O4—P1—O2	52.12 (18)	C3—N3—Ni1—N5	-175.86 (12)
C8—O4—P1—O3	-60.47 (18)	C1—N1—Ni1—N6	-168.38 (12)
C9—O7—P2—O6	45.21 (17)	C1—N1—Ni1—N4	-75.83 (12)
C9—O7—P2—O5	175.78 (15)	C1—N1—N11—N2	16.76 (12)
C9—O7—P2—O8	-67.52 (17)	C1—N1—Ni1—N5	109.90 (12)
C10-08-P2-06	164.87 (15)	C5—N5—Ni1—N6	13.37 (12)
C10-08-P2-05	34.15 (18)	C5—N5—Ni1—N2	-170.51 (12)
C10-08-P2-07	-78.24 (16)	C5—N5—Ni1—N3	-78.56 (12)
C6—N6—Ni1—N4	-169.29 (12)	C5—N5—Ni1—N1	107.49 (12)
C6—N6—Ni1—N3	108.10 (12)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1C…O2	0.90 (3)	2.17 (3)	3.057 (2)	171 (2)
N1—H1D····O5 ⁱ	0.93 (4)	2.36 (4)	3.263 (2)	165 (3)
N2—H2 <i>C</i> ···O6	0.87 (3)	2.35 (3)	3.111 (2)	146 (2)
N2—H2D····O6 ⁱⁱ	0.84 (3)	2.19 (3)	3.015 (2)	169 (2)
N3—H3 <i>C</i> ···O2 ⁱⁱⁱ	0.92 (3)	2.11 (3)	2.971 (2)	157 (2)
N3—H3 <i>D</i> ···O6	0.90 (3)	2.13 (3)	3.002 (2)	163 (2)
N4—H4 <i>C</i> ···O1	0.92 (3)	2.00 (3)	2.910(2)	176 (3)
N4—H4D····O8 ⁱⁱ	0.88 (3)	2.40 (3)	3.205 (2)	152 (2)
N5—H5 <i>C</i> ···O5 ⁱ	0.87 (3)	2.11 (3)	2.911 (2)	154 (2)
N6—H6 <i>C</i> ···O4	0.90	2.35	3.243 (2)	175
N6—H6D····O2 ⁱⁱⁱ	0.90	2.20	3.064 (2)	160
C9—H9 <i>C</i> ···O1 ^{iv}	0.96	2.41	3.305 (3)	155

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x+3/2, y+1/2, -z+1/2; (iv) x+1/2, -y+3/2, z+1/2.