$\gamma = 75.007 \ (1)^{\circ}$ V = 1472.1 (2) Å³

Mo $K\alpha$ radiation

 $0.30 \times 0.20 \times 0.20 \text{ mm}$

24050 measured reflections

5372 independent reflections

4042 reflections with $I > 2\sigma(I)$

 $\mu = 1.15 \text{ mm}^{-1}$

T = 173 K

 $R_{\rm int} = 0.053$

Z = 1

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[tetra- μ -benzoato- $\kappa^{8}O:O'$ dicopper(II)]-*u*-[N-(pyridin-4-yl)nicotinamide]- $\kappa^2 N$:N'-[dibenzoato- $\kappa^2 O$ copper(II)]-*µ*-[*N*-(pyridin-4-yl)nicotinamide]- $\kappa^2 N:N'$]

Peter E. Kraft^a and Robert L. LaDuca^{b*}

^aMunster High School, Munster, IN 46321, USA, and ^bLyman Briggs College, Department of Chemistry, Michigan State University, East Lansing, MI 48825, USA Correspondence e-mail: laduca@msu.edu

Received 3 July 2012; accepted 3 July 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.005 Å; R factor = 0.035; wR factor = 0.081; data-to-parameter ratio = 13.5.

polymeric title compound, $[Cu_3(C_7H_5O_2)_6-$ In the (C₁₁H₉N₃O)₂]_n, square-planar-coordinated Cu^{II} ions on crystallographic inversion centres are bound by two monodentate benzoate anions. The resulting [Cu(benzoate)]₂ fragments are joined to centrosymmetic $[Cu_2(benzoate)_4]$ paddlewheel clusters $[Cu \cdot Cu = 2.6331(5) \text{ Å}]$ by means of bridging N-(pyridin-4-yl)nicotinamide (4-pna) ligands [dihedral angle between the aromatic rings = $39.18 (12)^{\circ}$], thereby forming $[Cu_3(benzoate)_6(4-pna)_2]_n$ coordination-polymer chains that are arranged parallel to the [301] crystal direction. These polymeric chains are anchored into supramolecular layers by N-H···O hydrogen bonding between neighboring 4-pna ligands. These layers aggregate by crystal packing forces to afford the crystal structure of the title compound.

Related literature

For the preparation of N-(pyridin-4-yl)nicotinamide, see: Gardner et al. (1954). For the preparation of other coordination polymers containing N-(pyridin-4-yl)nicotinamide, see: Kumar (2009).

Experimental

Crystal data

[Cu₃(C₇H₅O₂)₆(C₁₁H₉N₃O)₂] $M_{r} = 1315.70$ Triclinic, $P\overline{1}$ a = 8.9183 (7) Å b = 11.3348 (9) Å c = 15.5534 (12) Å $\alpha = 85.471 (1)^{\circ}$ $\beta = 75.804(1)^{\circ}$

