

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-[(E)-Methoxyimino]-2-{2-[(2-methylphenoxy)methyl]phenyl}ethanoic acid

Rajni Kant,^a* Vivek K. Gupta,^a Kamini Kapoor,^a Chetan S. Shripanavar^b and Kaushik Banerjee^b

^aX-ray Crystallography Laboratory, Post-Graduate Department of Physics and Electronics, University of Jammu, Jammu Tawi 180 006, India, and ^bNational Research Centre for Grapes, Pune 412 307, India Correspondence e-mail: rkvk.paper11@gmail.com

Received 3 July 2012; accepted 5 July 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.037; wR factor = 0.103; data-to-parameter ratio = 14.9.

In the title compound, $C_{17}H_{17}NO_4$, the dihedral angle between the two aromatic rings is $59.64 (5)^{\circ}$. The (methoxyimino)ethanoic acid fragment is nearly perpendicular to the attached benzene ring [dihedral angle = $81.07 (4)^{\circ}$]. In the crystal, pairs of $O-H \cdots O$ hydrogen bonds between carboxy groups link molecules into inversion dimers. In addition, π - π stacking interactions between inversion-related benzene rings are observed [centroid–centroid distance = 3.702 (1) Å].

Related literature

For the biological activities of kresoxim-methyl, see: Balba (2007); Cash & Cronan (2001); Ammermann et al. (2000). For a related structure, see: Chopra et al. (2004).

Experimental

Crystal data

$C_{17}H_{17}NO_4$	$\gamma = 65.717 \ (4)^{\circ}$
$M_r = 299.32$	V = 770.92 (5) Å ³
Triclinic, P1	Z = 2
a = 7.8993 (3) Å	Mo $K\alpha$ radiation
b = 8.5720 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 12.6080 (5) Å	T = 293 K
$\alpha = 88.013 \ (3)^{\circ}$	$0.3 \times 0.2 \times 0.1 \text{ mm}$
$\beta = 82.270 \ (3)^{\circ}$	

organic compounds

18021 measured reflections

 $R_{\rm int} = 0.031$

3016 independent reflections 2446 reflections with $I > 2\sigma(I)$

Data collection

Oxford Diffraction Xcalibur
Sapphire3 diffractometer
A has matic a second stimulation of the
Absorption correction: multi-scan
(CrysAlis PRO; Oxford
Diffraction, 2010)
$T_{\min} = 0.947, T_{\max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	202 parameters
$vR(F^2) = 0.103$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3}$
3016 reflections	$\Delta \rho_{\rm min} = -0.14 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °)

nyarogen	oonu	geometry	(11,).	
$D = H \cdots A$		D-H		Н	A

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1\cdots O2^i$	0.82	1.82	2.640 (2)	176

Symmetry code: (i) -x + 1, -y + 1, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

RK acknowledges the Department of Science and Technology for access to the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/ CMP-47/2003.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2509).

References

- Ammermann, E., Lorenz, G., Schelberger, K., Mueller, B., Kirstgen, R. & Sauter, H. (2000). Proceedings of the Brighton Crop Protection Conference -Pests and Diseases, Vol. 2, pp. 541-548. Alton, Hampshire, England: BCPC Publications.
- Balba, H. (2007). J. Environ. Sci. Health B, 42, 441-451.
- Cash, H. & Cronan, J. M. Jr (2001). US Patent Appl. WO2001-US9649 20010323
- Chopra, D., Mohan, T. P., Rao, K. S. & Guru Row, T. N. (2004). Acta Cryst. E60, o2421-o2423.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2012). E68, o2425 [https://doi.org/10.1107/S1600536812030711]

2-[(*E*)-Methoxyimino]-2-{2-[(2-methylphenoxy)methyl]phenyl}ethanoic acid

Rajni Kant, Vivek K. Gupta, Kamini Kapoor, Chetan S. Shripanavar and Kaushik Banerjee

S1. Comment

The title compound is the acid metabolite of kresoxim-methyl, which is a systemic fungicide of strobilurin group with broad spectrum bio-efficacy against various diseases (Balba, 2007; Cash & Cronan, 2001; Ammermann *et al.*, 2000) of economically important agricultural crops.

