organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-{[7-(Trifluoromethyl)quinolin-4-yl]amino}benzenesulfonamide—ethanol methanol (1/0.47/0.53)

Mostafa M. Ghorab,^a Mansour S. Al-Said,^a Abdullah A. Al-Mishari,^a Ching Kheng Quah^b‡ and Hoong-Kun Fun^b*§

^aMedicinal, Aromatic and Poisonous Plants Research Center (MAPPRC), College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: hkfun@usm.my

Received 28 June 2012; accepted 29 June 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.045; wR factor = 0.129; data-to-parameter ratio = 9.2.

In the title compound, $C_{16}H_{12}F_3N_3O_2S \cdot 0.47C_2H_5OH \cdot 0.53CH_3OH$, the quinoline ring system is approximately planar, with a maximum deviation of 0.035 (3) Å, and makes a dihedral angle of 52.67 (9)° with the benzene ring. The F atoms of the –CF₃ group are disordered over two orientations, with refined site occupancies of 0.56 (2) and 0.44 (2). A single solvate site is occupied at random by ethanol or methanol, with refined site occupancies of 0.470 (6) and 0.530 (6), respectively. In the crystal, molecules are linked *via* N–H···O, N–H···N, O–H···O and C–H···O hydrogen bonds, thereby forming sheets lying parallel to (010).

Related literature

For background to the biological and pharmacological activity of quinolines, see: Ghorab *et al.* (2011, 2012).

‡ Thomson Reuters ResearcherID: A-5525-2009. § Thomson Reuters ResearcherID: A-3561-2009.

Crystal data

C16H12F3N3O2S·0.47C2H6O-- $\beta = 91.544 \ (1)^{\circ}$ 0.53CH4O $\gamma = 92.969 (1)^{\circ}$ $M_r = 405.98$ V = 915.85 (3) Å³ Triclinic, $P\overline{1}$ Z = 2a = 8.6037 (1) ÅCu $K\alpha$ radiation b = 9.3146 (2) Å $\mu = 2.07 \text{ mm}^{-1}$ c = 11.4590 (2) Å T = 296 K $\alpha = 92.463 (1)^{\circ}$ $0.83 \times 0.43 \times 0.11 \text{ mm}$

Data collection

Bruker SMART APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) T_{min} = 0.279, T_{max} = 0.801

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	
$wR(F^2) = 0.129$	
S = 1.05	
2845 reflections	
309 parameters	
2 restraints	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H1N2\cdots O3 N3-H2N3\cdots N1^{i} N3-H1N3\cdots O1^{ii} O3-H1O3\cdots O1^{iii} O3-H1O3\cdots O2^{iii} C5-H5A\cdots O1^{iii} C5-H5A-O2^{iii} C5-H5A-O2^{iii} C5-H5A-O2^{iii} C5-H5A-O3^{iii} C5-H5A-O3^{ii} C$	0.87 0.85 (3) 0.87 (3) 0.96 0.96 0.93 0.92	2.21 2.08 (3) 2.26 (3) 2.49 2.59 2.50 2.51	3.016 (6) 2.924 (3) 3.107 (3) 3.387 (6) 3.425 (6) 3.343 (3) 2.287 (6)	153 169 (3) 163 (3) 155 146 151
$C16-H16A\cdots O3$ Symmetry codes: (i)	-x + 1, -y + 3	2.51 2, $-z + 2$; (ii)	3.287(6) -x, -y + 2, -	$\frac{141}{z+1;}$ (iii)

9433 measured reflections

 $R_{\rm int} = 0.026$

refinement

 $\Delta \rho_{\text{max}} = 0.34 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.41 \text{ e } \text{\AA}^{-3}$

2845 independent reflections

2631 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

-x + 1, -y + 2, -z + 1.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

The authors are grateful for the sponsorship of the Research Center, College of Pharmacy and the Deanship of Scientific Research, King Saud University, Riyadh, Saudi Arabia. HKF and CKQ also thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6882).