Data collection

```
Bruker APEXII CCD
  diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 1996)
  T_{\min} = 0.725, \ T_{\max} = 0.803
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	H atoms treated by a mixture of
$wR(F^2) = 0.081$	independent and constrained
S = 1.02	refinement
5372 reflections	$\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$
397 parameters	$\Delta \rho_{\rm min} = -0.31 \text{ e Å}^{-3}$
1 restraint	

Table 1

Selected bond lengths (Å).

Cu1-O1	1.9481(18)	Cu2-O3	1.9727(19) 1.973(2)
Cu1 - N1 $Cu2 - O4^{i}$ $Cu2 - O6^{i}$	1.9543(19) 1.962(2)	Cu2-03 Cu2-N3	2.196 (2)
Cu2=00	1.902 (2)		

Symmetry code: (i) -x + 3, -y + 1, -z - 1.

Table 2

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdots A$ $D - H \cdot \cdot \cdot A$ $N2 - H2N \cdots O2^{ii}$ 0.86(2)2.01 (2) 2.867 (3) 177 (3)

Symmetry code: (ii) -x + 1, -y + 1, -z.

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Crystal

metal-organic compounds

Maker (Palmer, 2007); software used to prepare material for publication: *SHELXL97*.

We gratefully acknowledge the donors of the American Chemical Society Petroleum Research Fund for supporting this work. PEK thanks the Michigan State University High School Honors Science Program for his participation in this research project.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6888).

References

Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Gardner, T. S., Wenis, E. & Lee, J. (1954). J. Org. Chem. 19, 753-757.

- Kumar, D. K. (2009). Inorg. Chim. Acta, 362, 1767-1771.
- Palmer, D. (2007). Crystal Maker. Version 7.2. PO Box 183, Bicester, Oxfordshire OX26 3TA, England.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, m1049–m1050 [https://doi.org/10.1107/S1600536812030437]

catena-Poly[[tetra- μ -benzoato- $\kappa^8 O:O'$ -dicopper(II)]- μ -[N-(pyridin-4-yl)nicotinamide]- $\kappa^2 N:N'$ -[dibenzoato- $\kappa^2 O$ -copper(II)]- μ -[N-(pyridin-4-yl)nicotinamide]- $\kappa^2 N:N'$]

Peter E. Kraft and Robert L. LaDuca

S1. Comment

In comparison to divalent metal coordination polymers containing rigid rod dipyridine ligands such as 4,4'-bipyridine, related materials containing the kinked dipodal ligand *N*-(pyridin-4-yl)nicotinamide (4-pna) are much less common (Kumar, 2009). The title compound was obtained as blue crystals through the hydrothermal reaction of copper nitrate, benzoic acid, and 4-pna.

The asymmetric unit of the title compound (Fig. 1) contains two copper atoms, one of which (Cu1) lies on a crystallographic inversion centre, a 4-pna ligand, and three benzoate ligands. Cu1 is square planar coordinated by *trans* 4-pyridyl N atom donors from two 4-pna ligands and *trans* O atom donors from monodentate carboxylate groups belonging to two benzoate ligands. The other copper atom (Cu2) is square pyramidally coordinated, with its apical position occupied by a N atom donor from the nicotinamide end of a 4-pna ligand and its basal positions filled by O atom donors from four benzoate ligands.