In (I), all bond lengths and angles are normal and correspond to those observed in the related structure (Chopra *et al.*, 2004). The dihedral angle between the two aromatic rings is 59.64 (5)°. The (methoxyimino)ethanoic acid fragment is nearly perpendicular to the attached benzene ring [dihedral angle 81.07 (4)°]. In the crystal, O—H…O hydrogen bonds link pairs of molecules to form inversion dimers (Fig. 2). The crystal structure is further stabilized by π - π interactions between the benzene ring (C11—C16) of the molecule at (*x*, *y*, *z*) and the benzene ring of an inversion related molecule at (1 - *x*, 1 - *y*, 1 - *z*)[centroid separation = 3.702 (1) Å, interplanar spacing = 3.547Å and centroid shift = 1.05 Å].

S2. Experimental

Kresoxim-methyl (0.313 g, 0.001 mol) was dissolved in 5 ml acetone and to it 5 ml of 1 N NaOH solution was added. The reaction mixture was refluxed on a water bath at 343 K for 12 hrs, and then cooled. The compound was precipitated by neutralizing with 1 N HCl solution. The precipitated compound was dissolved in methanol and crystallized by the process of slow evaporation (m.p. 413 K).

S3. Refinement

All H atoms were positioned geometrically and were treated as riding on their parent C / O atoms, with O—H distance of 0.82 Å and C—H distances of 0.93–0.97 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C / O)$.

Figure 1

ORTEP view of the molecule with the atom-labeling scheme. The displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

Figure 2

The packing arrangement of molecules viewed down the a axis. The dotted lines show intermolecular O—H···O hydrogen bonds.

2-[(E)-Methoxyimino]-2-{2-[(2-methylphenoxy)methyl]phenyl}ethanoic acid

Crystal data

C₁₇H₁₇NO₄ $M_r = 299.32$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 7.8993 (3) Å b = 8.5720 (3) Å c = 12.6080 (5) Å $\alpha = 88.013$ (3)° $\beta = 82.270$ (3)° $\gamma = 65.717 (4)^{\circ}$ $V = 770.92 (5) Å^{3}$ Z = 2 F(000) = 316 $D_x = 1.289 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 Å$ Cell parameters from 8697 reflections $\theta = 4.0-29.0^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$

T = 293 KBlock, colourless

Data collection

Duiu concention	
Oxford Diffraction Xcalibur Sapphire3 diffractometer	18021 measured reflections 3016 independent reflections
Radiation source: fine-focus sealed tube	2446 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.031$
Detector resolution: 16.1049 pixels mm ⁻¹	$\theta_{\rm max} = 26.0^{\circ}, \ \theta_{\rm min} = 4.0^{\circ}$
ωscan	$h = -9 \rightarrow 9$
Absorption correction: multi-scan	$k = -10 \rightarrow 10$
(CrysAlis PRO; Oxford Diffraction, 2010)	$l = -15 \rightarrow 15$
$T_{\min} = 0.947, T_{\max} = 1.000$	
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$wR(F^2) = 0.103$	$w = 1/[\sigma^2(F_o^2) + (0.0464P)^2 + 0.1581P]$
S = 1.05	where $P = (F_o^2 + 2F_c^2)/3$
3016 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
202 parameters	$\Delta \rho_{\rm max} = 0.21 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Secondary atom site location: difference Fourier	Extinction coefficient: 0.129 (7)
map	

 $0.3 \times 0.2 \times 0.1 \text{ mm}$

Special details

Experimental. *CrysAlis PRO*, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	-0.04205 (15)	0.76501 (15)	0.14263 (9)	0.0411 (3)	
01	0.26565 (15)	0.52466 (14)	0.04947 (10)	0.0627 (4)	
H1	0.3655	0.4611	0.0157	0.094*	
O2	0.41631 (14)	0.69280 (13)	0.05567 (9)	0.0545 (3)	
03	-0.19671 (13)	0.89490 (14)	0.19809 (9)	0.0537 (3)	
O4	0.29418 (13)	0.65865 (12)	0.32961 (7)	0.0470 (3)	
C1	0.10574 (17)	0.79233 (16)	0.14043 (10)	0.0343 (3)	
C2	0.27728 (18)	0.66279 (17)	0.07790 (11)	0.0389 (3)	
C3	-0.3626 (2)	0.8742 (3)	0.18052 (16)	0.0714 (5)	