References

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ghorab, M. M., Ragab, F. A., Heiba, H. I., El-Gazzar, M. G. & El-Gazzar, M. G. (2011). Acta Pharm. 61, 415–425.
- Ghorab, M. M., Ragab, F. A., Heiba, H. I., Youssef, H. A. & El-Gazzar, M. G. (2012). *Med. Chem. Res.* **21**, 1376–1383.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2012). E68, o2396 [https://doi.org/10.1107/S1600536812029698]

4-{[7-(Trifluoromethyl)quinolin-4-yl]amino}benzenesulfonamide_ethanolmethanol (1/0.47/0.53)

Mostafa M. Ghorab, Mansour S. Al-Said, Abdullah A. Al-Mishari, Ching Kheng Quah and Hoong-Kun Fun

S1. Comment

As a continuation of our efforts towards synthesizing biologically active heterocyclic compounds (Ghorab *et al.*, 2011, 2012), we have prepared the title quinoline carrying a sulfonamide moiety to evaluate its anticancer activity, which will be reported later.

In the title molecule, Fig. 1, the quinoline ring system (N1/C1-C9) is nearly planar with a maximum deviation of 0.035 (3) Å at atom C1 and it makes a dihedral angle of 52.67 (9)° with the benzene ring (C11-C16). The F atoms (F1/F2/F3) are each disordered over two positions with refined site-occupancies of 0.56 (2) and 0.44 (2). A single solvate site is occupied at random by ethanol or methanol with refined site-occupancies of 0.470 (6) and 0.530 (6) respectively.

In the crystal (Fig.2), molecules are linked *via* N2–H1N2···O3, N3–H1N3···O1, N3–H2N3···N1, O3–H1O3···O1, O3– H1O3···O2, C5–H5A···O1 and C16–H16A···O3 hydrogen bonds (Table 1) forming two-dimensional networks parallel to (010).

S2. Experimental

A mixture of 4- chloro-7- trifluoromethylquinoline (0.01 mole) and sulfanilamide (0.01 mole) in absolute ethanol (30 ml) was refluxed for 8h. The solid obtained was recrystallized from ethanol to give the title compound. Colourless plates were obtained by slow evaporation from a methanol/ethanol solvent mixture at room temperature.

S3. Refinement

Atoms H1N3 and H2N3 were located in a difference Fourier map and refined freely with N-H = 0.86 (3) and 0.88 (3) Å. Atom H1N2 was located in a difference Fourier map and was refined using a riding model, with $U_{iso}(H) = 1.3 U_{eq}(N)$ [N-H = 0.8727]. The remaining hydrogen atoms were positioned geometrically [C–H = 0.93 or 0.96 Å, O–H = 0.95 Å] and were refined using a riding model, with $U_{iso}(H) = 1.2 U_{eq}(C)$ or 1.5 $U_{eq}(C,O)$. Trifluoro atoms (F1/F2/F3) are disordered over two positions with refined site-occupancies of 0.56 (2) and 0.44 (2). A single solvate site is occupied at random by ethanol or methanol with refined site-occupancies of 0.470 (6) and 0.530 (6) respectively.

Figure 1

The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms. Both major and minor components of disorder are shown.

Figure 2

The crystal structure of the title compound, viewed along the *a* axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity. Only the major disorder component is shown.

4-{[7-(Trifluoromethyl)quinolin-4-yl]amino}benzenesulfonamide-ethanol- methanol (1/0.47/0.53)

