\times 0.40 \times 0.30 mm

2980 reflections with $I > 2\sigma(I)$

intensity decay: 2%

3 standard reflections every 60 min

 $R_{\rm int} = 0.102$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Benzyl-1H-benzotriazole 3-oxide-1-hydroxy-1*H*-benzotriazole (1/1)

P. Selvarathy Grace,^a Samuel Robinson Jebas,^b B. Ravindran Durai Nayagam^a* and Dieter Schollmeyer^c

^aDepartment of Chemistry, Popes College, Sawyerpuram 628 251, Tamilnadu, India, ^bDepartment of Physics, Sethupathy Government Arts College, Ramanathapuram 623 502, Tamilnadu, India, and ^cInstitut für Organische Chemie, Universität Mainz, Duesbergweg 10-14, 55099 Mainz, Germany Correspondence e-mail: b_ravidurai@yahoo.com

Received 25 June 2012; accepted 2 July 2012

Key indicators: single-crystal X-ray study; T = 193 K; mean σ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.132; data-to-parameter ratio = 13.0.

In the title compound, C₆H₅N₃O·C₁₃H₁₁N₃O, the benzotriazole ring system in the 1-benzyl-1H-benzotriazole 3-oxide (A) molecule is close to being planar (r.m.s. deviation = (A + A)0.011 Å); its mean plane forms a dihedral angle of $67.56 (7)^{\circ}$ with that of the attached phenyl ring. The benzotriazole ring system in the 1-hydroxybenzotriazole (B) molecule is also close to being planar (r.m.s. deviation = 0.010 Å). In the crystal, weak C-H···O and C-H··· π interactions are present. The A and B molecules are linked by an $O-H \cdots N$ hydrogen bond.

Related literature

For related structures and background to benzotriazoles, see: Ravindran et al. (2009); Selvarathy Grace et al. (2012).

Experimental

Crystal data

$C_{6}H_{5}N_{3}O \cdot C_{13}H_{11}N_{3}O$	V = 1687.47 (18) Å ³
$M_r = 360.38$	Z = 4
Monoclinic, $P2_1/c$	Cu Ka radiation
a = 11.2728 (8) Å	$\mu = 0.80 \text{ mm}^{-1}$
b = 12.2354 (5) Å	T = 193 K
c = 13.1002 (9) Å	$0.40 \times 0.40 \times 0.30$ m
$\beta = 110.946 (3)^{\circ}$	

Data collection

Enraf-Nonius CAD-4 diffractometer 3364 measured reflections 3197 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	245 parameters
$wR(F^2) = 0.132$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.35 \text{ e } \text{\AA}^{-3}$
3197 reflections	$\Delta \rho_{\rm min} = -0.27 \text{ e} \text{ \AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
0.84	2.57	3.3621 (18)	157
0.95	2.50	3.200 (2)	130
0.99	2.85	3.5146 (17)	125
0.95	2.69	3.510 (2)	145
	0.84 0.95 0.99 0.95	0.84 2.57 0.95 2.50 0.99 2.85 0.95 2.69	0.84 2.57 3.3621 (18) 0.95 2.50 3.200 (2) 0.99 2.85 3.5146 (17) 0.95 2.69 3.510 (2)

Symmetry codes: (i) x + 1, y, z; (ii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) -x + 1, -y + 1, -z; (iv) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971; Wiehl & Schollmeyer, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6878).

References

Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.

Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands

Ravindran Durai Nayagam, B., Jebas, S. R., Edward Rajkumar, J. P. & Schollmeyer, D. (2009). Acta Cryst. E65, 0917.

Selvarathy Grace, P., Jebas, S. R., Ravindran Durai Nayagam, B. & Schollmeyer, D. (2012). Acta Cryst. E68, 01132.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Wiehl, L. & Schollmeyer, D. (1994). CORINC. University of Mainz, Germany.

supporting information

Acta Cryst. (2012). E68, o2399 [https://doi.org/10.1107/S1600536812030061]

1-Benzyl-1*H*-benzotriazole 3-oxide–1-hydroxy-1*H*-benzotriazole (1/1)

P. Selvarathy Grace, Samuel Robinson Jebas, B. Ravindran Durai Nayagam and Dieter Schollmeyer

S1. Comment

As part of our ongoing studies of benzotriazole derivatives (Ravindran *et al.*, 2009; Selvarathy Grace *et al.*, 2012), we now report the crystal structure of the title compound (I), (Fig. 1).

The benzotriazole rings are essentially planar with the maximum deviation from planarity being 0.015 (14) Å for atoms N1 and N5. The mean plane of the benzotriazole ring N1—N3/C1—C6 forms a dihedral angle of 67.56 (7) Å with the mean plane of the phenyl ring (C8—C13).