Pairs of Cu2 atoms are linked into dinuclear $[Cu_2(benzoate)_4]$ paddlewheel clusters by four *syn-syn* bridging benzoate ligands, with crystallographic inversion centres at the centroids of the clusters. Within these $[Cu_2(benzoate)_4]$ clusters, the Cu...Cu through-space distance is 2.633 (2) Å. The 4-pna ligands projecting out of the apical positions of the Cu2 atoms within the dinuclear paddlewheel clusters connect to Cu1 atoms, generating one-dimensional $[Cu_3(benzoate)_6(4-pna)_2]_n$ polymer chains along the $[3 \ 0 \ \overline{1}]$ crystal direction (Fig. 2).

Each individual chain is anchored to two others *via* N—H···O hydrogen bonding (Table 1) between amide moieties of neighboring 4-pna ligands. In this manner, supramolecular two-dimensional layers are constructed (Fig. 3); these lie parallel to the *ac* crystal planes. The three-dimensional structure of the title compound results from crystal packing forces between these layers, which stack along the *b* crystal direction. (Fig. 4).

S2. Experimental

Copper(II) nitrate hydrate and benzoic acid were obtained commercially. *N*-(Pyridin-4-yl)nicotinamide (4-pna) was prepared *via* a published procedure (Gardner *et al.*, 1954). A mixture of copper nitrate hydrate (89 mg, 0.37 mmol), benzoic acid (45 mg, 0.37 mmol), 4-pna (74 mg, 0.37 mmol) and 10.0 g water (550 mmol) was placed into a 23 ml Teflon-lined Parr acid digestion bomb, which was then heated under autogenous pressure at 393 K for 24 h. Blue blocks of the title compound were obtained.

S3. Refinement

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 Å, and refined in riding mode with $U_{iso} = 1.2U_{eq}(C)$. The H atom within the amide group of the 4-pna ligand was found in a difference Fourier map, restrained with N—H = 0.9 Å and refined with $U_{iso} = 1.2U_{eq}(N)$.

Figure 1

The asymmetric unit of the title compound, showing 50% probability ellipsoids, complete coordination environments, and atom numbering scheme. Hydrogen atom positions are shown as grey sticks with the exception of the amide group hydrogen atom. Color codes: dark blue Cu, red O, light blue N, black C, pink H. Symmetry codes: (i) -*x*, -*y* + 1, -*z*; (ii) -*x* + 3, -*y* + 1, -*z* - 1.

Figure 2

A single $[Cu_3(benzoate)_6(4-pna)_2]_n$ coordination polymer chain.

Supramolecular layer of $[Cu_3(benzoate)_6(4-pna)_2]_n$ chains. N—H…O hydrogen bonding is shown as dashed lines.

Figure 4

Stacking of supramolecular layers within the title compound.

catena-Poly[[tetra- μ -benzoato- $\kappa^8 O:O'$ -dicopper(II)]- μ -[N-(pyridin-4-yl)nicotinamide]- $\kappa^2 N:N'$ - [dibenzoato- $\kappa^2 O$ -copper(II)]- μ -[N- (pyridin-4-yl)nicotinamide]- $\kappa^2 N:N'$]

Crystal data	
