organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(2E)-1-(4,4"-Difluoro-5'-methoxy-1,1':3',1"-terphenyl-4'-yl)-3-[4-(methylsulfanyl)phenyl]prop-2-en-1-one

Rajni Kant,^a* Vivek K. Gupta,^a Kamini Kapoor,^a S. Samshuddin^b and B. Narayana^b

^aX-ray Crystallography Laboratory, Post-Graduate Department of Physics and Electronics, University of Jammu, Jammu Tawi 180 006, India, and ^bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India Correspondence e-mail: rkvk.paper11@gmail.com

Received 27 June 2012; accepted 2 July 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.052; wR factor = 0.142; data-to-parameter ratio = 15.0.

In the title compound, $C_{29}H_{22}F_2O_2S$, the central benzene ring makes dihedral angles of 45.83 (7), 38.90 (7) and 55.50 (7)° with the two fluoro-substituted benzene rings and the methylsulfanyl-substituted benzene ring, respectively. In the crystal, $C-H \cdots O$ contacts connect the molecules into layers lying perpendicular to the c axis. In addition, $\pi - \pi$ stacking interactions between one of the fluorophenyl groups [centroid–centroid distances = 3.681(1) and 3.818(1)Å] are observed.

Related literature

For the pharmacological importance of terphenyls, see: Liu (2006); Gill & Steglich (1987). For related structures and background to terphenyl chalcones, see: Fun et al. (2011); Fun, Loh et al. (2012); Fun, Hemamalini et al. (2012); Samshuddin et al. (2012).

Triclinic, $P\overline{1}$

a = 6.9341 (3) Å

Experimental

Crystal data $C_{29}H_{22}F_2O_2S$ $M_r = 472.53$

c = 15.4719 (5) Å Mo $K\alpha$ radiation $\alpha = 89.611 (3)^{\circ}$ $\mu = 0.18 \text{ mm}^{-1}$ $\beta = 84.738(3)^{\circ}$ T = 293 K $\gamma = 74.981 \ (3)^{\circ}$ $0.3 \times 0.2 \times 0.1 \text{ mm}$ V = 1180.63 (8) Å³ Data collection O-f- d Diffusation Vaslibu 170((1 0))

Oxford Dimaction Acanoui	17000 measured reflections
Sapphire3 diffractometer	4637 independent reflections
Absorption correction: multi-scan	2891 reflections with $I > 2\sigma(I)$
(CrysAlis PRO; Oxford	$R_{\rm int} = 0.044$
Diffraction, 2010)	
$T_{\min} = 0.743, \ T_{\max} = 1.000$	

Z = 2

Refinement

b = 11.4440 (4) Å

$R[F^2 > 2\sigma(F^2)] = 0.052$	309 parameters
$wR(F^2) = 0.142$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.29 \text{ e } \text{\AA}^{-3}$
4637 reflections	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C12-H12\cdotsO1^{i}$	0.93	2.47	3.289 (3)	147
Symmetry code: (i) x y	-1 7			

Symmetry code: (i) x, y - 1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

RK acknowledges the Department of Science and Technology for access to the single-crystal X-ray diffractometer sanctioned as a National Facility under Project No. SR/S2/ CMP-47/2003. BN thanks the UGC for financial assistance through BSR one-time grant for the purchase of chemicals. SS thanks Mangalore University for the research facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2507).