The crystal packing features weak C—H··· π interactions. The hydrogen bonding interactions are shown in Fig 2.

S2. Experimental

A mixture of the sodium salt of 1- hydroxyl benzotriazole (0.314 g, 2 mmol) and benzyl chloride (0.126 g, 1 mmol) in methanol (10 ml), were heated at 333K with stirring for 6 hours. The mixture was kept aside for slow evaporation. After a week, colourless blocks were recovered.

S3. Refinement

H atoms were positioned geometrically [C—H = 0.95 (aromatic) or 0.99 Å (methylene)] and refined using a riding model, with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figure 1

The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level.

Figure 2

The unit cell showing the hydrogen bonding interaction of the title compound. Hydrogen bonds are shown as dashed lines.

1-Benzyl-1*H*-benzotriazole 3-oxide–1-hydroxy-1*H*-benzotriazole (1/1)

Crystal data C₆H₅N₃O·C₁₃H₁₁N₃O $M_r = 360.38$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 11.2728 (8) Å b = 12.2354 (5) Å c = 13.1002 (9) Å $\beta = 110.946$ (3)° V = 1687.47 (18) Å³ Z = 4

F(000) = 752 $D_x = 1.419 \text{ Mg m}^{-3}$ Cu K\alpha radiation, \lambda = 1.54178 \u00e5 Cell parameters from 25 reflections $\theta = 65-69^{\circ}$ $\mu = 0.80 \text{ mm}^{-1}$ T = 193 KBlock, colourless $0.40 \times 0.40 \times 0.30 \text{ mm}$ Data collection

Enraf–Nonius CAD-4 diffractometer Radiation source: rotating anode Graphite monochromator $\omega/2\theta$ scans 3364 measured reflections 3197 independent reflections 2980 reflections with $I > 2\sigma(I)$	$R_{int} = 0.102$ $\theta_{max} = 70.0^{\circ}, \ \theta_{min} = 4.2^{\circ}$ $h = 0 \rightarrow 13$ $k = 0 \rightarrow 14$ $l = -15 \rightarrow 14$ 3 standard reflections every 60 min intensity decay: 2%
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.132$ S = 1.08 3197 reflections 245 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0776P)^2 + 0.6089P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.35$ e Å ⁻³ $\Delta\rho_{min} = -0.27$ e Å ⁻³ Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc*=kFc[1+0.001xFc ² \lambda ³ /sin(2 θ)] ^{-1/4} Extinction coefficient: 0.0035 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.23017 (11)	0.44814 (10)	0.07382 (10)	0.0233 (3)	
N2	0.21688 (11)	0.34031 (10)	0.08272 (10)	0.0261 (3)	
N3	0.12730 (11)	0.32935 (10)	0.12460 (10)	0.0256 (3)	
C1	0.08113 (13)	0.42800 (12)	0.14320 (11)	0.0231 (3)	
C2	-0.01438 (14)	0.45549 (14)	0.18361 (13)	0.0314 (4)	
H2	-0.0618	0.4017	0.2048	0.038*	
C3	-0.03466 (15)	0.56486 (15)	0.19043 (13)	0.0351 (4)	
Н3	-0.0985	0.5880	0.2172	0.042*	
C4	0.03627 (15)	0.64472 (14)	0.15895 (13)	0.0340 (4)	
H4	0.0191	0.7197	0.1663	0.041*	
C5	0.12920 (14)	0.61800 (12)	0.11806 (13)	0.0284 (3)	
Н5	0.1760	0.6719	0.0963	0.034*	
C6	0.15024 (13)	0.50592 (11)	0.11070(11)	0.0216 (3)	
C7	0.32424 (14)	0.48951 (13)	0.02917 (12)	0.0285 (3)	
H7A	0.2976	0.5627	-0.0030	0.034*	