$\begin{bmatrix} Cu_{3}(C_{7}H_{5}O_{2})_{6}(C_{11}H_{9}N_{3}O)_{2} \end{bmatrix}$ $M_{r} = 1315.70$ Triclinic, <i>P</i> 1 Hall symbol: -P 1 a = 8.9183 (7) Å b = 11.3348 (9) Å c = 15.5534 (12) Å a = 85.471 (1)° $\beta = 75.804$ (1)° $\gamma = 75.007$ (1)° V = 1472.1 (2) Å ³	Z = 1 F(000) = 673 $D_x = 1.484 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 24050 reflections $\theta = 1.9-25.4^{\circ}$ $\mu = 1.15 \text{ mm}^{-1}$ T = 173 K Block, blue $0.30 \times 0.20 \times 0.20 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator	$\omega - \varphi$ scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.725, T_{\max} = 0.803$

24050 measured reflections	$\theta_{\rm max} = 25.4^{\circ}, \ \theta_{\rm min} = 1.9^{\circ}$
5372 independent reflections	$h = -10 \rightarrow 10$
4042 reflections with $I > 2\sigma(I)$	$k = -13 \rightarrow 13$
$R_{\rm int} = 0.053$	$l = -18 \rightarrow 18$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.035$	Hydrogen site location: inferred from
$wR(F^2) = 0.081$	neighbouring sites
S = 1.02	H atoms treated by a mixture of independent
5372 reflections	and constrained refinement
397 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0281P)^2 + 1.0621P]$
1 restraint	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cul	0.0000	0.5000	0.0000	0.02146 (13)
Cu2	1.36616 (4)	0.54604 (3)	-0.44207 (2)	0.02392 (11)
O1	0.0790 (2)	0.35964 (17)	-0.07773 (12)	0.0266 (5)
O2	0.2143 (3)	0.29187 (19)	0.02586 (14)	0.0394 (5)
O3	1.4882 (2)	0.66396 (18)	-0.43039 (13)	0.0323 (5)
O4	1.7183 (2)	0.58342 (18)	-0.52675 (13)	0.0295 (5)
O5	1.4691 (2)	0.43007 (18)	-0.35983 (13)	0.0284 (5)
O6	1.7006 (2)	0.35647 (18)	-0.45767 (13)	0.0329 (5)
O7	0.7243 (2)	0.5482 (2)	-0.28967 (13)	0.0373 (5)
N1	0.1981 (3)	0.5589 (2)	-0.05294 (14)	0.0218 (5)
N2	0.6435 (3)	0.6367 (2)	-0.15343 (15)	0.0231 (5)
H2N	0.684 (3)	0.661 (2)	-0.1152 (16)	0.028*
N3	1.1596 (3)	0.6361 (2)	-0.33950 (14)	0.0227 (5)
C1	0.2737 (3)	0.5403 (2)	-0.13860 (18)	0.0244 (6)
H1	0.2240	0.5075	-0.1753	0.029*
C2	0.2702 (3)	0.6069 (2)	-0.00283 (18)	0.0237 (6)
H2	0.2170	0.6245	0.0573	0.028*
C3	0.4166 (3)	0.6317 (2)	-0.03425 (18)	0.0226 (6)
Н3	0.4645	0.6631	0.0041	0.027*
C4	0.4948 (3)	0.6105 (2)	-0.12310 (17)	0.0207 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C5	0.4182 (3)	0.5656(2)	-0.17648 (18)	0.0238 (6)
H5	0.4651	0.5529	-0.2379	0.029*
C6	0.7466 (3)	0.6081 (3)	-0.23565 (18)	0.0248 (6)
C7	0.8914 (3)	0.6583 (3)	-0.25392 (17)	0.0222 (6)
C8	1.0264 (3)	0.5974 (3)	-0.31442 (18)	0.0239 (6)
H8	1.0235	0.5243	-0.3392	0.029*
C9	1.1613 (3)	0.7396 (3)	-0.30381 (18)	0.0298 (7)
H9	1.2558	0.7681	-0.3207	0.036*
C10	1.0331 (3)	0.8063 (3)	-0.2440 (2)	0.0327 (7)
H10	1.0392	0.8791	-0.2202	0.039*
C11	0.8949 (3)	0.7656(3)	-0.21908 (19)	0.0283 (7)
H11	0.8038	0.8107	-0.1786	0.034*
C12	1.6289(3)	0.6623 (3)	-0.47145 (19)	0.0270 (7)
C13	1.6959 (4)	0.7642 (3)	-0.45442 (19)	0.0306 (7)
C14	1.8593 (4)	0.7500 (3)	-0.47238 (19)	0.0313 (7)
H14	1.9295	0.6754	-0.4957	0.038*
C15	1.9208 (4)	0.8441 (3)	-0.4565 (2)	0.0396 (8)
H15	2.0332	0.8336	-0.4688	0.047*
C16	1.8214 (5)	0.9517 (3)	-0.4232(2)	0.0566 (11)
H16	1.8646	1.0162	-0.4130	0.068*
