organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-[(E)-N-(Adamantan-1-yl)carboximidoyl]-6-ethoxyphenol

Muhammad Ashraf Shaheen,^a M. Nawaz Tahir,^b* Rana Muhammad Irfan,^a Shahid Igbal^a and Mahreen Zaneb^a

^aUniversity of Sargodha, Department of Chemistry, Sargodha, Pakistan, and ^bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 24 July 2012; accepted 25 July 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.051; wR factor = 0.158; data-to-parameter ratio = 15.0.

In the title compound, $C_{19}H_{25}NO_2$, the 3-ethoxy-2-hydroxybenzaldehyde group is almost planar (r.m.s. deviation = 0.029 Å). An intramolecular O-H···N hydrogen bond generates an S(6) ring. There are no intermolecular hydrogen bonds.

Related literature

For a related structure, see: Fernandez et al. (2001).

Experimental

Crystal data

$C_{19}H_{25}NO_2$
$M_r = 299.40$
Monoclinic, $P2_1/c$
a = 18.9892 (16) Å
b = 6.7660 (5) Å
c = 13.0072 (10) Å
$\beta = 95.958 \ (3)^{\circ}$

V = 1662.2 (2) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 296 K $0.35 \times 0.28 \times 0.25 \text{ mm}$

Data collection

Bruker Kappa APEXII CCD

diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\rm min} = 0.975, T_{\rm max} = 0.985$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.051$	201 parameters
$wR(F^2) = 0.158$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$
3006 reflections	$\Delta \rho_{\rm min} = -0.17 \text{ e} \text{ Å}^{-3}$

8977 measured reflections

 $R_{\rm int} = 0.028$

3006 independent reflections

2074 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1−H1···N1	0.82	1.86	2.593 (2)	148

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors also acknowledge the technical support provided by Syed Muhammad Hussain Rizvi of Bana International, Karachi, Pakistan,

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6914).

References

- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Fernandez, J. M., del Rio-Portilla, G. F., Quiroz-Garcia, B., Toscano, R. A. & Salcedo, R. (2001). J. Mol. Struct. 561, 197-207.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2012). E68, o2588 [https://doi.org/10.1107/S1600536812033594]

2-[(E)-N-(Adamantan-1-yl)carboximidoyl]-6-ethoxyphenol

Muhammad Ashraf Shaheen, M. Nawaz Tahir, Rana Muhammad Irfan, Shahid Iqbal and Mahreen Zaneb

S1. Comment

The title compound (Fig. 1) has been synthesized as a derivative for the complexation and other studies.

The crystal structures of *N*-(1-adamantyl)salicylaldamine (Fernandez *et al.* 2001) has been published which is related to the title compound.

In the title compound the 3-adamantylamine the bond lengths and bond angles have normal values. The 3-ethoxy-2-hydroxybenzaldehyde group is planar with r.m.s. deviation of 0.0292 Å. There exist strong intramolecular H-bonding of O —H···N type (Table 1, Fig. 1) and S(6) ring motif is formed. There does not exist any intermolecular H-bonding.

S2. Experimental

Equimolar quantities of 3-adamantylamine and 3-ethoxy-2-hydroxybenzaldehyde were refluxed in ethanol for 2 h and yellow prisms of (I) were obtained after 72 h by the slow evaporation of the solvent at room temperature.

S3. Refinement

The H-atoms were positioned geometrically at C—H = 0.93–0.97 and O—H = 0.82 Å, respectively and included in the refinement as riding with $U_{iso}(H) = xU_{eq}(C, O)$, where x = 1.5 for hydroxy & methyl and x = 1.2 for all other H-atoms.

Figure 1

View of the title compound with displacement ellipsoids drawn at the 50% probability level. The dotted line represents the intramolecular hydrogen bond.