H7B	0.3269	0.4402	-0.0299	0.034*
C8	0.45521 (13)	0.49730 (12)	0.11541 (12)	0.0250 (3)
C9	0.50482 (15)	0.59795 (13)	0.15887 (14)	0.0327 (4)
H9	0.4566	0.6626	0.1333	0.039*
C10	0.62432 (17)	0.60451 (15)	0.23944 (15)	0.0384 (4)
H10	0.6576	0.6736	0.2691	0.046*
C11	0.69520 (15)	0.51109 (15)	0.27686 (13)	0.0368 (4)
H11	0.7768	0.5158	0.3326	0.044*
C12	0.64695 (16)	0.41032 (15)	0.23292 (15)	0.0379 (4)
H12	0.6957	0.3459	0.2583	0.045*
C13	0.52801 (15)	0.40353 (13)	0.15226 (14)	0.0323 (4)
H13	0.4957	0.3345	0.1217	0.039*
01	0.09227 (11)	0.23257 (9)	0.14562 (11)	0.0383 (3)
N4	0.66756 (14)	0.18397 (12)	0.08895 (14)	0.0428 (4)
N5	0.75634 (14)	0.21667 (11)	0.05304 (14)	0.0417 (4)
N6	0.81861 (13)	0.12778 (10)	0.03929 (12)	0.0312 (3)
C14	0.77039 (14)	0.03437 (12)	0.06416 (12)	0.0252 (3)
C15	0.79910 (16)	-0.07638 (13)	0.06063 (13)	0.0329 (4)
H15	0.8655	-0.1009	0.0377	0.039*
C16	0.72455 (18)	-0.14724 (13)	0.09268 (14)	0.0372 (4)
H16	0.7400	-0.2235	0.0921	0.045*
C17	0.62562 (17)	-0.11034 (15)	0.12655 (14)	0.0378 (4)
H17	0.5768	-0.1625	0.1482	0.045*
C18	0.59823 (16)	-0.00226 (15)	0.12905 (14)	0.0353 (4)
H18	0.5313	0.0218	0.1516	0.042*
C19	0.67306 (15)	0.07221 (13)	0.09693 (13)	0.0293 (3)
02	0.91290 (12)	0.13654 (10)	-0.00258 (11)	0.0419 (3)
H2A	0.9753	0.1692	0.0424	0.063*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0237 (6)	0.0214 (6)	0.0286 (6)	-0.0013 (5)	0.0138 (5)	0.0007 (5)
N2	0.0253 (6)	0.0211 (6)	0.0344 (7)	-0.0006 (5)	0.0139 (5)	-0.0006 (5)
N3	0.0235 (6)	0.0201 (6)	0.0339 (7)	-0.0012 (4)	0.0112 (5)	0.0047 (5)
C1	0.0217 (6)	0.0232 (7)	0.0246 (7)	0.0012 (5)	0.0086 (5)	0.0035 (5)
C2	0.0267 (7)	0.0391 (9)	0.0321 (8)	0.0020 (6)	0.0150 (6)	0.0055 (7)
C3	0.0309 (8)	0.0452 (10)	0.0327 (8)	0.0095 (7)	0.0157 (7)	-0.0010 (7)
C4	0.0361 (8)	0.0288 (8)	0.0355 (8)	0.0080 (6)	0.0109 (7)	-0.0055 (6)
C5	0.0311 (8)	0.0215 (7)	0.0322 (8)	-0.0004 (6)	0.0108 (6)	0.0006 (6)
C6	0.0210 (6)	0.0215 (7)	0.0226 (7)	0.0002 (5)	0.0081 (5)	0.0004 (5)
C7	0.0290 (8)	0.0327 (8)	0.0294 (8)	-0.0041 (6)	0.0173 (6)	0.0016 (6)
C8	0.0264 (7)	0.0273 (7)	0.0280 (7)	-0.0023 (6)	0.0179 (6)	0.0000 (6)
C9	0.0350 (8)	0.0258 (8)	0.0426 (9)	-0.0038 (6)	0.0203 (7)	0.0017 (6)
C10	0.0405 (9)	0.0372 (9)	0.0416 (9)	-0.0148 (7)	0.0197 (7)	-0.0068 (7)
C11	0.0292 (8)	0.0537 (11)	0.0301 (8)	-0.0065 (7)	0.0138 (6)	0.0012 (7)
C12	0.0342 (8)	0.0414 (9)	0.0415 (9)	0.0066 (7)	0.0177 (7)	0.0076 (7)
C13	0.0334 (8)	0.0287 (8)	0.0407 (9)	0.0001 (6)	0.0206 (7)	-0.0030 (6)