C17	1.6585 (5)	0.9670 (4)	-0.4045 (3)	0.0756 (15)
H17	1.5888	1.0419	-0.3812	0.091*
C18	1.5972 (4)	0.8726 (3)	-0.4199 (3)	0.0623 (12)
H18	1.4848	0.8829	-0.4065	0.075*
C19	1.6096 (3)	0.3635 (3)	-0.38105 (19)	0.0271 (7)
C20	1.6740 (3)	0.2846 (3)	-0.31014 (19)	0.0275 (7)
C21	1.5723 (4)	0.2589 (3)	-0.2323 (2)	0.0342 (7)
H21	1.4603	0.2916	-0.2235	0.041*
C22	1.6334 (4)	0.1856 (3)	-0.1674 (2)	0.0453 (9)
H22	1.5631	0.1666	-0.1147	0.054*
C23	1.7952 (5)	0.1399 (3)	-0.1787(2)	0.0519 (10)
H23	1.8370	0.0905	-0.1337	0.062*
C24	1.8963 (4)	0.1663 (3)	-0.2558 (3)	0.0511 (10)
H24	2.0084	0.1350	-0.2639	0.061*
C25	1.8364 (4)	0.2375 (3)	-0.3211 (2)	0.0402 (8)
H25	1.9073	0.2544	-0.3743	0.048*
C26	0.1744 (3)	0.2772 (3)	-0.04270 (19)	0.0263 (7)
C27	0.3730 (5)	-0.0630 (4)	-0.1756 (3)	0.0698 (13)
H27	0.4193	-0.1385	-0.2053	0.084*
C28	0.3120 (5)	0.0550(3)	-0.0454 (3)	0.0555 (10)
H28	0.3169	0.0601	0.0145	0.067*
C29	0.2334 (4)	0.1471 (3)	-0.1756 (2)	0.0368 (8)
H29	0.1829	0.2163	-0.2058	0.044*
C30	0.2388 (4)	0.1566 (3)	-0.0885(2)	0.0326(7)
C31	0.3782 (6)	-0.0545 (4)	-0.0896 (3)	0.0787 (14)
H31	0.4278	-0.1244	-0.0596	0.094*
C32	0.3013 (4)	0.0368 (3)	-0.2192 (3)	0.0514 (10)
H32	0.2980	0.0309	-0.2793	0.062*

supporting information

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0145 (2)	0.0247 (3)	0.0243 (3)	-0.0074 (2)	0.0022 (2)	-0.0077 (2)
Cu2	0.01624 (19)	0.0281 (2)	0.0262 (2)	-0.00850 (15)	0.00295 (14)	-0.00849 (15)
01	0.0183 (10)	0.0285 (11)	0.0325 (11)	-0.0079 (9)	0.0004 (9)	-0.0107 (9)
O2	0.0537 (15)	0.0391 (13)	0.0320 (12)	-0.0183 (11)	-0.0145 (11)	-0.0026 (10)
O3	0.0212 (11)	0.0328 (12)	0.0422 (13)	-0.0136 (9)	0.0051 (9)	-0.0123 (10)
O4	0.0211 (11)	0.0349 (12)	0.0336 (12)	-0.0133 (9)	0.0016 (9)	-0.0109 (10)
O5	0.0205 (11)	0.0332 (12)	0.0298 (11)	-0.0065 (9)	-0.0002 (9)	-0.0082 (9)
O6	0.0234 (11)	0.0386 (13)	0.0314 (12)	-0.0043 (9)	0.0019 (9)	-0.0065 (10)
O7	0.0288 (12)	0.0510 (14)	0.0341 (12)	-0.0216 (11)	0.0079 (9)	-0.0220 (11)
N1	0.0179 (12)	0.0237 (13)	0.0232 (12)	-0.0074 (10)	-0.0001 (10)	-0.0051 (10)
N2	0.0163 (12)	0.0310 (14)	0.0224 (13)	-0.0101 (10)	0.0012 (10)	-0.0068 (11)
N3	0.0182 (12)	0.0272 (13)	0.0220 (12)	-0.0088 (10)	0.0008 (10)	-0.0036 (10)
C1	0.0191 (15)	0.0285 (16)	0.0260 (16)	-0.0066 (12)	-0.0036 (12)	-0.0060 (12)
C2	0.0206 (15)	0.0227 (15)	0.0241 (15)	-0.0041 (12)	0.0020 (12)	-0.0056 (12)
C3	0.0176 (14)	0.0257 (16)	0.0262 (15)	-0.0086 (12)	-0.0028 (12)	-0.0069 (12)
C4	0.0159 (14)	0.0195 (14)	0.0250 (15)	-0.0045 (11)	-0.0012 (12)	-0.0013 (12)
C5	0.0203 (15)	0.0299 (16)	0.0201 (15)	-0.0074 (13)	-0.0006 (12)	-0.0037 (12)
C6	0.0205 (15)	0.0260 (16)	0.0271 (16)	-0.0085 (12)	-0.0001 (12)	-0.0034 (13)
C7	0.0176 (14)	0.0267 (15)	0.0207 (14)	-0.0084 (12)	0.0021 (11)	-0.0024 (12)
C8	0.0211 (15)	0.0246 (15)	0.0247 (15)	-0.0073 (12)	0.0004 (12)	-0.0059 (12)
C9	0.0242 (16)	0.0379 (18)	0.0288 (16)	-0.0156 (14)	0.0015 (13)	-0.0071 (14)
C10	0.0305 (17)	0.0300 (17)	0.0364 (18)	-0.0144 (14)	0.0053 (14)	-0.0122 (14)