2-[(E)-N-(Adamantan-1-yl)carboximidoyl]-6-ethoxyphenol

Crystal data C₁₉H₂₅NO₂

 $M_r = 299.40$

Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc Mo *K* α radiation, $\lambda = 0.71073$ Å

 $\theta = 2.2 - 25.3^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$

Prism, yellow

 $0.35 \times 0.28 \times 0.25$ mm

T = 296 K

Cell parameters from 2074 reflections

a = 18.9892 (16) Å b = 6.7660 (5) Å c = 13.0072 (10) Å $\beta = 95.958 (3)^{\circ}$ $V = 1662.2 (2) \text{ Å}^{3}$ Z = 4 F(000) = 648 $D_{x} = 1.196 \text{ Mg m}^{-3}$

Data collection

Duiu conection	
Bruker Kappa APEXII CCD	8977 measured reflections
diffractometer	3006 independent reflections
Radiation source: fine-focus sealed tube	2074 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.028$
Detector resolution: 8.10 pixels mm ⁻¹	$\theta_{\rm max} = 25.3^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$
ω scans	$h = -22 \rightarrow 22$
Absorption correction: multi-scan	$k = -8 \rightarrow 7$
(SADABS; Bruker, 2005)	$l = -15 \rightarrow 14$
$T_{\min} = 0.975, \ T_{\max} = 0.985$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.051$	Hydrogen site location: inferred from
$wR(F^2) = 0.158$	neighbouring sites
S = 1.05	H-atom parameters constrained
3006 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0682P)^2 + 0.6627P]$
201 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.30 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.18741 (9)	-0.1124 (2)	0.42066 (12)	0.0557 (6)	
O2	0.10146 (9)	-0.0658 (2)	0.56419 (12)	0.0616 (6)	
N1	0.25760 (9)	0.0401 (3)	0.27943 (13)	0.0460 (6)	
C1	0.30814 (11)	0.0164 (3)	0.20220 (15)	0.0426 (7)	
C2	0.30683 (15)	0.1799 (4)	0.12148 (19)	0.0643 (9)	
C3	0.36170 (16)	0.1346 (4)	0.0448 (2)	0.0716 (10)	
C4	0.43359 (16)	0.1258 (5)	0.1053 (3)	0.0863 (12)	
C5	0.43686 (15)	-0.0407 (5)	0.1834 (2)	0.0802 (11)	
C6	0.38174 (13)	0.0023 (5)	0.2599 (2)	0.0710 (10)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

C7	0.29071 (14)	-0.1797 (4)	0.1462 (2)	0.0646 (9)
C8	0.34638 (15)	-0.2240 (4)	0.0709 (2)	0.0688 (10)
C9	0.41789 (16)	-0.2344 (4)	0.1310 (3)	0.0820 (11)
C10	0.34335 (16)	-0.0602 (4)	-0.0073 (2)	0.0746 (10)
C11	0.22809 (11)	0.2044 (3)	0.29534 (16)	0.0445 (7)
C12	0.18045 (11)	0.2304 (3)	0.37448 (15)	0.0408 (6)
C13	0.16242 (11)	0.0702 (3)	0.43468 (16)	0.0415 (7)
C14	0.11691 (11)	0.0998 (3)	0.51114 (16)	0.0453 (7)
C15	0.09234 (12)	0.2874 (3)	0.52875 (18)	0.0551 (8)
C16	0.11149 (13)	0.4469 (3)	0.47037 (19)	0.0580 (8)
C17	0.15451 (12)	0.4186 (3)	0.39414 (17)	0.0497 (7)
C18	0.05855 (13)	-0.0432 (4)	0.64640 (18)	0.0596 (8)
C19	0.05370 (18)	-0.2399 (4)	0.6973 (2)	0.0825 (11)
H1	0.21393	-0.11002	0.37479	0.0835*
H2A	0.31785	0.30560	0.15522	0.0772*
H2B	0.25991	0.18906	0.08441	0.0772*
H3	0.36090	0.23963	-0.00722	0.0857*
H4A	0.44339	0.25035	0.14086	0.1035*
H4B	0.46944	0.10551	0.05839	0.1035*
H5	0.48437	-0.04838	0.22057	0.0964*
H6A	0.38278	-0.10251	0.31092	0.0851*
H6B	0.39340	0.12553	0.29582	0.0851*
H7A	0.24405	-0.17209	0.10823	0.0775*
H7B	0.29033	-0.28569	0.19639	0.0775*
H8	0.33547	-0.35033	0.03600	0.0825*
H9A	0.45306	-0.26720	0.08468	0.0984*
H9B	0.41810	-0.33803	0.18250	0.0984*
H10A	0.29614	-0.05317	-0.04361	0.0895*
H10B	0.37638	-0.08758	-0.05763	0.0895*
H11	0.23744	0.31231	0.25458	0.0534*
H15	0.06262	0.30738	0.58030	0.0662*
H16	0.09494	0.57293	0.48333	0.0695*
H17	0.16675	0.52549	0.35474	0.0597*
H18A	0.01173	0.00252	0.61999	0.0716*
H18B	0.07941	0.05308	0.69578	0.0716*
H19A	0.10031	-0.29447	0.71201	0.1236*
H19B	0.02528	-0.32722	0.65201	0.1236*
H19C	0.03238	-0.22430	0.76057	0.1236*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0775 (12)	0.0295 (8)	0.0652 (10)	0.0063 (7)	0.0323 (8)	0.0032 (7)
O2	0.0801 (12)	0.0453 (9)	0.0655 (10)	-0.0012 (8)	0.0373 (9)	0.0021 (8)
N1	0.0572 (11)	0.0347 (10)	0.0476 (10)	0.0018 (8)	0.0123 (9)	0.0019 (8)
C1	0.0505 (12)	0.0363 (11)	0.0421 (11)	0.0029 (9)	0.0099 (9)	0.0011 (9)
C2	0.0833 (18)	0.0520 (14)	0.0615 (15)	0.0105 (13)	0.0257 (13)	0.0061 (12)
C3	0.093 (2)	0.0592 (17)	0.0673 (16)	0.0058 (14)	0.0314 (15)	0.0138 (14)