supporting information

01	0.0371 (6)	0.0216 (6)	0.0573 (8)	-0.0058 (4)	0.0181 (5)	0.0105 (5)
N4	0.0421 (8)	0.0264 (7)	0.0647 (10)	0.0033 (6)	0.0249 (7)	-0.0049 (7)
N5	0.0449 (8)	0.0207 (7)	0.0623 (10)	0.0006 (6)	0.0225 (7)	0.0008 (6)
N6	0.0332 (7)	0.0223 (6)	0.0432 (8)	-0.0021 (5)	0.0199 (6)	0.0021 (5)
C14	0.0301 (7)	0.0211 (7)	0.0261 (7)	-0.0034 (6)	0.0121 (6)	-0.0010 (5)
C15	0.0427 (9)	0.0258 (8)	0.0357 (8)	0.0037 (7)	0.0208 (7)	-0.0014 (6)
C16	0.0550 (11)	0.0203 (7)	0.0382 (9)	-0.0034 (7)	0.0189 (8)	-0.0006 (6)
C17	0.0452 (10)	0.0367 (9)	0.0342 (9)	-0.0141 (7)	0.0175 (7)	0.0008 (7)
C18	0.0343 (8)	0.0419 (9)	0.0350 (9)	-0.0054 (7)	0.0187 (7)	-0.0043 (7)
C19	0.0313 (8)	0.0247 (8)	0.0327 (8)	0.0001 (6)	0.0124 (6)	-0.0043 (6)
O2	0.0451 (7)	0.0395 (7)	0.0521 (7)	-0.0101 (5)	0.0309 (6)	-0.0005 (6)

Geometric parameters (Å, °)

N1—N2	1.3376 (17)	C10—H10	0.9500	
N1-C6	1.3625 (18)	C11—C12	1.387 (3)	
N1C7	1.4718 (17)	C11—H11	0.9500	
N2—N3	1.3171 (17)	C12—C13	1.381 (2)	
N3—O1	1.3082 (16)	C12—H12	0.9500	
N3—C1	1.3703 (19)	C13—H13	0.9500	
C1—C6	1.391 (2)	N4—N5	1.311 (2)	
C1—C2	1.400 (2)	N4—C19	1.371 (2)	
C2—C3	1.366 (2)	N5—N6	1.3411 (19)	
С2—Н2	0.9500	N6	1.3545 (19)	
C3—C4	1.414 (3)	N6—O2	1.3635 (17)	
С3—Н3	0.9500	C14—C19	1.393 (2)	
C4—C5	1.376 (2)	C14—C15	1.398 (2)	
C4—H4	0.9500	C15—C16	1.373 (2)	
С5—С6	1.401 (2)	C15—H15	0.9500	
С5—Н5	0.9500	C16—C17	1.414 (3)	
С7—Н7А	0.9900	C16—H16	0.9500	
С7—Н7В	0.9900	C17—C18	1.361 (3)	
С8—С9	1.388 (2)	C17—H17	0.9500	
C8—C13	1.393 (2)	C18—C19	1.404 (2)	
С9—Н9	0.9500	C18—H18	0.9500	
C10—C11	1.380 (3)	O2—H2A	0.8400	
N2—N1—C6	111.83 (11)	C11—C10—C9	120.30 (16)	
N2—N1—C7	119.53 (12)	C11—C10—H10	119.9	
C6—N1—C7	128.63 (12)	C9—C10—H10	119.9	
N3—N2—N1	105.26 (11)	C10-C11-C12	119.83 (16)	
O1—N3—N2	120.92 (12)	C10-C11-H11	120.1	
01—N3—C1	126.69 (12)	C12—C11—H11	120.1	
N2—N3—C1	112.38 (12)	C13—C12—C11	120.02 (16)	
N3—C1—C6	105.04 (12)	C13—C12—H12	120.0	
N3—C1—C2	132.16 (14)	C11—C12—H12	120.0	
C6—C1—C2	122.80 (14)	C12—C13—C8	120.41 (15)	
C3—C2—C1	115.44 (15)	C12—C13—H13	119.8	