C11	0.0230 (16)	0.0306 (17)	0.0271 (16)	-0.0066 (13)	0.0043 (13)	-0.0075 (13)
C12	0.0228 (16)	0.0312 (17)	0.0297 (16)	-0.0137 (13)	-0.0033 (13)	-0.0030 (14)
C13	0.0301 (17)	0.0326 (18)	0.0309 (17)	-0.0170 (14)	0.0007 (13)	-0.0061 (14)
C14	0.0293 (17)	0.0373 (18)	0.0308 (17)	-0.0174 (14)	-0.0030 (13)	-0.0026 (14)
C15	0.043 (2)	0.052 (2)	0.0340 (18)	-0.0301 (18)	-0.0080 (15)	0.0037 (16)
C16	0.068 (3)	0.052 (2)	0.058 (2)	-0.043 (2)	0.003 (2)	-0.014 (2)
C17	0.060 (3)	0.045 (2)	0.116 (4)	-0.026 (2)	0.018 (3)	-0.046 (2)
C18	0.036 (2)	0.045 (2)	0.100 (3)	-0.0187 (18)	0.015 (2)	-0.032 (2)
C19	0.0240 (16)	0.0270 (16)	0.0336 (17)	-0.0112 (13)	-0.0044 (14)	-0.0105 (13)
C20	0.0265 (16)	0.0263 (16)	0.0316 (17)	-0.0066 (13)	-0.0076 (13)	-0.0083 (13)
C21	0.0302 (18)	0.0311 (18)	0.0398 (19)	-0.0069 (14)	-0.0057 (15)	-0.0022 (15)
C22	0.049 (2)	0.043 (2)	0.039 (2)	-0.0082 (18)	-0.0059 (17)	0.0021 (17)
C23	0.069 (3)	0.045 (2)	0.044 (2)	-0.003 (2)	-0.028 (2)	-0.0031 (17)
C24	0.035 (2)	0.061 (3)	0.059 (2)	-0.0002 (18)	-0.0238 (19)	-0.011 (2)
C25	0.0311 (19)	0.051 (2)	0.041 (2)	-0.0112 (16)	-0.0095 (15)	-0.0088 (17)
C26	0.0228 (16)	0.0294 (17)	0.0273 (16)	-0.0131 (13)	0.0015 (13)	-0.0055 (13)
C27	0.083 (3)	0.037 (2)	0.087 (3)	0.006 (2)	-0.030 (3)	-0.030 (2)
C28	0.080 (3)	0.034 (2)	0.052 (2)	-0.008 (2)	-0.021 (2)	-0.0035 (18)
C29	0.0276 (17)	0.0356 (19)	0.048 (2)	-0.0015 (14)	-0.0128 (15)	-0.0141 (16)
C30	0.0291 (17)	0.0278 (17)	0.0411 (19)	-0.0067 (14)	-0.0059 (14)	-0.0100 (14)
C31	0.118 (4)	0.029 (2)	0.088 (3)	0.003 (2)	-0.044 (3)	-0.004 (2)
C32	0.047 (2)	0.048 (2)	0.060 (2)	0.0019 (18)	-0.0214 (19)	-0.0288 (19)

Geometric parameters (Å, °)

Cu1—01	1.9481 (18)	C10—C11	1.384 (4)	
Cu1—O1 ⁱ	1.9481 (18)	C10—H10	0.9500	
Cu1—N1 ⁱ	2.014 (2)	C11—H11	0.9500	
Cu1—N1	2.014 (2)	C12—C13	1.497 (4)	
Cu2—O4 ⁱⁱ	1.9543 (19)	C13—C18	1.374 (4)	
Cu2—O6 ⁱⁱ	1.962 (2)	C13—C14	1.384 (4)	
Cu2—O3	1.9727 (19)	C14—C15	1.382 (4)	
Cu2—O5	1.973 (2)	C14—H14	0.9500	
Cu2—N3	2.196 (2)	C15—C16	1.362 (5)	
O1—C26	1.276 (3)	C15—H15	0.9500	
O2—C26	1.239 (3)	C16—C17	1.377 (5)	
O3—C12	1.257 (3)	C16—H16	0.9500	
O4—C12	1.262 (3)	C17—C18	1.382 (5)	
O4—Cu2 ⁱⁱ	1.9543 (18)	C17—H17	0.9500	
O5—C19	1.263 (3)	C18—H18	0.9500	
O6—C19	1.262 (3)	C19—C20	1.495 (4)	
O6—Cu2 ⁱⁱ	1.962 (2)	C20—C25	1.381 (4)	
O7—C6	1.203 (3)	C20—C21	1.384 (4)	
N1—C1	1.343 (3)	C21—C22	1.382 (4)	
N1—C2	1.346 (3)	C21—H21	0.9500	
N2—C6	1.386 (3)	C22—C23	1.372 (5)	
N2—C4	1.394 (3)	C22—H22	0.9500	
N2—H2N	0.861 (17)	C23—C24	1.376 (5)	
N3—C8	1.331 (3)	C23—H23	0.9500	
N3—C9	1.341 (3)	C24—C25	1.371 (5)	
C1—C5	1.373 (4)	C24—H24	0.9500	
C1—H1	0.9500	C25—H25	0.9500	
C2—C3	1.370 (4)	C26—C30	1.501 (4)	
C2—H2	0.9500	C27—C31	1.362 (6)	
C3—C4	1.395 (4)	C27—C32	1.366 (5)	
С3—Н3	0.9500	C27—H27	0.9500	
C4—C5	1.392 (4)	C28—C30	1.381 (5)	
С5—Н5	0.9500	C28—C31	1.385 (5)	
C6—C7	1.499 (4)	C28—H28	0.9500	
C7—C11	1.380 (4)	C29—C30	1.380 (4)	
С7—С8	1.389 (4)	C29—C32	1.389 (4)	
C8—H8	0.9500	C29—H29	0.9500	
C9—C10	1.374 (4)	C31—H31	0.9500	
С9—Н9	0.9500	С32—Н32	0.9500	