Z = 2

F(000) = 420

 $\theta = 3.9 - 70.4^{\circ}$

 $\mu = 2.07 \text{ mm}^{-1}$

Plate, colorless

 $0.83 \times 0.43 \times 0.11 \text{ mm}$

9433 measured reflections

 $\theta_{\rm max} = 63.0^\circ, \ \theta_{\rm min} = 3.9^\circ$

2845 independent reflections

2631 reflections with $I > 2\sigma(I)$

T = 296 K

 $R_{\rm int} = 0.026$

 $h = -9 \rightarrow 9$

 $k = -10 \rightarrow 10$

 $l = -12 \rightarrow 10$

 $D_{\rm x} = 1.472 {\rm Mg m^{-3}}$

Cu *K* α radiation, $\lambda = 1.54178$ Å

Cell parameters from 2059 reflections

Crystal data

 $\begin{array}{l} {\rm C}_{16}{\rm H}_{12}{\rm F}_{3}{\rm N}_{3}{\rm O}_{2}{\rm S}{\rm \cdot}0.47{\rm C}_{2}{\rm H}_{6}{\rm O}{\rm \cdot}0.53{\rm C}{\rm H}_{4}{\rm O}\\ M_{r}=405.98\\ {\rm Triclinic}, P\overline{1}\\ {\rm Hall \, symbol: -P\,\, 1}\\ a=8.6037\,\,(1)\,\,{\rm \mathring{A}}\\ b=9.3146\,\,(2)\,\,{\rm \mathring{A}}\\ c=11.4590\,\,(2)\,\,{\rm \mathring{A}}\\ a=92.463\,\,(1)^{\circ}\\ \beta=91.544\,\,(1)^{\circ}\\ \gamma=92.969\,\,(1)^{\circ}\\ V=915.85\,\,(3)\,\,{\rm \mathring{A}}^{3} \end{array}$

Data collection

Bruker SMART APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\min} = 0.279, T_{\max} = 0.801$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.045$	H atoms treated by a mixture of independent
$wR(F^2) = 0.129$	and constrained refinement
S = 1.05	$w = 1/[\sigma^2(F_0^2) + (0.0745P)^2 + 0.2909P]$
2845 reflections	where $P = (F_o^2 + 2F_c^2)/3$
309 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
2 restraints	$\Delta \rho_{\rm max} = 0.34 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.41 \text{ e} \text{ Å}^{-3}$
direct methods	Extinction correction: SHELXL,
Secondary atom site location: difference Fourier	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
map	Extinction coefficient: 0.0031 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S1	0.13678 (6)	1.19048 (6)	0.59873 (4)	0.0525 (2)	
F1A	1.3524 (19)	0.588 (2)	1.0571 (10)	0.172 (6)	0.56 (2)