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2011). Acta Cryst. E67, 03327-03328.
- Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o163.
- Fun, H.-K., Loh, W.-S., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2024.
- Gill, M. & Steglich, W. (1987). Prog. Chem. Org. Nat. Prod. 51, 1-317.
- Liu, J. K. (2006). Chem. Rev. 106, 2209-2223.
- Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
- Samshuddin, S., Narayana, B., Yathirajan, H. S., Betz, R., Gerber, T. & Hosten, E. (2012). Acta Cryst. E68, 01538-01539.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2012). E68, o2378 [https://doi.org/10.1107/S1600536812030139]

(2*E*)-1-(4,4''-Difluoro-5'-methoxy-1,1':3',1''-terphenyl-4'-yl)-3-[4-(methyl-sulfanyl)phenyl]prop-2-en-1-one

Rajni Kant, Vivek K. Gupta, Kamini Kapoor, S. Samshuddin and B. Narayana

S1. Comment

The pharmacological importance of terphenyls is well documented (Gill & Steglich, 1987; Liu, 2006). The crystal structure of some terphenyl chalcones, *viz*. (*E*)-1-(4,4"-difluoro-5'-methoxy-1,1':3',1"-terphenyl-4'-yl)-3-(6-methoxy naphthalen-2-yl)prop-2-en-1-one (Fun *et al.*, 2011), (2E)-1- (4,4"-difluoro-5'-methoxy-1,1':3',1"-terphenyl-4'-yl)-3-(2-fluorophenyl) prop-2-en-1-one (Fun, Hemamalini *et al.*, 2012) and (*E*)-3-(2-chlorophenyl) -1-(4,4"-difluoro-5'-methoxy-1,1':3',1"-terphenyl-4'-yl)prop-2-en-1-one (Samshuddin *et al.*, 2012) have been reported. In view of the importance of terphenyls, the title compound (I) was prepared from 4,4'-difluoro chalcone by several steps (Fun, Loh *et al.*, 2012) and its crystal structure is reported here.

All bond lengths and angles are normal and correspond to those observed in related structures. The central benzene ring forms dihedral angles of 45.83 (7), 38.90 (7) and 55.50 (7) ° with the two fluoro- substituted benzene rings and methyl-sulfanyl substituted benzene ring, respectively. In the crystal, molecules are connected *via* intermolecular C—H···O hydrogen bonds (Fig.2) to form layers. The crystal structure is further stabilized by π - π interactions between the benzene ring (C10—C15) of the molecule at (*x*, *y*, *z*) and the same benzene ring of inversion related molecules at (2 - *x*, -1 - *y*, -*z*) [centroid separation = 3.681 (1) Å, interplanar spacing = 3.512 Å and centroid shift = 1.102 Å] and (1 - *x*, -1 - *y*, -*z*) [centroid separation = 3.818 (1) Å, interplanar spacing = 3.379 Å and centroid shift = 1.777 Å].

S2. Experimental

To a mixture of 1-(4,4"-difluoro-5'-methoxy-1,1':3',1"-terphenyl-4'-yl)ethanone (0.338 g, 001 mol) and 4-(methyl-sulfanyl)benzaldehyde (0.152 g, 0.001 mol) in 30 ml ethanol, 0.5 ml of 10% sodium hydroxide solution was added and the reaction mixture was stirred at 5–10°C for 3 hrs. The precipitate formed was collected by filtration and purified by recrystallization from ethanol (yield 72%; m.p. 407 K). Single-crystal was grown from DMF by slow evaporation method.

S3. Refinement

All H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.96 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Figure 1

ORTEP view of the molecule with the atom-labeling scheme. The displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

Figure 2

The packing arrangement of molecules viewed down the *a* axis.

(2*E*)-1-(4,4"-Difluoro-5'-methoxy-1,1':3',1"-terphenyl-4'-yl)-3- [4-(methylsulfanyl)phenyl]prop-2-en-1-one

Z = 2

F(000) = 492

 $\theta = 3.4 - 29.0^{\circ}$

 $\mu = 0.18 \text{ mm}^{-1}$

Block, colourless

 $0.3 \times 0.2 \times 0.1 \text{ mm}$

T = 293 K

 $D_{\rm x} = 1.329 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 6989 reflections

Crystal data

 $C_{29}H_{22}F_{2}O_{2}S$ $M_{r} = 472.53$ Triclinic, *P*1 Hall symbol: -P 1 a = 6.9341 (3) Å b = 11.4440 (4) Å c = 15.4719 (5) Å a = 89.611 (3)° $\beta = 84.738$ (3)° $\gamma = 74.981$ (3)° V = 1180.63 (8) Å³

