

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Aquachloridobis[2-(1,3-thiazol-4-yl-κN)-1*H*-benzimidazole- κN^3 lnickel(II) nitrate

Peng Liang, Wei Wu, Wei-Man Tian and Xian-Hong Yin*

Department of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, People's Republic of China Correspondence e-mail: 6628yxh@163.com

Received 19 May 2012; accepted 29 June 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.007 Å; R factor = 0.054; wR factor = 0.174; data-to-parameter ratio = 12.8.

In the title compound, $[NiCl(C_{10}H_7N_3S)_2(H_2O)]NO_3$, the Ni^{II} ion is coordinated by four N atoms from two chelating 2-(1,3thiazol-4-yl)-1H-benzimidazole ligands, one Cl atom and one water molecule in a distorted octahedral geometry. In the crystal, O-H···O, N-H···O and N-H···Cl hydrogen bonds link the complex cations and nitrate anions into a three-dimensional network. π - π interactions between the thiazole and imidazole rings and between the thiazole and benzene rings are observed [centroid-centroid distances = 3.592 (3) and 3.735 (3) Å].

Related literature

For background to the synthesis and properties of benzimidazole derivatives, see: Agh-Atabay et al. (2003); Devereux et al. (2004); Inoue et al. (2002). For a related structure, see: Mothilal et al. (2004).

Experimental

Crystal data [NiCl(C10H7N3S)2(H2O)]NO3

 $M_r = 576.68$

metal-organic compounds

Mo $K\alpha$ radiation

 $0.26 \times 0.25 \times 0.24$ mm

 $\mu = 1.18 \text{ mm}^{-1}$

T = 296 K

Z = 4

Monoclinic, $P2_1/c$
a = 16.091 (5) Å
b = 11.189 (3) Å
c = 13.931 (3) Å
$\beta = 113.275 \ (3)^{\circ}$
$V = 2304.1 (11) \text{ Å}^3$

Data collection

Bruker SMART APEX CCD	11654 measured reflections
diffractometer	4050 independent reflections
Absorption correction: multi-scan	3129 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.072$
$T_{\min} = 0.748, \ T_{\max} = 0.764$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.054$	316 parameters
$wR(F^2) = 0.174$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.80 \text{ e } \text{\AA}^{-3}$
4050 reflections	$\Delta \rho_{\rm min} = -0.53 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1A\cdots O3^i$	0.84	2.00	2.751 (5)	149
$O1 - H1B \cdot \cdot \cdot O2^{ii}$	0.79	2.53	3.293 (6)	160
$O1-H1B\cdots O4^{ii}$	0.79	2.38	3.025 (5)	139
N4-H4···O3 ⁱⁱⁱ	0.86	2.35	2.962 (5)	129
N4-H4···O4 ⁱⁱⁱ	0.86	2.14	2.996 (5)	173
$N7-H7\cdots Cl1^{iv}$	0.86	2.35	3.159 (4)	157

Symmetry codes: (i) x - 1, y, z; (ii) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) $x - 1, -y + \frac{3}{2}, z - \frac{1}{2}$; (iv) -x + 1, -y + 1, -z + 1.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

This work was supported by the Key Scientific Research Projects of Guangxi University for Nationalities (2009MDZD42) and the Innovation Project of Guangxi University for Nationalities (gxun-chx2011092).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2553).

References

Agh-Atabay, N. M., Dulger, B. & Gucin, F. (2003). Eur. J. Med. Chem. 38, 875-881.

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Devereux, M., McCann, M., Shea, D. O., Kelly, R., Egan, D., Deegan, C., Kavanagh, K., McKee, V. & Finn, G. (2004). J. Inorg. Biochem. 98, 1023-1031
- Inoue, Y., Hoshino, M., Takahashi, H., Noguchi, T., Murata, T., Kanzaki, Y., Hamashima, H. & Sasatru, M. (2002). J. Inorg. Biochem. 92, 37-42.
- Mothilal, K. K., Karunakaran, C., Rajendran, A. & Murugesan, R. (2004). J. Inorg. Biochem. 98, 322-332.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2012). E68, m1029 [https://doi.org/10.1107/S1600536812029728]