supporting information

H3A	-0.3753	0.8841	0.1056	0.107*
H3B	-0.4704	0.9612	0.2203	0.107*
H3C	-0.3529	0.7634	0.2039	0.107*
C4	0.11852 (16)	0.94464 (16)	0.18597 (10)	0.0343 (3)
C5	0.1139 (2)	1.07741 (19)	0.11881 (13)	0.0481 (4)
Н5	0.1053	1.0687	0.0466	0.058*
C6	0.1217 (2)	1.2226 (2)	0.15794 (16)	0.0593 (5)
H6	0.1148	1.3126	0.1128	0.071*
C7	0.1399 (2)	1.2330 (2)	0.26406 (16)	0.0589 (5)
H7	0.1464	1.3299	0.2908	0.071*
C8	0.14853 (19)	1.10001 (19)	0.33090 (13)	0.0489 (4)
H8	0.1627	1.1077	0.4023	0.059*
C9	0.13653 (16)	0.95487 (16)	0.29377 (11)	0.0364 (3)
C10	0.14079 (19)	0.81417 (17)	0.36887 (11)	0.0418 (3)
H10A	0.1558	0.8422	0.4399	0.050*
H10B	0.0240	0.8006	0.3734	0.050*
C11	0.33196 (19)	0.51830 (17)	0.39422 (11)	0.0400 (3)
C12	0.4895 (2)	0.37100 (18)	0.35617 (12)	0.0447 (3)
C13	0.5341 (2)	0.22787 (19)	0.41993 (14)	0.0551 (4)
H13	0.6382	0.1285	0.3965	0.066*
C14	0.4296 (3)	0.2281 (2)	0.51667 (15)	0.0596 (4)
H14	0.4637	0.1305	0.5579	0.072*
C15	0.2752 (2)	0.3729 (2)	0.55158 (14)	0.0568 (4)
H15	0.2033	0.3736	0.6165	0.068*
C16	0.2255 (2)	0.5189 (2)	0.49049 (12)	0.0486 (4)
H16	0.1205	0.6172	0.5144	0.058*
C17	0.6052 (2)	0.3689 (2)	0.25175 (15)	0.0647 (5)
H17A	0.7198	0.2672	0.2458	0.097*
H17B	0.6334	0.4679	0.2484	0.097*
H17C	0.5369	0.3702	0.1940	0.097*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0358 (6)	0.0487 (7)	0.0405 (6)	-0.0196 (5)	-0.0022 (5)	-0.0041 (5)
01	0.0494 (6)	0.0518 (6)	0.0893 (9)	-0.0285 (5)	0.0166 (6)	-0.0286 (6)
02	0.0408 (6)	0.0539 (6)	0.0715 (7)	-0.0260 (5)	0.0106 (5)	-0.0200 (5)
O3	0.0315 (5)	0.0610(7)	0.0665 (7)	-0.0183 (5)	0.0021 (5)	-0.0155 (5)
O4	0.0466 (6)	0.0382 (5)	0.0395 (5)	-0.0021 (4)	-0.0011 (4)	0.0007 (4)
C1	0.0342 (7)	0.0385 (7)	0.0324 (6)	-0.0170 (6)	-0.0055 (5)	0.0023 (5)
C2	0.0377 (7)	0.0420 (7)	0.0407 (7)	-0.0207 (6)	-0.0020 (6)	-0.0044 (6)
C3	0.0362 (8)	0.0977 (14)	0.0844 (13)	-0.0323 (9)	-0.0035 (8)	-0.0062 (11)
C4	0.0262 (6)	0.0339 (7)	0.0411 (7)	-0.0112 (5)	-0.0026 (5)	-0.0007 (5)
C5	0.0460 (8)	0.0499 (8)	0.0516 (9)	-0.0235 (7)	-0.0062 (6)	0.0095 (7)
C6	0.0512 (9)	0.0417 (8)	0.0876 (13)	-0.0241 (7)	-0.0038 (9)	0.0121 (8)
C7	0.0440 (8)	0.0402 (8)	0.0953 (14)	-0.0206 (7)	-0.0037 (8)	-0.0142 (8)
C8	0.0375 (7)	0.0466 (8)	0.0590 (9)	-0.0127 (6)	-0.0045 (6)	-0.0178 (7)
C9	0.0252 (6)	0.0352 (7)	0.0426 (7)	-0.0063 (5)	-0.0023 (5)	-0.0067 (5)