Data collection

17866 measured reflections
4637 independent reflections
2891 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.044$
$\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 3.4^{\circ}$
$h = -8 \rightarrow 8$
$k = -14 \rightarrow 14$
$l = -19 \rightarrow 18$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.052$	Hydrogen site location: inferred from
$wR(F^2) = 0.142$	neighbouring sites
<i>S</i> = 1.06	H-atom parameters constrained
4637 reflections	$w = 1/[\sigma^2(F_o^2) + (0.050P)^2 + 0.1774P]$
309 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.29 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. *CrysAlis PRO*, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

supporting information

	x	y	Z	$U_{ m iso}$ */ $U_{ m eq}$	
<u>S1</u>	-0.40890 (12)	0.64035 (8)	0.44889 (6)	0.0889 (3)	
01	0.7122 (3)	0.17723 (16)	0.18542 (13)	0.0650 (5)	
02	0.3175 (2)	0.07240 (15)	0.09901 (11)	0.0553 (5)	
F1	0.8319 (2)	-0.69853(13)	-0.03117(11)	0.0751 (5)	
F2	1.3029 (2)	-0.00661(17)	0.42397 (11)	0.0909 (6)	
C1	0.5711 (3)	0.1332 (2)	0.20122 (15)	0.0442 (6)	
C2	0.3756 (3)	0.2042 (2)	0.24325 (15)	0.0480 (6)	
H2	0.2724	0.1664	0.2544	0.058*	
C3	0.3434 (4)	0.3184 (2)	0.26524 (16)	0.0530 (6)	
H3	0.4496	0.3532	0.2521	0.064*	
C4	0.5921 (3)	0.00322 (19)	0.17939 (14)	0.0372 (5)	
C5	0.4622 (3)	-0.0251 (2)	0.12300 (14)	0.0399 (5)	
C6	0.4896 (3)	-0.1416 (2)	0.09174 (14)	0.0395 (5)	
H6	0.4048	-0.1577	0.0528	0.047*	
C7	0.6436 (3)	-0.2346 (2)	0.11840 (14)	0.0380 (5)	
C8	0.7656 (3)	-0.2085 (2)	0.17810 (14)	0.0399 (5)	
H8	0.8633	-0.2714	0.1989	0.048*	
C9	0.7460 (3)	-0.0909(2)	0.20762 (14)	0.0375 (5)	
C10	0.6860 (3)	-0.3577 (2)	0.08015 (15)	0.0397 (5)	
C11	0.7337 (3)	-0.4601 (2)	0.13080 (17)	0.0497 (6)	
H11	0.7335	-0.4513	0.1905	0.060*	
C12	0.7817 (3)	-0.5751 (2)	0.0935 (2)	0.0566 (7)	
H12	0.8123	-0.6435	0.1276	0.068*	
C13	0.7829 (3)	-0.5854 (2)	0.00604 (19)	0.0508 (7)	
C14	0.7387 (3)	-0.4878 (2)	-0.04658 (17)	0.0508 (6)	
H14	0.7423	-0.4979	-0.1064	0.061*	
C15	0.6882 (3)	-0.3735 (2)	-0.00880 (16)	0.0450 (6)	
H15	0.6552	-0.3060	-0.0436	0.054*	
C16	0.8901 (3)	-0.0692 (2)	0.26791 (14)	0.0403 (5)	
C17	1.0920 (3)	-0.1319 (2)	0.25431 (16)	0.0468 (6)	
H17	1.1337	-0.1881	0.2088	0.056*	
C18	1.2309 (4)	-0.1124 (2)	0.30686 (17)	0.0551 (7)	
H18	1.3654	-0.1544	0.2974	0.066*	
C19	1.1654 (4)	-0.0298 (3)	0.37315 (18)	0.0591 (7)	
C20	0.9699 (4)	0.0323 (3)	0.38994 (17)	0.0588 (7)	
H20	0.9303	0.0883	0.4356	0.071*	
C21	0.8313 (4)	0.0105 (2)	0.33757 (16)	0.0502 (6)	
H21	0.6964	0.0501	0.3495	0.060*	
C22	0.1589 (4)	0.3980 (2)	0.30834 (16)	0.0508 (6)	
C23	-0.0195 (4)	0.3617 (2)	0.32391 (18)	0.0600 (7)	
H23	-0.0242	0.2856	0.3051	0.072*	
C24	-0.1874 (4)	0.4378 (3)	0.36682 (18)	0.0637 (8)	
H24	-0.3044	0.4124	0.3764	0.076*	
C25	-0.1853 (4)	0.5513 (2)	0.39591 (17)	0.0582 (7)	
C26	-0.0107 (4)	0.5880 (3)	0.3797 (2)	0.0715 (8)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