Aquachloridobis[2-(1,3-thiazol-4-yl- κN)-1*H*-benzimidazole- κN^3]nickel(II) nitrate

Peng Liang, Wei Wu, Wei-Man Tian and Xian-Hong Yin

S1. Comment

Thiabendazole (TBZ) aroused considerable interest in biology and medicine due to its antiproliferative activities. It is an antimicrobial drug belonging to the benzimidazole derivatives and exhibits wide applications in human and veterinary medicine (Agh-Atabay *et al.*, 2003; Devereux *et al.*, 2004; Inoue *et al.*, 2002). As part of our studies of the synthesis and characterization of these compounds, we report here the synthesis and crystal structure of the title compound (Fig. 1).

In the crystal, intermolecular O—H···O, N—H···O and N—H···Cl hydrogen bonds link the complex cations and nitrate anions into a three-dimensional network (Table 1, Fig. 2) (Mothilal *et al.*, 2004). π – π interactions between the thiazole and imidazole rings and between the thiazole and benzene rings are observed [centroid–centroid distances = 3.592 (3) and 3.735 (3) Å]. In the complex cation, the two ligand planes are nearly perpendicular to each other, with a dihedral angle of 89.14 (7)°.

S2. Experimental

A solution of TBZ (0.201 g, 1 mmol) in 3 ml DMF was added dropwise with stirring at room temperature to a solution of $Ni(NO_3)_2.6H_2O$ (0.290 g, 1 mmol) and $NiCl_2.6H_2O$ (0.237 g, 1 mmol) in a mixture of 10 ml water and 5 ml ethanol. Then an aqueous solution of sodium hydroxide was added dropwise with stirring to adjust the pH value of the solution being 6. The resulting mixture was sealed in a 23 ml Teflon-lined stainless reactor, kept under autogenous pressure at 403 K for 72 h, and then slowly cooled to room temperature at a rate of 5 K per hour. Dark-green block crystals suitable for X-ray diffraction were isolated, washed with ethanol and dried in air (yield: 65% based on Ni).

S3. Refinement

H atoms on C and N atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 and N—H = 0.86 Å and with $U_{iso}(H) = 1.2U_{eq}(C, N)$. The water H atoms were located from a difference Fourier map and refined as riding with $U_{iso}(H) = 0.079$ Å².

The Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.

Figure 2

Crystal packing of the title compound. Dashed lines denote hydrogen bonds.

Aquachloridobis[2-(1,3-thiazol-4-yl-κN)- 1H-benzimidazole-κN³]nickel(II) nitrate

Crystal data	
$[NiCl(C_{10}H_7N_3S)_2(H_2O)]NO_3$	$V = 2304.1 (11) \text{ Å}^3$
$M_r = 576.68$	Z = 4
Monoclinic, $P2_1/c$	F(000) = 1176
Hall symbol: -P 2ybc	$D_{\rm x} = 1.662 {\rm ~Mg} {\rm ~m}^{-3}$
a = 16.091 (5) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 11.189 (3) Å	Cell parameters from 2584 reflections
c = 13.931 (3) Å	$\theta = 2.3 - 26.6^{\circ}$
$\beta = 113.275 \ (3)^{\circ}$	$\mu = 1.18 \text{ mm}^{-1}$

T = 296 KBlock, green

Data collection

Bruker SMART APEX CCD diffractometer	11654 measured reflections 4050 independent reflections
Radiation source: fine-focus sealed tube	3129 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.072$
φ and ω scans	$\theta_{\rm max} = 25.0^{\circ}, \theta_{\rm min} = 1.4^{\circ}$
Absorption correction: multi-scan	$h = -18 \rightarrow 19$
(SADABS; Sheldrick, 1996)	$k = -13 \rightarrow 13$
$T_{\min} = 0.748, \ T_{\max} = 0.764$	$l = -14 \rightarrow 16$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map

Hugh Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.083P)^2 + 1.4424P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.045$ $\Delta\rho_{max} = 0.80$ e Å⁻³ $\Delta\rho_{min} = -0.53$ e Å⁻³