С3—С2—Н2	122.3	C8—C13—H13	119.8
C1—C2—H2	122.3	N5—N4—C19	108.20 (14)
C2—C3—C4	122.17 (15)	N4—N5—N6	107.69 (13)
С2—С3—Н3	118.9	N5—N6—C14	112.19 (13)
С4—С3—Н3	118.9	N5—N6—O2	120.74 (13)
C5—C4—C3	122.55 (15)	C14—N6—O2	126.92 (13)
C5-C4-H4	118 7	N6-C14-C19	102.81(13)
C3—C4—H4	118.7	N6-C14-C15	133 83 (14)
C4-C5-C6	115 51 (14)	C19-C14-C15	123.05(11) 123.35(14)
C4-C5-H5	122.2	C_{16} C_{15} C_{14}	125.35(11) 115.32(15)
C6 C5 H5	122.2	$C_{10} = C_{15} = C_{14}$	113.32 (13)
$C_0 = C_0 = C_1$	122.2 105.47(12)	$C_{10} = C_{15} = H_{15}$	122.3
N1 - C6 - C5	103.47(12) 122.00(14)	C15 C16 C17	122.5
$NI = C_0 = C_3$	133.00(14) 121.52(12)	C15 - C16 - C17	122.14 (15)
CI = CO = CS	121.52 (13)	C15—C16—H16	118.9
NI = C / = C8	112.06 (12)	CI/-CI6-HI6	118.9
NI—C/—H/A	109.2		121.94 (16)
С8—С7—Н7А	109.2	С18—С17—Н17	119.0
N1—C7—H7B	109.2	С16—С17—Н17	119.0
С8—С7—Н7В	109.2	C17—C18—C19	117.22 (15)
H7A—C7—H7B	107.9	C17—C18—H18	121.4
C9—C8—C13	119.20 (14)	C19—C18—H18	121.4
C9—C8—C7	120.43 (14)	N4—C19—C14	109.10 (14)
C13—C8—C7	120.37 (14)	N4—C19—C18	130.86 (15)
С10—С9—С8	120.23 (15)	C14—C19—C18	120.03 (15)
С10—С9—Н9	119.9	N6—O2—H2A	109.5
С8—С9—Н9	119.9		
C6—N1—N2—N3	0.52 (15)	C7—C8—C9—C10	178.88 (14)
C7—N1—N2—N3	179.96 (12)	C8—C9—C10—C11	0.2 (3)
N1—N2—N3—O1	-178.89(12)	C9—C10—C11—C12	0.5 (3)
N1—N2—N3—C1	0.15 (16)	C10-C11-C12-C13	-0.3(3)
01 - N3 - C1 - C6	178 25 (13)	C11-C12-C13-C8	-0.7(2)
$N_{2} N_{3} C_{1} C_{6}$	-0.73(16)	C9-C8-C13-C12	15(2)
01 - N3 - C1 - C2	-26(3)	C7 - C8 - C13 - C12	-17864(14)
$N_2 - N_3 - C_1 - C_2$	178 37 (15)	C19 N4 N5 N6	-0.6(2)
$N_2 = N_3 = C_1 = C_2$ $N_3 = C_1 = C_2 = C_3$	-17072(15)	N4 N5 N6 C14	11(2)
13 - 1 - 2 - 3	-0.8(2)	N4 N5 N6 O2	1.1(2) 176.88(14)
$C_0 = C_1 = C_2 = C_3$	0.0(2)	$N_{1} = N_{1} = N_{1} = 02$	1/0.88(14)
C1 - C2 - C3 - C4	-0.1(2)	$N_{3} = N_{0} = C_{14} = C_{19}$	-1.03(18)
$C_2 = C_3 = C_4 = C_5$	0.9 (3)	02 - N6 - C14 - C19	-1/6.51(14)
C3-C4-C5-C6	-0.7(2)	N5—N6—C14—C15	1/8.09 (17)
N2—N1—C6—C1	-0.96 (15)	02—N6—C14—C15	2.6 (3)
C/—NI—C6—C1	1/9.66 (13)	N6-C14-C15-C16	-179.35 (17)
N2—N1—C6—C5	-179.96 (15)	C19—C14—C15—C16	-0.4 (2)
C7—N1—C6—C5	0.7 (3)	C14—C15—C16—C17	0.1 (2)
N3—C1—C6—N1	0.98 (15)	C15—C16—C17—C18	0.2 (3)
C2—C1—C6—N1	-178.23 (13)	C16—C17—C18—C19	-0.3 (3)
N3—C1—C6—C5	-179.87 (13)	N5—N4—C19—C14	-0.01 (19)
C2-C1-C6-C5	0.9 (2)	N5—N4—C19—C18	-178.73 (17)

supporting information

C4—C5—C6—N1	178.71 (15)	N6-C14-C19-N4	0.61 (17)
C4—C5—C6—C1	-0.2 (2)	C15-C14-C19-N4	-178.63 (15)
C6—N1—C7—C8	94.88 (17)	N6-C14-C19-C18	179.50 (14)
N1—C7—C8—C9	-104.04 (16)	C15-C14-C19-C18	0.3 (2)
N1-C7-C8-C13	76.11 (17)	C17-C18-C19-N4	178.71 (17)
C13—C8—C9—C10	-1.3 (2)	C17—C18—C19—C14	0.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O2—H2A····N3 ⁱ	0.84	2.57	3.3621 (18)	157
С3—Н3…О1 ^{іі}	0.95	2.50	3.200 (2)	130
C7— $H7B$ ···· $Cg1$ ⁱⁱⁱ	0.99	2.85	3.5146 (17)	125
C18—H18···Cg1 ^{iv}	0.95	2.69	3.510 (2)	145

Symmetry codes: (i) x+1, y, z; (ii) -x, y+1/2, -z+1/2; (iii) -x+1, -y+1, -z; (iv) -x+1, y-1/2, -z+1/2.