Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4-Cyano-1-methylpyridinium bromide

Michael N. Kammer, ${ }^{\text {a }}$ Joel T. Mague ${ }^{b_{*}}$ and Lynn V. Koplitz ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Physics, Loyola University, New Orleans, LA 70118, USA,
${ }^{\text {b }}$ Department of Chemistry, Tulane University, New Orleans, LA 70118, USA, and ${ }^{\text {c }}$ Department of Chemistry, Loyola University, New Orleans, LA 70118, USA Correspondence e-mail: joelt@tulane.edu

Received 3 July 2012; accepted 3 July 2012

Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.027 ; w R$ factor $=0.073 ;$ data-to-parameter ratio $=22.3$.

In the crystal of the title molecular salt, $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{Br}^{-}$, the cations form inversion dimers via weak pairwise $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds; their mean planes are separated by 0.292 (6) A. Weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interactions involving all of the remaining H atoms tie the cations and anions together into sets of interpenetrating sheets. The title compound is isostructural with its iodide analogue.

Related literature

For the structure of the 4-cyano-1-methylpyridinium iodide salt, see: Kammer et al. (2012). For the structure of 3-cyano-1methylpyridinium bromide, see: Mague et al. (2005). For the structure of 3-cyano-1-methylpyridinium chloride, see: Koplitz et al. (2003.

Experimental

Crystal data

```
C
b=11.285 (4) A
Mr}=199.0
Monoclinic, }P\mp@subsup{2}{1}{}/
a=4.5447 (16) \AA
```


$Z=4$

$T=100 \mathrm{~K}$
Mo $K \alpha$ radiation
$\mu=5.11 \mathrm{~mm}^{-1}$
Data collection
Bruker SMART APEX CCD diffractometer
Absorption correction: numerical (SADABS; Bruker, 2009)
$T_{\text {min }}=0.351, T_{\text {max }}=0.563$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027 \quad 92$ parameters
$w R\left(F^{2}\right)=0.073 \quad \mathrm{H}$-atom parameters constrained
$S=1.07$
2050 reflections
$0.26 \times 0.22 \times 0.13 \mathrm{~mm}$

12985 measured reflections 2050 independent reflections 1864 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.065$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{~N}^{\mathrm{i}}$		0.95	2.48	$3.357(2)$
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{Br}^{\mathrm{ii}}$	0.95	2.72	$3.626(2)$	153
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{Br}^{\mathrm{iii}}$	0.95	2.78	$3.6779(19)$	160
$\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{Br} 1^{\mathrm{iv}}$	0.98	2.89	$3.735(2)$	144
$\mathrm{C} 1-\mathrm{H} 1 C \cdots \mathrm{Br}^{\mathrm{iii}}$	0.98	2.82	$3.755(2)$	160
${\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{Br}^{\mathrm{v}}}^{\mathrm{C}}$	0.95	2.79	$3.6253(18)$	147

Symmetry codes: (i) $-x+1,-y+2,-z+2$; (ii) $-x,-y+1,-z+2$; (iii) $x-1, y, z$; (iv) $-x, y+\frac{1}{2},-z+\frac{3}{2}$; (v) $-x+1, y+\frac{1}{2},-z+\frac{3}{2}$.

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We thank the Chemistry Department of Tulane University for support of the X-ray laboratory and the Louisiana Board of Regents through the Louisiana Educational Quality Support Fund (grant No. LEQSF 2003-ENH-TR-67) for the purchase of the APEX diffractometer. MK was suppported by Louisiana Board of Regents grant No. LEQSF(2007-12)-ENH-PKSFI-PES-03 during the summer of 2011.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6887).

References

Bruker (2009). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Kammer, M. N., Koplitz, L. V. \& Mague, J. T. (2012). Acta Cryst. E68. Submitted.
Koplitz, L. V., Bay, K. D., DiGiovanni, N. \& Mague, J. T. (2003). J. Chem. Crystallogr. 33, 391-402.
Mague, J. T., Ivie, R. M., Hartsock, R. W., Koplitz, L. V. \& Spulak, M. (2005). Acta Cryst. E61, o851-o853.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, o2409 [https://doi.org/10.1107/S1600536812030449]

4-Cyano-1-methylpyridinium bromide

Michael N. Kammer, Joel T. Mague and Lynn V. Koplitz

S1. Comment

In the title compound the cations form dimers via weak, pairwise $\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{~N} 2$ hydrogen bonds. In these cations the sixmembered rings are parallel within 0.10° with the mean planes separated by 0.292 (6) Å. The remaining hydrogen atoms form weak interactions with five neighboring bromide ions (Table 1) to generate a three dimensional network of interpenetrating planes (Fig. 2).
4-Cyano-1-methylpyridinium bromide is isostructural with the corresponding iodide (Kammer et al., 2012). By contrast, the structure of the bromide salt of the isomeric 3-cyano-1-methylpyridinium cation differs markedly from that of its iodide salt but is isostructural with its chloride salt (Koplitz et al., 2003; Mague et al., 2005). Also, in the title compound each anion participates in five $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ contacts in the range $2.27-2.89 \AA$ with a sixth, essentially van der Waals contact of $3.03 \AA$. This differs markedly from the isomeric 3-cyano-1-methylpyridinium bromide (Mague et al., 2005) where each bromide ion is contacted by four $\mathrm{C}-\mathrm{H}$ groups all in the same plane.