 $0.26 \times 0.25 \times 0.24 \text{ mm}$

Special details

direct methods

 $R[F^2 > 2\sigma(F^2)] = 0.054$

Primary atom site location: structure-invariant

 $wR(F^2) = 0.174$

4050 reflections

316 parameters 0 restraints

S = 1.07

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ni1	0.26114 (3)	0.47368 (5)	0.32612 (4)	0.0352 (2)	
Cl1	0.31740 (8)	0.27662 (10)	0.40665 (10)	0.0490 (4)	
S1	0.36620 (9)	0.71229 (11)	0.62788 (10)	0.0507 (4)	
S2	0.13043 (9)	0.27528 (12)	0.00588 (11)	0.0552 (4)	
01	0.13949 (19)	0.4517 (3)	0.3478 (3)	0.0412 (7)	
03	1.0666 (2)	0.6635 (3)	0.3784 (3)	0.0606 (10)	
O4	1.0018 (2)	0.8339 (3)	0.3421 (3)	0.0693 (11)	
O2	0.9808 (3)	0.7045 (5)	0.2204 (3)	0.0964 (18)	
N3	0.2001 (2)	0.3971 (3)	0.1739 (3)	0.0344 (8)	
N5	0.3884 (2)	0.5240 (3)	0.3241 (3)	0.0313 (8)	
N6	0.3205 (2)	0.5777 (3)	0.4687 (3)	0.0324 (8)	
N2	0.2024 (2)	0.6272 (3)	0.2292 (3)	0.0343 (8)	
N7	0.5158 (2)	0.6289 (3)	0.3975 (3)	0.0370 (9)	
H7	0.5562	0.6742	0.4414	0.044*	

N4	0.1133 (2)	0.6929 (3)	0.0713 (3)	0.0430 (9)
H4	0.0801	0.6916	0.0054	0.052*
N1	1.0157 (2)	0.7334 (4)	0.3117 (3)	0.0447 (10)
C8	0.4375 (3)	0.5129 (4)	0.2623 (3)	0.0343 (10)
C15	0.1532 (3)	0.4763 (4)	0.0953 (4)	0.0368 (10)
C20	0.5192 (3)	0.5792 (4)	0.3096 (4)	0.0371 (10)
C7	0.1553 (3)	0.5995 (4)	0.1300 (3)	0.0339 (9)
C19	0.4372 (2)	0.5941 (3)	0.4029 (3)	0.0321 (9)
C17	0.4038 (2)	0.6273 (3)	0.4827 (3)	0.0327 (9)
C6	0.1899 (3)	0.7514 (4)	0.2356 (4)	0.0388 (10)
C13	0.1927 (3)	0.2884 (4)	0.1364 (4)	0.0419 (11)
H13	0.2196	0.2229	0.1783	0.050*
C5	0.1327 (3)	0.7920 (4)	0.1353 (4)	0.0441 (11)
C18	0.4377 (3)	0.7027 (4)	0.5649 (4)	0.0421 (11)
H18	0.4923	0.7435	0.5842	0.051*
C11	0.5629 (4)	0.5228 (5)	0.1731 (5)	0.0571 (14)
H11	0.6040	0.5248	0.1412	0.069*
C1	0.2222 (3)	0.8290 (4)	0.3202 (4)	0.0495 (12)
H1	0.2602	0.8024	0.3862	0.059*
C12	0.5820 (3)	0.5849 (5)	0.2636 (5)	0.0540 (14)
H12	0.6349	0.6294	0.2935	0.065*
C14	0.1106 (3)	0.4261 (5)	-0.0009 (4)	0.0467 (12)
H14	0.0759	0.4676	-0.0613	0.056*
C10	0.4830 (4)	0.4559 (5)	0.1265 (4)	0.0507 (12)
H10	0.4723	0.4144	0.0649	0.061*
C9	0.4209 (3)	0.4511 (4)	0.1705 (4)	0.0443 (11)
Н9	0.3681	0.4069	0.1392	0.053*
C16	0.2942 (3)	0.6140 (4)	0.5385 (4)	0.0412 (11)
H16	0.2400	0.5892	0.5412	0.049*
C4	0.1057 (4)	0.9106 (5)	0.1180 (5)	0.0562 (14)
H4A	0.0679	0.9375	0.0520	0.067*
C2	0.1958 (4)	0.9471 (4)	0.3023 (5)	0.0612 (15)
H2	0.2169	1.0019	0.3569	0.073*
C3	0.1367 (4)	0.9856 (4)	0.2012 (6)	0.0661 (18)
H3	0.1186	1.0652	0.1916	0.079*
H1A	0.1016	0.5069	0.3358	0.079*
H1B	0.1000	0.4040	0.3241	0.079*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0293 (3)	0.0361 (3)	0.0344 (4)	-0.0022 (2)	0.0065 (3)	-0.0048 (2)
Cl1	0.0429 (6)	0.0411 (6)	0.0506 (8)	0.0038 (5)	0.0053 (5)	0.0024 (5)
S1	0.0636 (8)	0.0451 (6)	0.0402 (8)	-0.0015 (5)	0.0170 (6)	-0.0142 (5)
S2	0.0516 (7)	0.0592 (8)	0.0476 (8)	-0.0047 (6)	0.0119 (6)	-0.0238 (6)
O1	0.0344 (15)	0.0363 (15)	0.051 (2)	-0.0037 (12)	0.0148 (14)	-0.0003 (14)
O3	0.072 (2)	0.054 (2)	0.046 (2)	0.0172 (18)	0.0134 (19)	0.0004 (17)
O4	0.059 (2)	0.057 (2)	0.093 (3)	0.0218 (18)	0.032 (2)	0.011 (2)