O1—Cu1—O1 ⁱ	180.0	O3—C12—O4	125.9 (3)	
O1-Cu1-N1 ⁱ	89.20 (8)	O3—C12—C13	117.2 (3)	
Ol ⁱ —Cu1—Nl ⁱ	90.80 (8)	O4—C12—C13	116.9 (2)	
O1—Cu1—N1	90.80 (8)	C18—C13—C14	118.7 (3)	
Ol ⁱ —Cu1—N1	89.20 (8)	C18—C13—C12	120.9 (3)	
N1 ⁱ —Cu1—N1	180.0	C14—C13—C12	120.4 (3)	

O4 ⁱⁱ —Cu2—O6 ⁱⁱ	88.63 (8)	C15—C14—C13	120.2 (3)
O4 ⁱⁱ —Cu2—O3	168.50 (8)	C15—C14—H14	119.9
O6 ⁱⁱ —Cu2—O3	89.13 (9)	C13—C14—H14	119.9
O4 ⁱⁱ —Cu2—O5	88.78 (8)	C16—C15—C14	120.4 (3)
O6 ⁱⁱ —Cu2—O5	168.47 (8)	C16—C15—H15	119.8
O3—Cu2—O5	91.18 (8)	C14—C15—H15	119.8
O4 ⁱⁱ —Cu2—N3	99.17 (8)	C15—C16—C17	120.1 (3)
O6 ⁱⁱ —Cu2—N3	96.15 (8)	C15—C16—H16	120.0
O3—Cu2—N3	92.29 (8)	C17—C16—H16	120.0
O5—Cu2—N3	95.35 (8)	C16—C17—C18	119.4 (4)
C26—O1—Cu1	108.01 (17)	С16—С17—Н17	120.3
C12—O3—Cu2	126.41 (18)	С18—С17—Н17	120.3
C12—O4—Cu2 ⁱⁱ	119.08 (17)	C13—C18—C17	121.1 (3)
C19—O5—Cu2	123.94 (19)	C13—C18—H18	119.4
C19—O6—Cu2 ⁱⁱ	121.68 (19)	C17—C18—H18	119.4
C1—N1—C2	116.7 (2)	O6—C19—O5	125.6 (3)
C1—N1—Cu1	121.09 (18)	06-C19-C20	116.7 (3)
C2—N1—Cu1	121.88 (18)	05-C19-C20	117.7(3)
C6—N2—C4	126.4 (2)	C_{25} C_{20} C_{21}	119.0(3)
C6-N2-H2N	1150(19)	C_{25} C_{20} C_{19}	120.3(3)
C4-N2-H2N	117.6 (19)	C_{21} C_{20} C_{19} C_{21} C_{20} C_{19}	120.7(3)
C8—N3—C9	117.4 (2)	C_{22} C_{21} C_{20} C_{20}	120.1(3)
C8—N3—Cu2	123.03 (18)	C_{22} C_{21} H_{21}	120.0
C9—N3—Cu2	119.43 (18)	C20—C21—H21	120.0
N1-C1-C5	124.1 (3)	C_{23} C_{22} C_{21}	120.4(3)
N1—C1—H1	117.9	C23—C22—H22	119.8
C5-C1-H1	117.9	C_{21} C_{22} H_{22}	119.8
N1—C2—C3	123.3 (3)	C22—C23—C24	119.5 (3)
N1—C2—H2	118.4	C22—C23—H23	120.2
C3—C2—H2	118.4	C24—C23—H23	120.2
C2—C3—C4	119.4 (2)	C25—C24—C23	120.4 (3)
С2—С3—Н3	120.3	C25—C24—H24	119.8
С4—С3—Н3	120.3	C23—C24—H24	119.8
C5—C4—N2	123.9 (2)	C24—C25—C20	120.6 (3)
C5—C4—C3	117.8 (2)	С24—С25—Н25	119.7
N2—C4—C3	118.3 (2)	С20—С25—Н25	119.7
C1—C5—C4	118.7 (3)	O2—C26—O1	123.7 (3)
C1—C5—H5	120.7	O2—C26—C30	119.6 (3)
С4—С5—Н5	120.7	O1—C26—C30	116.7 (3)
O7—C6—N2	123.9 (3)	C31—C27—C32	120.1 (4)
O7—C6—C7	121.2 (2)	С31—С27—Н27	120.0
N2—C6—C7	114.9 (2)	С32—С27—Н27	120.0
C11—C7—C8	118.2 (2)	C30—C28—C31	119.8 (4)
C11—C7—C6	124.0 (2)	C30—C28—H28	120.1
C8—C7—C6	117.7 (2)	C31—C28—H28	120.1
N3—C8—C7	123.4 (3)	C30—C29—C32	120.3 (3)
N3—C8—H8	118.3	С30—С29—Н29	119.8
С7—С8—Н8	118.3	С32—С29—Н29	119.8

N3—C9—C10	123.2 (3)	C29—C30—C28	119.1 (3)
N3—C9—H9	118.4	C29—C30—C26	120.6 (3)
С10—С9—Н9	118.4	C28—C30—C26	120.2 (3)
C9-C10-C11	118 8 (3)	C27-C31-C28	120.7(4)
C_{0} C_{10} H_{10}	120.6	$C_{27} C_{31} H_{31}$	110.6
C_{11} C_{10} U_{10}	120.0	$C_{2}^{0} = C_{2}^{0} = 1121$	119.0
	120.0	C26—C31—H31	119.0
	118.9 (3)	$C_2/-C_{32}-C_{29}$	119.9 (3)
C/—CII—HII	120.5	С27—С32—Н32	120.1
C10—C11—H11	120.5	C29—C32—H32	120.1
NI	-97.42 (18)		-1/6.8(3)
NI—CuI—OI—C26	82.58 (18)	C9—C10—C11—C7	1.1 (5)
O4 ⁿ —Cu2—O3—C12	-7.5 (6)	Cu2—O3—C12—O4	-1.2 (4)
O6 ⁿ —Cu2—O3—C12	-86.3 (2)	Cu2—O3—C12—C13	177.83 (19)
O5—Cu2—O3—C12	82.2 (2)	Cu2 ⁱⁱ —O4—C12—O3	2.9 (4)
N3—Cu2—O3—C12	177.6 (2)	Cu2 ⁱⁱ —O4—C12—C13	-176.08 (19)