S2. Experimental

4-Cyanopyridine (10.55 g) was dissolved in benzene (40 ml). Iodomethane (9.5 ml) was added to this solution slowly with stirring and the solution was refluxed for 75 minutes. Yellow solid 4 -cyano- N-methylpyridinium iodide (m.p. $189-$ $193^{\circ} \mathrm{C}$) was collected by vacuum filtration. An aqueous solution of this iodide salt was passed down a column of polymer-supported bromide ion-exchange resin (Aldrich calalogue No. 51,376-8) and the eluate evaporated to dryness. Yellow slabs for the structure determination were grown by slow evaporation of a solution of the compound in a $1: 1(v / v)$ mixture of acetonitrile and ethanol under ambient conditions (m.p. $213^{\circ} \mathrm{C}$).

S3. Refinement

H -atoms attached to carbon were placed in calculated positions ($\mathrm{C}-\mathrm{H}=0.95-0.98 \AA$) and included as riding contributions with isotropic displacement parameters 1.2-1.5 times those of the attached carbon atoms.

Figure 1
Perspective view of the asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
Packing of the title compound showing the interpenetrating sheet structure. Color key: $\mathrm{C}=$ gray, $\mathrm{H}=$ orange, $\mathrm{Br}=$ red, N $=$ blue .

4-Cyano-1-methylpyridinium bromide

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{Br}^{-}$
$M_{r}=199.06$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=4.5447(16) \AA$
$b=11.285$ (4) \AA
$c=15.551$ (6) \AA
$\beta=96.455$ (5) ${ }^{\circ}$
$V=792.5(5) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& F(000)=392 \\
& D_{\mathrm{x}}=1.668 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 9556 \text { reflections } \\
& \theta=2.6-29.1^{\circ} \\
& \mu=5.11 \mathrm{~mm}^{-1} \\
& T=100 \mathrm{~K} \\
& \text { Slab, yellow } \\
& 0.26 \times 0.22 \times 0.13 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEX CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: numerical
(SADABS; Bruker, 2009)
$T_{\min }=0.351, T_{\text {max }}=0.563$