supporting information

C4	0.082 (2)	0.081 (2)	0.103 (2)	-0.0267 (17)	0.0432 (18)	-0.0229 (19)
C5	0.0530 (16)	0.104 (2)	0.0823 (19)	0.0053 (16)	0.0004 (14)	-0.0090 (19)
C6	0.0649 (16)	0.088 (2)	0.0594 (15)	0.0051 (15)	0.0026 (13)	-0.0030 (14)
C7	0.0686 (16)	0.0498 (14)	0.0779 (17)	-0.0026 (12)	0.0194 (14)	-0.0106 (13)
C8	0.0762 (18)	0.0523 (15)	0.0799 (18)	0.0004 (13)	0.0184 (15)	-0.0162 (14)
C9	0.0751 (19)	0.075 (2)	0.099 (2)	0.0268 (16)	0.0233 (17)	0.0066 (17)
C10	0.0787 (18)	0.087 (2)	0.0590 (15)	0.0130 (16)	0.0114 (14)	-0.0144 (15)
C11	0.0547 (13)	0.0335 (11)	0.0460 (12)	-0.0028 (10)	0.0087 (10)	0.0035 (9)
C12	0.0473 (12)	0.0320 (10)	0.0435 (11)	-0.0008 (9)	0.0062 (9)	-0.0002 (9)
C13	0.0476 (12)	0.0297 (10)	0.0472 (12)	0.0010 (9)	0.0053 (9)	-0.0039 (9)
C14	0.0510 (13)	0.0377 (12)	0.0485 (12)	-0.0017 (10)	0.0112 (10)	-0.0014 (10)
C15	0.0586 (14)	0.0498 (14)	0.0596 (14)	0.0061 (11)	0.0185 (11)	-0.0095 (12)
C16	0.0674 (15)	0.0353 (12)	0.0726 (16)	0.0121 (11)	0.0140 (13)	-0.0067 (11)
C17	0.0615 (14)	0.0308 (11)	0.0574 (13)	0.0039 (10)	0.0084 (11)	0.0023 (10)
C18	0.0660 (15)	0.0659 (16)	0.0503 (13)	-0.0106 (12)	0.0216 (12)	-0.0087 (12)
C19	0.108 (2)	0.081 (2)	0.0640 (17)	-0.0329 (17)	0.0350 (16)	-0.0010 (15)