O2	0.090 (3)	0.159 (5)	0.025 (2)	-0.052 (3)	0.006 (2)	-0.010 (2)
N3	0.0294 (16)	0.0339 (17)	0.034 (2)	-0.0017 (14)	0.0065 (15)	-0.0072 (15)
N5	0.0255 (16)	0.0344 (17)	0.029 (2)	-0.0029 (13)	0.0058 (15)	-0.0020 (15)
N6	0.0306 (17)	0.0380 (18)	0.025 (2)	0.0000 (14)	0.0077 (15)	-0.0059 (15)
N2	0.0346 (17)	0.0303 (17)	0.035 (2)	-0.0006 (14)	0.0104 (16)	-0.0017 (15)
N7	0.0291 (16)	0.0394 (18)	0.036 (2)	-0.0067 (14)	0.0055 (16)	0.0033 (16)
N4	0.042 (2)	0.045 (2)	0.036 (2)	0.0034 (17)	0.0087 (17)	0.0068 (18)
N1	0.0357 (19)	0.061 (3)	0.038 (2)	-0.0123 (18)	0.0146 (18)	0.001 (2)
C8	0.032 (2)	0.035 (2)	0.033 (2)	0.0016 (17)	0.0102 (19)	0.0018 (18)
C15	0.032 (2)	0.045 (2)	0.032 (3)	-0.0053 (17)	0.0113 (19)	-0.0058 (19)
C20	0.034 (2)	0.034 (2)	0.044 (3)	0.0039 (17)	0.0153 (19)	0.010 (2)
C7	0.0296 (19)	0.040 (2)	0.033 (2)	0.0007 (17)	0.0126 (18)	0.0016 (18)
C19	0.0265 (18)	0.033 (2)	0.033 (2)	0.0024 (16)	0.0076 (18)	0.0031 (18)
C17	0.0296 (19)	0.0275 (18)	0.032 (2)	-0.0016 (16)	0.0032 (17)	0.0002 (17)
C6	0.033 (2)	0.030 (2)	0.054 (3)	-0.0005 (17)	0.017 (2)	0.004 (2)
C13	0.031 (2)	0.044 (2)	0.046 (3)	-0.0004 (18)	0.010 (2)	-0.009 (2)
C5	0.039 (2)	0.045 (3)	0.054 (3)	0.0063 (19)	0.024 (2)	0.018 (2)
C18	0.042 (2)	0.037 (2)	0.040 (3)	-0.0067 (18)	0.007 (2)	-0.0074 (19)
C11	0.069 (3)	0.057 (3)	0.062 (4)	0.013 (3)	0.043 (3)	0.017 (3)
C1	0.048 (3)	0.035 (2)	0.065 (3)	0.001 (2)	0.021 (2)	-0.003 (2)
C12	0.040 (2)	0.053 (3)	0.071 (4)	0.003 (2)	0.024 (3)	0.023 (3)
C14	0.045 (2)	0.057 (3)	0.033 (3)	-0.002 (2)	0.010 (2)	0.001 (2)
C10	0.064 (3)	0.055 (3)	0.040 (3)	0.004 (2)	0.028 (3)	0.006 (2)
C9	0.046 (3)	0.043 (2)	0.043 (3)	0.001 (2)	0.018 (2)	-0.001 (2)
C16	0.036 (2)	0.046 (2)	0.038 (3)	-0.0030 (19)	0.012 (2)	-0.004 (2)
C4	0.060 (3)	0.045 (3)	0.071 (4)	0.016 (2)	0.035 (3)	0.022 (3)
C2	0.069 (3)	0.038 (2)	0.092 (5)	-0.002 (2)	0.048 (3)	-0.005 (3)
C3	0.067 (3)	0.034 (2)	0.116 (6)	0.011 (2)	0.057 (4)	0.013 (3)