F2A	1.2936 (12)	0.4416 (8)	0.9214 (12)	0.116 (4)	0.56(2)
F3A	1.4169 (11)	0.630 (2)	0.887 (2)	0.165 (5)	0.56(2)
F1B	1.321 (2)	0.470 (2)	0.8836 (18)	0.154 (7)	0.44 (2)
F2B	1.2955 (16)	0.5212 (19)	1.0590 (12)	0.137 (5)	0.44 (2)
F3B	1.4139 (11)	0.6569 (10)	0.961 (2)	0.118 (4)	0.44(2)
N1	0.8884 (2)	0.8734 (2)	1.08416 (15)	0.0558 (5)	()
N2	0.6928 (3)	0.8826 (3)	0.74398 (17)	0.0723 (6)	
H1N2	0.7094	0.8068	0.6996	0.094*	
N3	-0.0014(2)	1,1225 (3)	0.67275 (19)	0.0607 (5)	
01	0.0977(2)	1 15432 (19)	0 47846 (13)	0.0640(4)	
02	0.0577(2)	1 33775 (18)	0.63484 (16)	0.0724(5)	
C1	0.7685(3)	0.9498(3)	1.05917(19)	0.0721(5) 0.0577(6)	
H1A	0.7267	1.0026	1 1203	0.069*	
C^2	0.7207 0.6992 (2)	0.9581(3)	0.94910 (19)	0.009	
U2 Н24	0.6143	1 0145	0.9388	0.0515(5)	
C3	0.0145 0.7565 (2)	0.8827(2)	0.85519 (18)	0.000	
C4	0.7505(2) 0.8899(2)	0.8027(2) 0.8004(2)	0.87623(18)	0.0312(5) 0.0499(5)	
C5	0.0077(2)	0.3004(2) 0.7244(3)	0.37023(10) 0.7879(2)	0.0499(5)	
С. 115 л	0.9074 (3)	0.7244 (3)	0.7879 (2)	0.0048(0)	
C6	1.0046 (3)	0.7250	0.7110 0.8123 (2)	0.078	
	1.0940 (3)	0.0508 (5)	0.8123 (2)	0.0000(7)	
	1.1450	0.6487(3)	0.7527 0.0270 (2)	0.062	
C7 C8	1.1324(3) 1.0800(3)	0.0487(3) 0.7104(2)	0.9279(2)	0.0000(0)	
	1.0800 (5)	0.7194 (2)	1.0134(2)	0.0304 (3)	
ПоА	1.11/0	0.7133	1.0919	0.008	
C9	0.9495(2)	0.7981(2)	0.99220(18)	0.0489(3)	
C10 C11	1.3000(3)	0.3731(3)	0.9320(3)	0.0709(8)	
	0.5640(3)	0.9000(3)	0.70824(19) 0.724((2))	0.0596 (6)	
	0.5560 (5)	1.1052 (5)	0.7346 (2)	0.0010(0)	
HIZA	0.6380	1.1554	0.7756	0.074*	
U13	0.4265 (3)	1.1765 (3)	0.7003 (2)	0.0578(6)	
HI3A	0.4199	1.2/38	0.7203	0.069*	
CI4	0.3073 (2)	1.1028 (2)	0.63654 (18)	0.0504 (5)	
C15	0.3168 (3)	0.9587 (3)	0.6061 (2)	0.0671 (7)	
HI5A	0.2377	0.9102	0.5609	0.081*	
C16	0.4443 (3)	0.8871 (3)	0.6433 (2)	0.0718 (7)	
HI6A	0.4499	0.7893	0.6246	0.086*	
H2N3	0.020 (3)	1.130 (3)	0.746 (3)	0.061 (7)*	
H1N3	-0.034 (3)	1.037 (3)	0.645 (3)	0.075 (9)*	
03	0.6404 (7)	0.5947 (6)	0.6144 (5)	0.120 (2)	0.530 (6)
H1O3	0.7187	0.6422	0.5695	0.181*	0.530 (6)
C17	0.7032 (11)	0.4787 (8)	0.6295 (13)	0.148 (4)	0.530 (6)
H17A	0.7984	0.4949	0.6749	0.223*	0.530 (6)
H17B	0.6311	0.4193	0.6712	0.223*	0.530 (6)
H17C	0.7243	0.4313	0.5560	0.223*	0.530 (6)
C18	0.3657 (7)	0.5101 (10)	0.4490 (6)	0.084 (2)	0.470 (6)
H18A	0.4198	0.5162	0.3770	0.100*	0.470 (6)
H18B	0.3355	0.4103	0.4562	0.100*	0.470 (6)
C19	0.2268 (12)	0.5869 (11)	0.4363 (12)	0.131 (4)	0.470 (6)