Geometric parameters (Å, °)

01—C13	1.343 (2)	C18—C19	1.494 (4)
O2—C14	1.364 (3)	C2—H2A	0.9700
O2—C18	1.418 (3)	C2—H2B	0.9700
01—H1	0.8200	С3—Н3	0.9800
N1-C11	1.272 (3)	C4—H4A	0.9700
N1—C1	1.468 (3)	C4—H4B	0.9700
C1—C2	1.524 (3)	С5—Н5	0.9800
C1—C6	1.519 (3)	C6—H6A	0.9700
C1—C7	1.533 (3)	C6—H6B	0.9700
С2—С3	1.546 (4)	С7—Н7А	0.9700
C3—C4	1.505 (4)	С7—Н7В	0.9700
C3—C10	1.506 (4)	C8—H8	0.9800
C4—C5	1.514 (5)	С9—Н9А	0.9700
С5—С9	1.504 (4)	С9—Н9В	0.9700
С5—С6	1.545 (4)	C10—H10A	0.9700
С7—С8	1.543 (4)	C10—H10B	0.9700
C8—C10	1.501 (4)	C11—H11	0.9300
С8—С9	1.497 (4)	C15—H15	0.9300
C11—C12	1.450 (3)	C16—H16	0.9300
C12—C17	1.398 (3)	C17—H17	0.9300
C12—C13	1.400 (3)	C18—H18A	0.9700
C13—C14	1.398 (3)	C18—H18B	0.9700
C14—C15	1.380 (3)	C19—H19A	0.9600
C15—C16	1.390 (3)	C19—H19B	0.9600
C16—C17	1.362 (3)	C19—H19C	0.9600
C_{14} O_{2} C_{19}	117 (1 (17)	C5 C4 114A	110.00
$C_{14} - 0_{2} - C_{10}$	11/.01(1/)	C_{5} C_{4} H_{4}	110.00
CI_{0} $- OI - HI$	109.00	C_{2} C_{4} $H_{4}B$	110.00
UI-NI-UII	122.30 (19)	п4А—С4—п4в	108.00

N1—C1—C2	115.28 (19)	C4—C5—H5	110.00
N1—C1—C7	107.18 (18)	С6—С5—Н5	110.00
C2—C1—C6	109.5 (2)	С9—С5—Н5	110.00
N1—C1—C6	107.58 (17)	C1—C6—H6A	110.00
C6—C1—C7	108.8 (2)	C1—C6—H6B	110.00
C2—C1—C7	108.28 (18)	С5—С6—Н6А	110.00
C1—C2—C3	109.7 (2)	С5—С6—Н6В	110.00
C2—C3—C10	108.9 (2)	H6A—C6—H6B	108.00
C4—C3—C10	110.8 (2)	C1—C7—H7A	110.00
C2—C3—C4	107.8 (2)	C1—C7—H7B	110.00
C3—C4—C5	110.6 (3)	C8—C7—H7A	110.00
C4—C5—C6	108.0 (3)	С8—С7—Н7В	110.00
C4—C5—C9	110.7 (3)	H7A—C7—H7B	108.00
C6—C5—C9	108.0 (3)	С7—С8—Н8	110.00
C1—C6—C5	110.1 (2)	С9—С8—Н8	110.00
C1—C7—C8	110.0 (2)	С10—С8—Н8	110.00
C7—C8—C9	108.8 (2)	С5—С9—Н9А	109.00
C9—C8—C10	111.0(2)	C5—C9—H9B	109.00
C7—C8—C10	107.8 (2)	C8—C9—H9A	109.00
C5-C9-C8	111.0(2)	C8—C9—H9B	109.00
C3-C10-C8	110.5 (2)	H9A—C9—H9B	108.00
N1—C11—C12	122.66 (19)	C3—C10—H10A	110.00
C11—C12—C17	119.86 (19)	C3—C10—H10B	110.00
C13—C12—C17	119.43 (19)	C8—C10—H10A	110.00
C11—C12—C13	120.66 (18)	C8—C10—H10B	110.00
O1—C13—C14	118.80 (18)	H10A—C10—H10B	108.00
C12—C13—C14	119.47 (19)	N1—C11—H11	119.00
O1—C13—C12	121.73 (19)	C12—C11—H11	119.00
O2—C14—C15	125.29 (19)	C14—C15—H15	120.00
C13—C14—C15	119.64 (19)	C16—C15—H15	120.00
O2—C14—C13	115.06 (18)	C15—C16—H16	120.00
C14—C15—C16	120.8 (2)	C17—C16—H16	120.00
C15—C16—C17	120.0 (2)	C12—C17—H17	120.00
C12—C17—C16	120.69 (19)	C16—C17—H17	120.00
O2—C18—C19	107.8 (2)	O2—C18—H18A	110.00
C1—C2—H2A	110.00	O2—C18—H18B	110.00
C1—C2—H2B	110.00	C19—C18—H18A	110.00
C3—C2—H2A	110.00	C19—C18—H18B	110.00
C3—C2—H2B	110.00	H18A—C18—H18B	108.00
H2A—C2—H2B	108.00	C18—C19—H19A	109.00
С2—С3—Н3	110.00	C18—C19—H19B	109.00
С4—С3—Н3	110.00	C18—C19—H19C	109.00
С10—С3—Н3	110.00	H19A—C19—H19B	109.00
C3—C4—H4A	109.00	H19A—C19—H19C	109.00
C3—C4—H4B	110.00	H19B—C19—H19C	109.00
C18—O2—C14—C13	176.74 (19)	C9—C5—C6—C1	-60.4 (3)
C18—O2—C14—C15	-2.2 (3)	C4—C5—C9—C8	-56.4 (3)