supporting information

C10	0.0391 (7)	0.0404 (7)	0.0357 (7)	-0.0061 (6)	-0.0033 (6)	-0.0044 (6)
C11	0.0402 (7)	0.0380 (7)	0.0421 (8)	-0.0139 (6)	-0.0136 (6)	0.0015 (6)
C12	0.0412 (7)	0.0398 (7)	0.0526 (8)	-0.0133 (6)	-0.0149 (6)	-0.0030 (6)
C13	0.0567 (9)	0.0359 (8)	0.0712 (11)	-0.0129 (7)	-0.0236 (8)	-0.0008 (7)
C14	0.0768 (12)	0.0452 (9)	0.0666 (11)	-0.0306 (9)	-0.0266 (9)	0.0139 (8)
C15	0.0678 (11)	0.0583 (10)	0.0534 (9)	-0.0341 (9)	-0.0124 (8)	0.0092 (8)
C16	0.0478 (8)	0.0471 (8)	0.0485 (9)	-0.0165 (7)	-0.0082 (7)	0.0018 (7)
C17	0.0535 (10)	0.0515 (10)	0.0675 (11)	-0.0022 (8)	0.0010 (8)	-0.0043 (8)

Geometric parameters (Å, °)

N1C1	1.2784 (16)	С7—Н7	0.9300	
N1-03	1.3880 (14)	C8—C9	1.3875 (19)	
O1—C2	1.2910 (16)	C8—H8	0.9300	
01—H1	0.8200	C9—C10	1.4994 (19)	
O2—C2	1.2228 (16)	C10—H10A	0.9700	
O3—C3	1.4391 (18)	C10—H10B	0.9700	
O4—C11	1.3791 (16)	C11—C16	1.379 (2)	
O4—C10	1.4305 (15)	C11—C12	1.4006 (19)	
C1—C4	1.4901 (17)	C12—C13	1.388 (2)	
C1—C2	1.4921 (18)	C12—C17	1.495 (2)	
С3—НЗА	0.9600	C13—C14	1.378 (2)	
С3—Н3В	0.9600	C13—H13	0.9300	
С3—Н3С	0.9600	C14—C15	1.368 (2)	
C4—C5	1.3859 (19)	C14—H14	0.9300	
C4—C9	1.3948 (18)	C15—C16	1.387 (2)	
С5—С6	1.383 (2)	C15—H15	0.9300	
С5—Н5	0.9300	C16—H16	0.9300	
С6—С7	1.374 (3)	C17—H17A	0.9600	
С6—Н6	0.9300	C17—H17B	0.9600	
С7—С8	1.378 (2)	C17—H17C	0.9600	
C1—N1—O3	111.46 (11)	C8—C9—C10	120.26 (13)	
C2	109.5	C4—C9—C10	121.31 (11)	
N1	108.63 (11)	O4—C10—C9	108.75 (10)	
C11-O4-C10	116.98 (10)	O4C10H10A	109.9	
N1-C1-C4	126.66 (12)	C9—C10—H10A	109.9	
N1-C1-C2	115.03 (11)	O4—C10—H10B	109.9	
C4—C1—C2	118.13 (10)	C9—C10—H10B	109.9	
O2—C2—O1	124.35 (12)	H10A—C10—H10B	108.3	
O2—C2—C1	119.61 (11)	O4—C11—C16	123.67 (12)	
O1—C2—C1	116.04 (11)	O4—C11—C12	115.46 (12)	
О3—С3—НЗА	109.5	C16—C11—C12	120.87 (13)	
O3—C3—H3B	109.5	C13—C12—C11	117.19 (14)	
НЗА—СЗ—НЗВ	109.5	C13—C12—C17	121.54 (14)	
O3—C3—H3C	109.5	C11—C12—C17	121.27 (13)	
НЗА—СЗ—НЗС	109.5	C14—C13—C12	122.24 (15)	
НЗВ—СЗ—НЗС	109.5	C14—C13—H13	118.9	