supporting information

H19A	0.1698	0.5435	0.3695	0.196*	0.470 (6)
H19B	0.1649	0.5786	0.5043	0.196*	0.470 (6)
H19C	0.2508	0.6867	0.4235	0.196*	0.470 (6)
O4	0.4659 (8)	0.5410 (5)	0.5282 (6)	0.130 (3)	0.470 (6)
H1O4	0.5659	0.5073	0.5128	0.195*	0.470 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0516 (3)	0.0669 (4)	0.0399 (3)	0.0193 (2)	-0.0105 (2)	0.0026 (2)
F1A	0.138 (8)	0.260 (12)	0.120 (7)	0.136 (8)	-0.081 (6)	-0.078 (7)
F2A	0.087 (3)	0.065 (3)	0.196 (12)	0.027 (3)	-0.023 (4)	0.014 (5)
F3A	0.059 (3)	0.210 (10)	0.243 (12)	0.052 (4)	0.031 (5)	0.124 (9)
F1B	0.152 (11)	0.182 (13)	0.128 (8)	0.127 (10)	-0.068 (7)	-0.080 (8)
F2B	0.103 (6)	0.187 (9)	0.132 (9)	0.069 (6)	-0.014 (5)	0.083 (9)
F3B	0.044 (3)	0.105 (4)	0.205 (12)	0.005 (3)	-0.022 (6)	0.029 (6)
N1	0.0571 (11)	0.0718 (11)	0.0393 (10)	0.0096 (9)	-0.0032 (8)	0.0045 (8)
N2	0.0639 (12)	0.1111 (17)	0.0443 (11)	0.0455 (12)	-0.0132 (9)	-0.0094 (10)
N3	0.0517 (11)	0.0880 (16)	0.0435 (12)	0.0193 (10)	-0.0071 (8)	0.0019 (10)
01	0.0681 (10)	0.0856 (11)	0.0397 (9)	0.0222 (8)	-0.0117 (7)	0.0052 (7)
O2	0.0794 (12)	0.0654 (10)	0.0728 (11)	0.0213 (8)	-0.0194 (9)	-0.0012 (8)
C1	0.0546 (13)	0.0764 (14)	0.0431 (12)	0.0127 (10)	0.0047 (9)	0.0018 (10)
C2	0.0429 (11)	0.0743 (14)	0.0478 (12)	0.0140 (9)	0.0029 (8)	0.0068 (10)
C3	0.0403 (10)	0.0718 (13)	0.0424 (11)	0.0126 (9)	-0.0032 (8)	0.0047 (9)
C4	0.0434 (11)	0.0641 (12)	0.0428 (11)	0.0090 (9)	-0.0035 (8)	0.0037 (9)
C5	0.0629 (14)	0.0883 (17)	0.0447 (13)	0.0271 (12)	-0.0072 (10)	-0.0008 (11)
C6	0.0639 (15)	0.0850 (16)	0.0571 (14)	0.0314 (12)	-0.0046 (11)	-0.0039 (11)
C7	0.0502 (12)	0.0637 (13)	0.0683 (15)	0.0145 (10)	-0.0126 (10)	0.0030 (11)
C8	0.0536 (12)	0.0642 (13)	0.0510 (13)	0.0072 (10)	-0.0156 (10)	0.0052 (10)
C9	0.0448 (11)	0.0595 (11)	0.0423 (11)	0.0032 (9)	-0.0060 (8)	0.0065 (8)
C10	0.0619 (17)	0.0797 (18)	0.090 (2)	0.0252 (14)	-0.0209 (14)	0.0023 (15)
C11	0.0482 (12)	0.0918 (17)	0.0405 (12)	0.0249 (11)	-0.0059 (9)	0.0021 (10)
C12	0.0479 (12)	0.0813 (16)	0.0554 (14)	0.0065 (10)	-0.0125 (10)	0.0054 (11)
C13	0.0528 (12)	0.0680 (13)	0.0529 (13)	0.0087 (10)	-0.0089 (9)	0.0061 (10)
C14	0.0463 (11)	0.0670 (13)	0.0391 (11)	0.0158 (9)	-0.0059 (8)	0.0046 (9)
C15	0.0599 (14)	0.0769 (16)	0.0637 (15)	0.0210 (11)	-0.0241 (11)	-0.0112 (12)
C16	0.0725 (16)	0.0784 (16)	0.0649 (16)	0.0330 (13)	-0.0241 (12)	-0.0127 (12)
03	0.144 (5)	0.093 (3)	0.119 (4)	0.004 (3)	-0.041 (3)	-0.016 (3)
C17	0.111 (8)	0.139 (10)	0.191 (13)	-0.020 (7)	-0.039 (8)	0.017 (8)
C18	0.068 (4)	0.124 (7)	0.065 (4)	0.050 (4)	0.002 (3)	0.026 (4)
C19	0.104 (7)	0.090 (6)	0.203 (12)	0.024 (5)	0.006 (7)	0.034 (6)
O4	0.160 (6)	0.071 (3)	0.159 (7)	0.004 (3)	0.039 (5)	-0.022 (3)