C14—O2—C18—C19	-175.7 (2)	C6—C5—C9—C8	61.6 (3)
C11—N1—C1—C2	-17.3 (3)	C1—C7—C8—C9	59.1 (3)
C11—N1—C1—C6	105.2 (2)	C1C7C8C10	-61.3 (3)
C11—N1—C1—C7	-137.9 (2)	C7—C8—C9—C5	-61.3 (3)
C1—N1—C11—C12	-177.34 (18)	C10-C8-C9-C5	57.1 (3)
N1—C1—C2—C3	-179.26 (19)	C7—C8—C10—C3	61.8 (3)
C6—C1—C2—C3	59.3 (3)	C9—C8—C10—C3	-57.2 (3)
C7—C1—C2—C3	-59.3 (3)	N1-C11-C12-C13	-2.8 (3)
N1—C1—C6—C5	175.2 (2)	N1-C11-C12-C17	174.5 (2)
C2-C1-C6-C5	-58.8 (3)	C11—C12—C13—O1	-1.0 (3)
C7—C1—C6—C5	59.4 (3)	C11—C12—C13—C14	179.38 (19)
N1—C1—C7—C8	-174.59 (19)	C17—C12—C13—O1	-178.3 (2)
C2-C1-C7-C8	60.5 (3)	C17—C12—C13—C14	2.1 (3)
C6—C1—C7—C8	-58.5 (2)	C11—C12—C17—C16	-177.9 (2)
C1—C2—C3—C4	-60.5 (3)	C13—C12—C17—C16	-0.6 (3)
C1—C2—C3—C10	59.8 (3)	O1—C13—C14—O2	-0.9 (3)
C2—C3—C4—C5	62.6 (3)	O1—C13—C14—C15	178.1 (2)
C10—C3—C4—C5	-56.5 (3)	C12—C13—C14—O2	178.77 (18)
C2-C3-C10-C8	-61.5 (3)	C12—C13—C14—C15	-2.3 (3)
C4—C3—C10—C8	57.0 (3)	O2-C14-C15-C16	179.8 (2)
C3—C4—C5—C6	-62.0 (3)	C13—C14—C15—C16	0.9 (3)
C3—C4—C5—C9	56.1 (3)	C14—C15—C16—C17	0.6 (4)
C4—C5—C6—C1	59.3 (3)	C15—C16—C17—C12	-0.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
O1—H1…N1	0.82	1.86	2.593 (2)	148