H26	-0.0070	0.6646	0.3979	0.086*	
C27	0.1582 (4)	0.5120 (2)	0.3369 (2)	0.0682 (8)	
H27	0.2743	0.5383	0.3270	0.082*	
C28	-0.3394 (5)	0.7674 (3)	0.4870 (2)	0.0957 (11)	
H28A	-0.2290	0.7409	0.5218	0.144*	
H28B	-0.4512	0.8188	0.5213	0.144*	
H28C	-0.3002	0.8116	0.4384	0.144*	
C29	0.1591 (3)	0.0508 (2)	0.05390 (17)	0.0576 (7)	
H29A	0.2128	0.0144	-0.0018	0.086*	
H29B	0.0621	0.1261	0.0463	0.086*	
H29C	0.0959	-0.0027	0.0870	0.086*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	<i>U</i> ¹²	U ¹³	U^{23}
S 1	0.0759 (6)	0.0692 (6)	0.1064 (7)	0.0019 (4)	0.0114 (5)	-0.0202 (5)
01	0.0592 (11)	0.0438 (11)	0.0934 (14)	-0.0207 (9)	0.0062 (10)	0.0036 (10)
O2	0.0536 (10)	0.0405 (10)	0.0678 (12)	0.0007 (8)	-0.0225 (8)	-0.0004 (9)
F1	0.0679 (10)	0.0393 (9)	0.1142 (14)	-0.0066 (7)	-0.0084 (9)	-0.0239 (9)
F2	0.0848 (12)	0.1172 (16)	0.0862 (13)	-0.0433 (11)	-0.0390 (10)	-0.0052 (11)
C1	0.0496 (14)	0.0346 (14)	0.0472 (14)	-0.0087 (11)	-0.0048 (11)	0.0046 (11)
C2	0.0528 (14)	0.0345 (14)	0.0549 (15)	-0.0090 (11)	-0.0030 (11)	0.0009 (12)
C3	0.0559 (15)	0.0407 (15)	0.0605 (17)	-0.0097 (12)	-0.0042 (12)	-0.0028 (13)
C4	0.0384 (12)	0.0306 (12)	0.0412 (13)	-0.0082 (9)	0.0016 (9)	-0.0017 (10)
C5	0.0348 (11)	0.0359 (13)	0.0457 (14)	-0.0037 (10)	-0.0034 (10)	0.0025 (11)
C6	0.0364 (12)	0.0385 (14)	0.0431 (13)	-0.0082 (10)	-0.0059 (10)	0.0010 (11)
C7	0.0358 (12)	0.0339 (13)	0.0438 (13)	-0.0090 (9)	-0.0010 (9)	0.0009 (10)
C8	0.0375 (12)	0.0317 (13)	0.0478 (14)	-0.0035 (9)	-0.0064 (10)	0.0022 (11)
C9	0.0349 (11)	0.0361 (13)	0.0403 (13)	-0.0083 (9)	0.0010 (9)	0.0004 (10)
C10	0.0312 (11)	0.0338 (13)	0.0546 (15)	-0.0082 (9)	-0.0066 (10)	-0.0004 (11)
C11	0.0509 (14)	0.0405 (15)	0.0583 (16)	-0.0124 (11)	-0.0060 (11)	0.0016 (13)
C12	0.0520 (15)	0.0340 (15)	0.084 (2)	-0.0098 (11)	-0.0099 (13)	0.0075 (14)
C13	0.0366 (13)	0.0338 (14)	0.081 (2)	-0.0063 (10)	-0.0062 (12)	-0.0131 (14)
C14	0.0450 (14)	0.0481 (16)	0.0590 (16)	-0.0112 (11)	-0.0055 (11)	-0.0122 (13)
C15	0.0420 (13)	0.0377 (14)	0.0559 (16)	-0.0096 (10)	-0.0097 (11)	0.0001 (12)
C16	0.0423 (12)	0.0379 (13)	0.0424 (13)	-0.0138 (10)	-0.0034 (10)	0.0026 (11)
C17	0.0427 (13)	0.0485 (15)	0.0499 (15)	-0.0131 (11)	-0.0036 (10)	-0.0011 (12)
C18	0.0433 (14)	0.0634 (18)	0.0608 (17)	-0.0160 (12)	-0.0108 (12)	0.0088 (14)
C19	0.0631 (17)	0.068 (2)	0.0560 (17)	-0.0301 (15)	-0.0213 (13)	0.0079 (15)
C20	0.0731 (18)	0.0593 (18)	0.0465 (15)	-0.0198 (14)	-0.0109 (13)	-0.0065 (13)
C21	0.0500 (14)	0.0500 (16)	0.0493 (15)	-0.0111 (11)	-0.0033 (11)	-0.0011 (12)
C22	0.0557 (15)	0.0361 (15)	0.0570 (16)	-0.0041 (11)	-0.0084 (12)	-0.0019 (12)
C23	0.0672 (17)	0.0413 (16)	0.0694 (19)	-0.0096 (13)	-0.0077 (14)	-0.0066 (14)
C24	0.0596 (16)	0.0539 (18)	0.074 (2)	-0.0105 (14)	-0.0006 (14)	-0.0030 (15)
C25	0.0642 (17)	0.0488 (17)	0.0535 (17)	-0.0005 (13)	-0.0042 (12)	-0.0051 (13)
C26	0.078 (2)	0.0461 (18)	0.087 (2)	-0.0097 (15)	-0.0068 (16)	-0.0193 (16)
C27	0.0633 (17)	0.0477 (17)	0.091 (2)	-0.0124 (14)	0.0013 (15)	-0.0157 (16)
C28	0.117 (3)	0.065 (2)	0.090 (3)	-0.0009(19)	0.004 (2)	-0.020(2)