Geometric parameters (Å, °)

<u>S1—O2</u>	1.4202 (18)	C7—C10	1.500 (3)
S1—O1	1.4314 (16)	C8—C9	1.399 (3)
S1—N3	1.599 (2)	C8—H8A	0.9300

S1C14	1 768 (2)	C11_C12	1 379 (4)
F1A-C10	1.766 (8)	$C_{11} - C_{16}$	1.375(1) 1 385(4)
$F_{2} = C_{10}$	1.200 (0)	C12-C13	1.383(3)
$F_{2A} = C_{10}$	1.277(0) 1.362(0)	C12 = H12A	0.0300
F1P C10	1.302(9) 1.258(10)	C_{12} C_{12} C_{14}	0.3300
F1D - C10	1.230(10)	$C_{12} = U_{12}$	1.379 (3)
F2B-C10	1.339 (10)	CI3—HI3A	0.9300
F3B-C10	1.209 (9)		1.379 (3)
NI—CI	1.316 (3)	C15-C16	1.381 (3)
N1—C9	1.371 (3)	C15—H15A	0.9300
N2—C3	1.373 (3)	C16—H16A	0.9300
N2—C11	1.414 (3)	O3—C17	1.2497 (11)
N2—H1N2	0.8727	O3—H1O3	0.9600
N3—H2N3	0.86 (3)	C17—H17A	0.9600
N3—H1N3	0.88 (3)	C17—H17B	0.9600
C1—C2	1.387 (3)	C17—H17C	0.9600
C1—H1A	0.9300	C18—O4	1.2485 (11)
C2—C3	1.376 (3)	C18—C19	1.432 (11)
C2—H2A	0.9300	C18—O4 ⁱ	1.567 (11)
C3—C4	1434(3)	C18—H18A	0.9600
C4-C5	1.131(3) 1.412(3)	C18_H18B	0.9600
C_{4}	1.412(3)		0.9600
C5 C6	1.412(3) 1.250(2)	C10 H10P	0.9000
$C_5 = U_5 \Lambda$	1.550 (5)	C10_U10C	0.9000
CS—HSA	0.9300		0.9600
	1.404 (3)		1.1/1 (11)
С6—Н6А	0.9300	O4—C18 ¹	1.567 (11)
С7—С8	1.359 (4)	O4—H1O4	0.9500
02-81-01	118 81 (11)	F3B	113 3 (5)
02 - 51 - N3	108 50 (13)	F1B - C10 - C7	114.0 (6)
O1 S1 N3	106.30(13) 106.49(12)	$F_{1A} = C_{10} = C_7$	114.0(0) 115.0(4)
$02 \ S1 \ C14$	100.49(12) 107.14(11)	$F_{2A} = C_{10} = C_7$	113.9(4)
02 - 51 - 014	107.14(11) 108.12(10)	$F_{2A} = C_{10} = C_{7}$	114.0(5)
01 - 51 - C14	108.12(10)	F2B = C10 = C7	109.0(3)
N3—SI—C14	107.28 (10)	F3A = C10 = C7	110.3 (4)
CI—NI—C9	116.18 (18)	C12— $C11$ — $C16$	119.6 (2)
C3—N2—C11	126.10 (19)	C12—C11—N2	121.9 (2)
C3—N2—H1N2	115.2	C16—C11—N2	118.5 (2)
C11—N2—H1N2	114.7	C11—C12—C13	120.2 (2)
S1—N3—H2N3	111.6 (17)	C11—C12—H12A	119.9
S1—N3—H1N3	112 (2)	C13—C12—H12A	119.9
H2N3—N3—H1N3	116 (3)	C14—C13—C12	119.8 (2)
N1—C1—C2	125.4 (2)	C14—C13—H13A	120.1
N1—C1—H1A	117.3	C12—C13—H13A	120.1
C2—C1—H1A	117.3	C13—C14—C15	120.4 (2)
C3—C2—C1	119.9 (2)	C13—C14—S1	120.16 (17)
C3—C2—H2A	120.0	C15—C14—S1	119.35 (17)
C1 - C2 - H2A	120.0	C14-C15-C16	119.6 (2)
$N_{2} - C_{3} - C_{2}$	123.6 (2)	C14 - C15 - H15A	120.2
N2-C3-C4	119.04 (19)	C_{16} C_{15} H_{15A}	120.2
112 UJ UT	117.07 (17)		140.4