O4 ⁱⁱ —Cu2—O5—C19	91.6 (2)	O3—C12—C13—C18	-20.6 (5)
O6 ⁱⁱ —Cu2—O5—C19	14.5 (5)	O4—C12—C13—C18	158.5 (3)
O3—Cu2—O5—C19	-76.9 (2)	O3—C12—C13—C14	158.7 (3)
N3—Cu2—O5—C19	-169.4(2)	O4—C12—C13—C14	-22.2(4)
01—Cu1—N1—C1	32.9 (2)	C18—C13—C14—C15	-0.6(5)
$O1^{i}$ —Cu1—N1—C1	-147.1(2)	C12—C13—C14—C15	-179.9(3)
01— $Cu1$ — $N1$ — $C2$	-140.1(2)	C13-C14-C15-C16	-0.2(5)
$O1^{i}$ $Cu1$ $N1$ $C2$	399(2)	C_{14} C_{15} C_{16} C_{17}	0.2(0)
O_1^{ii} C_{12}^{ii} N_1^{ii} C_2^{ii}	0.9(2)	C_{15} C_{16} C_{17} C_{18}	-0.2(7)
$Of^{ii} = Cu^2 = N^3 = C^8$	0.5(2)	C_{14} C_{13} C_{18} C_{17}	10(6)
$O_{1}^{2} = C_{1}^{2} = N_{2}^{2} = C_{3}^{2}$	90.3(2)	C12 - C12 - C18 - C17	1.0(0)
05 - Cu2 - N3 - C8	1/9.9(2)	C12 - C13 - C18 - C17	-1/9.7(4)
05-012-03-08	-88.7(2)	C10 - C1/ - C18 - C13	-0.6(7)
04^{2} — 0.2 — $N3$ — 0.9	-1/4.6(2)	$Cu2^{}O6C19O5$	0.8 (4)
$O6^{\mu}$ —Cu2—N3—C9	-85.0 (2)	Cu2 ⁿ —O6—C19—C20	179.98 (17)
O3—Cu2—N3—C9	4.4 (2)	Cu2—O5—C19—O6	-3.9 (4)
O5—Cu2—N3—C9	95.8 (2)	Cu2—O5—C19—C20	176.99 (17)
C2—N1—C1—C5	0.8 (4)	O6—C19—C20—C25	19.3 (4)
Cu1—N1—C1—C5	-172.5 (2)	O5—C19—C20—C25	-161.5 (3)
C1—N1—C2—C3	-2.8 (4)	O6—C19—C20—C21	-161.4 (3)
Cu1—N1—C2—C3	170.4 (2)	O5-C19-C20-C21	17.8 (4)
N1—C2—C3—C4	2.1 (4)	C25—C20—C21—C22	-0.8 (4)
C6—N2—C4—C5	-9.2 (4)	C19—C20—C21—C22	179.8 (3)
C6—N2—C4—C3	171.6 (3)	C20—C21—C22—C23	1.4 (5)
C2—C3—C4—C5	0.6 (4)	C21—C22—C23—C24	-0.9(5)
C2—C3—C4—N2	179.9 (2)	C22—C23—C24—C25	-0.1(5)
N1—C1—C5—C4	1.8 (4)	C23—C24—C25—C20	0.6 (5)
N2-C4-C5-C1	178.3 (3)	C21—C20—C25—C24	-0.1(5)
C3—C4—C5—C1	-2.5(4)	$C_{19} - C_{20} - C_{25} - C_{24}$	179.2 (3)
C4-N2-C6-07	-56(5)	$C_{11} = 01 = 026 = 026$	-45(3)
C4 - N2 - C6 - C7	174 1 (2)	$C_{11} = 01 = 026 = 02$	175 13 (19)
07 - C6 - C7 - C11	1/1.1(2) 1497(3)	C_{32} C_{20} C_{30} C_{28}	-0.3(5)
$V_{1} = C_{1} = C_{1} = C_{1}$	-200(4)	$C_{22} = C_{29} = C_{30} = C_{20} = C_{20}$	0.5(3)
1N2 - U - U - U - U - U - U - U - U - U -	30.0 (4)	しっ∠―し∠ン―しろ∪―し∠0	1/0.3(3)

supporting information

-25.7(4)	C31 - C28 - C30 - C29	-0.1(6)
154.6 (3)	C31—C28—C30—C26	-176.8 (4)
0.0 (4)	O2—C26—C30—C29	-162.1 (3)
-175.6 (2)	O1—C26—C30—C29	18.2 (4)
1.0 (4)	O2—C26—C30—C28	14.5 (4)
176.6 (3)	O1—C26—C30—C28	-165.1 (3)
-0.5 (4)	C32—C27—C31—C28	-0.3 (8)
175.3 (2)	C30—C28—C31—C27	0.4 (7)
-0.1 (5)	C31—C27—C32—C29	-0.1 (7)
-1.5 (4)	C30—C29—C32—C27	0.5 (5)
	$\begin{array}{c} -25.7 (4) \\ 154.6 (3) \\ 0.0 (4) \\ -175.6 (2) \\ 1.0 (4) \\ 176.6 (3) \\ -0.5 (4) \\ 175.3 (2) \\ -0.1 (5) \\ -1.5 (4) \end{array}$	-25.7 (4) $C31-C28-C30-C29$ $154.6 (3)$ $C31-C28-C30-C26$ $0.0 (4)$ $02-C26-C30-C29$ $-175.6 (2)$ $01-C26-C30-C29$ $1.0 (4)$ $02-C26-C30-C28$ $176.6 (3)$ $01-C26-C30-C28$ $-0.5 (4)$ $C32-C27-C31-C28$ $175.3 (2)$ $C30-C28-C31-C27$ $-0.1 (5)$ $C31-C27-C32-C29$ $-1.5 (4)$ $C30-C29-C32-C27$

Symmetry codes: (i) -*x*, -*y*+1, -*z*; (ii) -*x*+3, -*y*+1, -*z*-1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N2—H2 <i>N</i> ···O2 ⁱⁱⁱ	0.86 (2)	2.01 (2)	2.867 (3)	177 (3)

Symmetry code: (iii) -x+1, -y+1, -z.