C29 0.0407 (13) 0.0608 (18) 0.0663 (18) -0.0009(12)-0.0153(12)0.0047 (14) Geometric parameters (Å, °) S1-C25 1.753 (3) C14-C15 1.382 (3) S1-C28 C14—H14 1.767 (3) 0.9300 01-C1 1.217 (3) C15-H15 0.9300 O2—C5 C16-C21 1.378 (3) 1.368 (3) C16-C17 O2-C29 1.428(3)1.395 (3) F1-C13 1.367 (3) C17-C18 1.377 (3) F2-C19 0.9300 1.367 (3) C17—H17 C1--C2 1.482(3)C18-C19 1.363 (4) C1--C4 1.494 (3) C18-H18 0.9300 C2—C3 C19-C20 1.310(3) 1.360 (4) C2—H2 0.9300 C20-C21 1.383 (3) C3-C22 1.470(3)C20-H20 0.9300 C21—H21 C3—H3 0.9300 0.9300 C4—C9 C22-C27 1.404(3)1.378 (3) C4—C5 C22—C23 1.406(3)1.404(3)C5-C6 C23-C24 1.377 (3) 1.381 (3) C6—C7 1.389(3) C23—H23 0.9300 С6—Н6 0.9300 C24—C25 1.381 (4) C7—C8 1.392 (3) C24—H24 0.9300 C7-C10 1.479 (3) C25-C26 1.382 (4) C8-C9 1.393 (3) C26-C27 1.380(4) C26—H26 C8—H8 0.9300 0.9300 C9-C16 1.494(3)C27-H27 0.9300 C10-C15 C28—H28A 0.9600 1.387(3)C10-C11 1.389(3)C28-H28B 0.9600 C11-C12 1.387 (3) C28-H28C 0.9600 C11—H11 0.9300 C29—H29A 0.9600 C12-C13 1.358 (4) C29—H29B 0.9600 C12-H12 0.9300 C29-H29C 0.9600 C13-C14 1.364 (3) C25-S1-C28 103.53 (15) C21-C16-C9 122.5(2)C5-02-C29 118.40 (19) C17-C16-C9 119.5(2)O1-C1-C2 122.0 (2) C18-C17-C16 121.4 (2) O1-C1-C4 119.3 120.2(2)C18-C17-H17 C2-C1-C4 117.7(2)C16-C17-H17 119.3 C3-C2-C1 C19-C18-C17 122.1 (2) 118.0(2) С3—С2—Н2 118.9 C19-C18-H18 121.0 C1-C2-H2 118.9 C17-C18-H18 121.0 C2-C3-C22 127.5 (2) C20-C19-C18 122.9 (2) С2-С3-Н3 116.2 C20-C19-F2 118.5 (3) С22—С3—Н3 C18-C19-F2 116.2 118.5(2)C9-C4-C5 118.7(2)C19-C20-C21 118.5 (2) C9-C4-C1 122.53 (19) C19-C20-H20 120.7