$C_{2} - C_{3} - C_{4}$	117 38 (19)	C15-C16-C11	120.3(2)
$C_{2} = C_{3} = C_{1}$	117.30(17)	C_{15} C_{16} H_{16A}	119.8
$C_5 C_4 C_3$	124.07(10)	C_{11} C_{16} H_{16A}	110.8
C_{2}	124.07(19) 117.80(19)	C17 O3 H1O3	00.6
$C_{2} = C_{2} = C_{2}$	117.00(19) 121.6(2)	$C_{17} = 05 = 1105$	99.0 110.6
C6 C5 H5A	121.0 (2)	$O_{2} = C_{17} = H_{17} R$	106.0
$C_0 = C_5 = H_5 A$	119.2	$U_{17} = U_{17} = U_{17}$	100.9
C4 - C3 - H3A	119.2	$\Pi / A = C I / = \Pi / B$	109.5
$C_{5} = C_{6} = C_{7}$	119.9 (2)		110.9
С5—С6—Н6А	120.1	HI/A - CI/-HI/C	109.5
С/—С6—Н6А	120.1	Н17В—С17—Н17С	109.5
C8—C7—C6	120.2 (2)	04—C18—C19	122.6 (9)
C8—C7—C10	120.4 (2)	O4—C18—O4 ¹	47.5 (5)
C6—C7—C10	119.3 (2)	C19—C18—O4 ⁱ	167.5 (9)
C7—C8—C9	121.1 (2)	O4—C18—H18A	105.7
С7—С8—Н8А	119.5	C19—C18—H18A	107.2
С9—С8—Н8А	119.5	O4 ⁱ —C18—H18A	72.6
N1—C9—C8	117.50 (19)	O4—C18—H18B	106.1
N1—C9—C4	123.32 (19)	C19—C18—H18B	107.9
C8—C9—C4	119.1 (2)	O4 ⁱ —C18—H18B	83.8
F3B—C10—F1B	111.2 (9)	H18A—C18—H18B	106.3
F3B—C10—F1A	69.1 (7)	C18—C19—H19A	106.8
F1B-C10-F1A	124.4 (7)	C18—C19—H19B	110.5
F3B—C10—F2A	127.6 (7)	H19A—C19—H19B	109.5
F1A-C10-F2A	107.9 (8)	C18—C19—H19C	111.1
F3B-C10-F2B	102.5 (7)	H19A—C19—H19C	109.5
F1B— $C10$ — $F2B$	1054(9)	H19B—C19—H19C	109.5
$F_2A = C_10 = F_2B$	81 8 (8)	$04^{i}-04-C18$	80.7 (6)
F1B— $C10$ — $F3A$	78.6 (8)	$04^{i} - 04 - 018^{i}$	51.8(4)
F1A = C10 = F3A	105.2(7)	$C_{18} O_{4} C_{18}^{ii}$	1325(5)
$F_{1A} = C_{10} = F_{3A}$	103.2(7) 102.4(0)	$C_{18} = 04 = 04$	132.3(3)
F2A = C10 = F3A	102.4(9) 122.7(6)	04-11104	114.4
F2D-C10-F3A	155.7 (0)		
C0 N1 $C1$ $C2$	0.0(2)	C ⁸ C7 C10 E1A	-21(15)
$C_{2} = N_{1} = C_{1} = C_{2}$	0.9(3)	C6 C7 C10 E1A	2.1(13)
N1 - C1 - C2 - C3	-0.2(4)	C_{0} C_{1} C_{10} F_{10}	1/4.3(14)
C11 - N2 - C3 - C2	1.4 (4)	$C_{0} = C_{1} = C_{10} = F_{2A}$	124.1 (7)
C11 - N2 - C3 - C4	-1/8.6(2)	C_{0} C_{1} C_{10} F_{2}	-59.5(7)
C1 = C2 = C3 = N2	1/8.6 (2)	C8 - C7 - C10 - F2B	34.5 (10)
C1 - C2 - C3 - C4	-1.4(3)	C6—C/—C10—F2B	-149.1 (10)
N2-C3-C4-C5	3.9 (4)	C8—C7—C10—F3A	-121.4 (13)
C2—C3—C4—C5	-176.1 (2)	C6—C7—C10—F3A	55.0 (13)
N2—C3—C4—C9	-177.6 (2)	C3—N2—C11—C12	50.6 (4)
C2—C3—C4—C9	2.3 (3)	C3—N2—C11—C16	-130.4 (3)
C9—C4—C5—C6	0.2 (4)	C16—C11—C12—C13	2.5 (4)
C3—C4—C5—C6	178.7 (2)	N2-C11-C12-C13	-178.6 (2)
C4—C5—C6—C7	0.1 (4)	C11—C12—C13—C14	-2.0 (4)
C5—C6—C7—C8	0.6 (4)	C12—C13—C14—C15	-0.4 (4)
C5—C6—C7—C10	-175.8 (3)	C12-C13-C14-S1	176.73 (17)
C6—C7—C8—C9	-1.5 (4)	O2—S1—C14—C13	5.9 (2)