Geometric parameters (Å, °)

Ni1—O1	2.109 (3)	С8—С9	1.383 (6)	
Ni1—N3	2.133 (3)	C8—C20	1.424 (6)	
Ni1—N5	2.134 (3)	C15—C14	1.361 (6)	
Ni1—N2	2.159 (3)	C15—C7	1.456 (6)	
Ni1—N6	2.171 (3)	C20—C12	1.396 (7)	
Ni1—Cl1	2.4772 (13)	C19—C17	1.461 (6)	
S1—C18	1.704 (5)	C17—C18	1.351 (6)	
S1—C16	1.721 (4)	C6—C1	1.389 (7)	
S2—C13	1.700 (5)	C6—C5	1.410 (6)	
S2—C14	1.713 (5)	C13—H13	0.9300	
O1—H1A	0.8372	C5—C4	1.387 (7)	
O1—H1B	0.7947	C18—H18	0.9300	
O3—N1	1.244 (5)	C11—C12	1.364 (8)	
O4—N1	1.252 (5)	C11—C10	1.406 (8)	
O2—N1	1.214 (5)	C11—H11	0.9300	
N3—C13	1.310 (5)	C1—C2	1.381 (7)	
N3—C15	1.380 (5)	C1—H1	0.9300	

N5—C19	1.326 (5)	C12—H12	0.9300
N5—C8	1.386 (6)	C14—H14	0.9300
N6—C16	1.271 (6)	C10—C9	1.364 (7)
N6—C17	1.391 (5)	C10—H10	0.9300
N2—C7	1.324 (5)	С9—Н9	0.9300
N2—C6	1.412 (5)	C16—H16	0.9300
N7—C19	1.354 (5)	C4—C3	1.356 (8)
N7—C20	1.367 (6)	C4—H4A	0.9300
N7—H7	0.8600	C2—C3	1.420 (8)
N4—C7	1 335 (5)	С2—Н2	0.9300
N4—C5	1 379 (6)	C3—H3	0.9300
N4—H4	0.8600		0.9500
	0.0000		
O1—Ni1—N3	90.37 (13)	N2—C7—C15	119.8 (4)
O1—Ni1—N5	169.10 (12)	N4—C7—C15	126.7 (4)
N3—Ni1—N5	99.19 (13)	N5—C19—N7	112.6 (4)
O1—Ni1—N2	88.88 (12)	N5—C19—C17	120.3 (3)
N3—Ni1—N2	77.42 (13)	N7-C19-C17	127.0 (4)
N5—Ni1—N2	88.12 (13)	C18—C17—N6	114.4 (4)
01—Ni1—N6	91 69 (12)	C18-C17-C19	1310(4)
N3—Ni1—N6	171.22 (14)	N6-C17-C19	114.5(3)
N5—Ni1—N6	78 08 (13)	C1 - C6 - C5	121.2(4)
N2—Ni1—N6	94 09 (13)	C1 - C6 - N2	130.8(4)
01—Ni1—Cl1	91 44 (9)	C_{5} C_{6} N_{2}	107.9(4)
N3_Ni1_Cl1	91.99 (10)	N3_C13_S2	107.9(4) 1154(4)
N5_Ni1_Cl1	93.43(0)	N3_C13_H13	122.3
N2 Ni1 Cl1	160 41 (10)	S2 C13 H13	122.5
N6 Ni1 Cl1	96.48(10)	N4 C5 C4	122.5 132.9(5)
C_{18} S_{1} C_{16}	90.48 (10) 80.2 (2)	$N_4 = C_5 = C_4$	132.9(3)
$C_{10} = S_{10} = C_{10}$	89.2 (2)	$\Lambda = C_{3} = C_{0}$	103.9(4)