C5—C4—C9	119 87 (12)	C12—C13—H13	118.9
C5-C4-C1	118.75 (12)	$C_{12} = C_{13} = C_{13}$	119.49 (15)
C9-C4-C1	121 37 (11)	C15-C14-H14	120.3
C6-C5-C4	120.78 (15)	C_{13} C_{14} H_{14}	120.3
С6—С5—Н5	119.6	C_{14} C_{15} C_{16}	120.3
C4-C5-H5	119.6	C_{14} C_{15} H_{15}	110.0
C_{7} C_{6} C_{5}	119.48 (15)	C_{16} C_{15} H_{15}	119.9
C7 C6 H6	120.3		119.9 120.01 (14)
$C_{2} = C_{2} = H_{2}$	120.3	$C_{11} = C_{10} = C_{13}$	120.01 (14)
$C_{5} = C_{0} = H_{0}$	120.3 120.08(14)	C_{15} C_{16} H_{16}	120.0
C6 C7 H7	120.08 (14)	$C_{12} = C_{10} = H_{17}$	120.0
$C_0 - C_1 - H_1$	120.0	C_{12} C_{17} H_{17} H_{17}	109.5
C_{3} C_{1} C_{2} C_{3} C_{3}	120.0		109.5
$C_{}C_{-$	121.32 (15)	HI/A - CI/-HI/B	109.5
$C = C = H \delta$	119.3	C12-C1/-H1/C	109.5
C9—C8—H8	119.3	HI/A—CI/—HI/C	109.5
08-09-04	118.43 (13)	HI/B—CI/—HI/C	109.5
C1—N1—O3—C3	169.20 (13)	C1—C4—C9—C8	179.72 (11)
03-N1-C1-C4	-2.39(18)	$C_{5} - C_{4} - C_{9} - C_{10}$	179.60(12)
03 - N1 - C1 - C2	-177.26(11)	C1 - C4 - C9 - C10	-0.97(18)
N1-C1-C2-O2	167 44 (13)	$C_{11} - 04 - C_{10} - C_{9}$	17359(11)
C4-C1-C2-O2	-7.90(19)	C8-C9-C10-O4	-12194(13)
N1-C1-C2-O1	-11.62(19)	C4-C9-C10-O4	58 76 (15)
C4-C1-C2-O1	173.04(12)	$C_{10} - 04 - C_{11} - C_{16}$	3 11 (19)
N1-C1-C4-C5	-96.47(16)	$C_{10} - O_{4} - C_{11} - C_{12}$	-176.49(11)
C_{2} C_{1} C_{4} C_{5}	78 27 (16)	04-C11-C12-C13	178 86 (12)
V_{1} C_{1} C_{4} C_{9}	84.09(17)	C_{16} C_{11} C_{12} C_{13}	-0.8(2)
C_{2} C_{1} C_{4} C_{9}	-101 17 (14)	04-C11-C12-C17	-0.6(2)
$C_2 = C_1 = C_2 = C_3$	-1.8(2)	C_{16} C_{11} C_{12} C_{17}	179.77(14)
$C_{1} = C_{4} = C_{5} = C_{6}$	1.0(2) 178 77 (13)	$C_{11} = C_{12} = C_{13} = C_{14}$	(17)(17)(17)
$C_1 = C_2 = C_2 = C_0$	1/0.77(13)	C17 C12 C13 C14	0.1(2) 170 57 (15)
$C_{4} = C_{5} = C_{6} = C_{7}$	1.9(2)	C12 - C12 - C13 - C14	1/9.37(13)
$C_{2} = C_{2} = C_{2} = C_{2}$	-0.0(2)	$C_{12} = C_{13} = C_{14} = C_{15}$	0.0(2)
C_{-}	-0.9(2)	$C_{13} - C_{14} - C_{15} - C_{16}$	-0.0(2)
$C_{1} = C_{2} = C_{2} = C_{4}$	1.1 (2)	$\begin{array}{c} 04 \\ \hline 012 \\ \hline 011 \\ \hline 016 \\ \hline 015 \\ \hline $	-1/8.85(13)
$C_{1} = C_{2} = C_{1} = C_{1}$	-1/8.26(13)		0.7(2)
05-04-09-08	0.29 (18)	C14—C15—C16—C11	0.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O1—H1···O2 ⁱ	0.82	1.82	2.640 (2)	176

Symmetry code: (i) -x+1, -y+1, -z.