C10—C7—C8—C9	174.9 (2)	O1—S1—C14—C13	135.11 (19)
C1—N1—C9—C8	178.0 (2)	N3—S1—C14—C13	-110.4 (2)
C1—N1—C9—C4	0.2 (3)	O2—S1—C14—C15	-176.9 (2)
C7—C8—C9—N1	-176.2 (2)	O1—S1—C14—C15	-47.8 (2)
C7—C8—C9—C4	1.7 (3)	N3—S1—C14—C15	66.7 (2)
C5—C4—C9—N1	176.8 (2)	C13-C14-C15-C16	2.2 (4)
C3-C4-C9-N1	-1.8 (3)	S1-C14-C15-C16	-175.0 (2)
C5—C4—C9—C8	-1.0 (3)	C14-C15-C16-C11	-1.6 (4)
C3—C4—C9—C8	-179.6 (2)	C12-C11-C16-C15	-0.7 (4)
C8—C7—C10—F3B	-79.2 (13)	N2-C11-C16-C15	-179.7 (2)
C6—C7—C10—F3B	97.2 (13)	C19—C18—O4—O4 ⁱ	-170.3 (9)
C8—C7—C10—F1B	152.4 (15)	C19—C18—O4—C18 ⁱ	-170.3 (9)
C6—C7—C10—F1B	-31.2 (16)	$O4^{i}$ — $C18$ — $O4$ — $C18^{i}$	-0.003 (1)

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N2—H1 <i>N</i> 2····O3	0.87	2.21	3.016 (6)	153
N3— $H2N3$ ···N1 ⁱⁱ	0.85 (3)	2.08 (3)	2.924 (3)	169 (3)
N3—H1 <i>N</i> 3…O1 ⁱⁱⁱ	0.87 (3)	2.26 (3)	3.107 (3)	163 (3)
O3—H1 <i>O</i> 3····O1 ^{iv}	0.96	2.49	3.387 (6)	155
O3—H1 <i>O</i> 3···O2 ^{iv}	0.96	2.59	3.425 (6)	146
C5—H5 <i>A</i> ···O1 ^{iv}	0.93	2.50	3.343 (3)	151
C16—H16A····O3	0.93	2.51	3.287 (6)	141

Symmetry codes: (ii) -*x*+1, -*y*+2, -*z*+2; (iii) -*x*, -*y*+2, -*z*+1; (iv) -*x*+1, -*y*+2, -*z*+1.