13-32-14	89.5 (2) 122.0	$C_{1} = C_{1} = C_{1}$	121.1(3)
NII—OI—IIIA	122.0	$C_{17} = C_{18} = 0.000$	110.3 (3)
	150.8	C1/-C18	124.9
LIA-UI-HIB	90.7		124.9
C13 - N3 - C13	110.2(4)	C12— $C11$ — $C10$	121.9 (5)
C15 = N2 = N11	134.7(3)		119.0
C10 = N5 = C2	115.1(3) 105.7(2)		119.0
C19 - N5 - C8	105.7 (3)	$C_2 = C_1 = C_6$	117.4 (5)
C19 - N5 - N11	113.7 (3)	C2—C1—HI	121.3
C8—N5—N11	140.4 (3)	C6—C1—HI	121.3
C16—N6—C17	111.0 (4)	C11—C12—C20	117.5 (5)
C16—N6—Nil	135.5 (3)	C11—C12—H12	121.3
C17—N6—Ni1	113.2 (3)	C20—C12—H12	121.3
C7—N2—C6	105.0 (3)	C15—C14—S2	110.0 (4)
C7—N2—Ni1	113.3 (3)	C15—C14—H14	125.0
C6—N2—Ni1	141.4 (3)	S2—C14—H14	125.0
C19—N7—C20	107.6 (3)	C9—C10—C11	120.8 (5)
C19—N7—H7	126.2	C9—C10—H10	119.6
С20—N7—H7	126.2	C11-C10-H10	119.6

C7—N4—C5	107.6 (4)	С10—С9—С8	119.2 (5)
C7—N4—H4	126.2	С10—С9—Н9	120.4
C5—N4—H4	126.2	С8—С9—Н9	120.4
O2—N1—O3	120.7 (5)	N6-C16-S1	115.2 (3)
O2—N1—O4	121.6 (5)	N6—C16—H16	122.4
O3—N1—O4	117.7 (4)	S1—C16—H16	122.4
C9—C8—N5	132.1 (4)	C3—C4—C5	117.4 (5)
C9—C8—C20	119.5 (4)	C3—C4—H4A	121.3
N5-C8-C20	108.4 (4)	C5—C4—H4A	121.3
C14—C15—N3	114.9 (4)	C1—C2—C3	120.5 (5)
C14—C15—C7	130.8 (4)	C1—C2—H2	119.8
N3—C15—C7	114.3 (4)	С3—С2—Н2	119.8
N7—C20—C12	133.3 (4)	C4—C3—C2	122.4 (5)
N7—C20—C8	105.7 (4)	С4—С3—Н3	118.8
C12—C20—C8	121.0 (5)	С2—С3—Н3	118.8
N2—C7—N4	113.5 (4)		

Hydrogen-bond geometry (Å, °)

	D—H	H···A	D····A	D—H…A
01—H1A····O3 ⁱ	0.84	2.00	2.751 (5)	149
O1—H1 <i>B</i> ····O2 ⁱⁱ	0.79	2.53	3.293 (6)	160
O1—H1 <i>B</i> ····O4 ⁱⁱ	0.79	2.38	3.025 (5)	139
N4—H4···O3 ⁱⁱⁱ	0.86	2.35	2.962 (5)	129
N4—H4····O4 ⁱⁱⁱ	0.86	2.14	2.996 (5)	173
N7—H7····Cl1 ^{iv}	0.86	2.35	3.159 (4)	157

Symmetry codes: (i) x-1, y, z; (ii) -x+1, y-1/2, -z+1/2; (iii) x-1, -y+3/2, z-1/2; (iv) -x+1, -y+1, -z+1.