> 12985 measured reflections
> 2050 independent reflections
> 1864 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.065$
> $\theta_{\max }=29.1^{\circ}, \theta_{\min }=2.2^{\circ}$
> $h=-6 \rightarrow 6$
> $k=-15 \rightarrow 15$
> $l=-20 \rightarrow 20$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.073$
$S=1.07$
2050 reflections
92 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5°. in omega, colllected at $\mathrm{phi}=0.00,90.00$ and 180.00°. and 2 sets of 800 frames, each of width 0.45° in phi, collected at omega $=-30.00$ and 210.00°. The scan time was $20 \mathrm{sec} /$ frame.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger. H-atoms were placed in calculated positions ($\mathrm{C}-\mathrm{H}=0.95-0.98 \AA$) and included as riding contributions with isotropic displacement parameters 1.2-1.5 times those of the attached carbon atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Br1	$0.38940(3)$	$0.377230(14)$	$0.850526(11)$	$0.01629(9)$
N1	$-0.0140(3)$	$0.65445(13)$	$0.81550(10)$	$0.0142(3)$
N2	$0.3192(4)$	$0.93928(14)$	$1.08002(11)$	$0.0246(4)$
C1	$-0.1282(4)$	$0.58354(16)$	$0.73879(11)$	$0.0181(3)$
H1A	0.0322	0.5352	0.7202	0.027^{*}
H1B	-0.2044	0.6368	0.6917	0.027^{*}
H1C	-0.2881	0.5318	0.7537	0.07^{*}
C2	$0.1619(4)$	$0.74794(15)$	$0.80376(11)$	$0.0166(3)$
H2	0.2143	0.7655	0.7477	0.020^{*}
C3	$0.2658(4)$	$0.81810(15)$	$0.87348(12)$	$0.0180(3)$
H3	0.3935	0.8832	0.8663	0.022^{*}
C4	$0.1801(4)$	$0.79167(15)$	$0.95433(11)$	$0.0160(3)$
C5	$0.0060(4)$	$0.69212(15)$	$0.96585(12)$	$0.0184(3)$
H5	-0.0465	0.6717	1.0214	0.022^{*}
C6	$-0.0873(4)$	$0.62429(14)$	$0.89416(13)$	$0.0172(4)$
H6	-0.2043	0.5557	0.9003	0.021^{*}
C7	$0.2641(5)$	$0.87129(15)$	$1.02619(14)$	$0.0202(4)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br 1	$0.01641(13)$	$0.01499(12)$	$0.01814(14)$	$-0.00147(5)$	$0.00490(8)$	$-0.00055(5)$
N 1	$0.0167(7)$	$0.0123(6)$	$0.0134(7)$	$0.0003(5)$	$0.0003(5)$	$-0.0007(5)$
N 2	$0.0304(9)$	$0.0227(8)$	$0.0205(8)$	$-0.0056(6)$	$0.0020(7)$	$-0.0010(6)$
C 1	$0.0250(9)$	$0.0148(8)$	$0.0142(8)$	$-0.0032(6)$	$0.0000(7)$	$-0.0033(7)$
C 2	$0.0178(8)$	$0.0160(7)$	$0.0161(8)$	$-0.0006(6)$	$0.0021(6)$	$0.0031(6)$
C 3	$0.0193(8)$	$0.0144(7)$	$0.0198(9)$	$-0.0036(6)$	$0.0002(6)$	$0.0025(7)$
C 4	$0.0172(8)$	$0.0148(7)$	$0.0156(8)$	$0.0009(6)$	$-0.0006(6)$	$0.0004(6)$
C 5	$0.0207(8)$	$0.0188(8)$	$0.0161(8)$	$-0.0014(6)$	$0.0034(6)$	$0.0018(7)$
C 6	$0.0203(9)$	$0.0157(8)$	$0.0156(9)$	$-0.0020(6)$	$0.0023(7)$	$0.0018(6)$
C 7	$0.0209(10)$	$0.0200(9)$	$0.0196(10)$	$-0.0022(6)$	$0.0018(8)$	$0.0030(7)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{N} 1-\mathrm{C} 6$	$1.347(2)$	$\mathrm{C} 2-\mathrm{H} 2$	0.9500
$\mathrm{~N} 1-\mathrm{C} 2$	$1.349(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.390(2)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.481(2)$	$\mathrm{C} 3-\mathrm{H} 3$	0.9500
$\mathrm{~N} 2-\mathrm{C} 7$	$1.142(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.397(2)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9800	$\mathrm{C} 4-\mathrm{C} 7$	$1.451(3)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	0.9800	$\mathrm{C} 5-\mathrm{C} 6$	$1.379(3)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	0.9800	$\mathrm{C} 5-\mathrm{H} 5$	0.9500
$\mathrm{C} 2-\mathrm{C} 3$	$1.382(2)$	$\mathrm{C} 6-\mathrm{H} 6$	0.9500
		$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.6
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 2$	$122.10(15)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.6

$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1$	$118.24(14)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$120.59(16)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 7$	$119.17(16)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 7$	$120.19(16)$
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$118.02(16)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	121.0
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	121.0
$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	$\mathrm{~N} 1-\mathrm{C} 6-\mathrm{C} 5$	$120.58(15)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$119.84(16)$	$\mathrm{N} 1-\mathrm{C} 6-\mathrm{H} 6$	119.7
$\mathrm{~N} 1-\mathrm{C} 2-\mathrm{H} 2$	120.1	$\mathrm{~N} 2-\mathrm{C} 4-\mathrm{H} 6$	119.7
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$		$175.7(2)$	
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	120.1	$\mathrm{C} 4-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	
		$\mathrm{C} 7-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-2.6(2)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$175.03(17)$	
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$\mathrm{C} 1-9(2)$	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 5-\mathrm{C} 5-\mathrm{N} 1$	$2.9(3)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$		$-177.16(16)$	
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-1.4(2)$	$-0.6(3)$	
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 7$	$3.6(2)$	$-174.06(16)$	

Hydrogen-bond geometry ($\hat{A},{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3 — \mathrm{H} 3 \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.95	2.48	$3.357(2)$	153
$\mathrm{C} 5 — \mathrm{H} 5 \cdots \mathrm{Br}^{\mathrm{ii}}$	0.95	2.72	$3.626(2)$	160
$\mathrm{C} 6 — \mathrm{H} 6 \cdots \mathrm{Br}^{\mathrm{iii}}$	0.95	2.78	$3.6779(19)$	157
$\mathrm{C} 1 — \mathrm{H} 1 B \cdots \mathrm{Br}^{\mathrm{iv}}$	0.98	2.89	$3.735(2)$	144
$\mathrm{C} 1 — \mathrm{H} 1 C \cdots \mathrm{Br}^{\mathrm{iii}}$	0.98	2.82	$3.755(2)$	160
$\mathrm{C} 2 — \mathrm{H} 2 \cdots \mathrm{Br}^{\mathrm{v}}$	0.95	2.79	$3.6253(18)$	147

Symmetry codes: (i) $-x+1,-y+2,-z+2$; (ii) $-x,-y+1,-z+2$; (iii) $x-1, y, z$; (iv) $-x, y+1 / 2,-z+3 / 2$; (v) $-x+1, y+1 / 2,-z+3 / 2$.