supporting information

C5—C4—C1	118.6 (2)	C21—C20—H20	120.7
O2—C5—C6	124.1 (2)	C16—C21—C20	121.0 (2)
O2—C5—C4	114.4 (2)	C16—C21—H21	119.5
C6—C5—C4	121.4 (2)	C20—C21—H21	119.5
C5—C6—C7	120.0 (2)	C27—C22—C23	117.6 (2)
С5—С6—Н6	120.0	C27—C22—C3	120.0 (2)
С7—С6—Н6	120.0	C23—C22—C3	122.4 (2)
C6—C7—C8	118.8 (2)	C24—C23—C22	120.6 (2)
C6—C7—C10	120.8 (2)	С24—С23—Н23	119.7
C8—C7—C10	120.2 (2)	С22—С23—Н23	119.7
C7—C8—C9	122.0 (2)	C23—C24—C25	121.2 (3)
C7—C8—H8	119.0	C23—C24—H24	119.4
С9—С8—Н8	119.0	C25—C24—H24	119.4
C8—C9—C4	118.9 (2)	C24—C25—C26	118.4 (2)
C8—C9—C16	118.8 (2)	C24—C25—S1	117.0 (2)
C4—C9—C16	122.3 (2)	C26—C25—S1	124.6 (2)
C15-C10-C11	118.3 (2)	C_{27} — C_{26} — C_{25}	120.7(3)
$C_{15} - C_{10} - C_{7}$	1201(2)	C27—C26—H26	119 7
$C_{11} - C_{10} - C_{7}$	120.1(2) 121.5(2)	C_{25} C_{26} H_{26}	119.7
C12-C11-C10	120.9(2)	C^{22} C^{27} C^{26}	121.6(3)
C12—C11—H11	119.5	C22—C27—H27	119.2
C10—C11—H11	119.5	C26—C27—H27	119.2
C13 - C12 - C11	118.4 (3)	S1-C28-H28A	109.5
C13—C12—H12	120.8	S1-C28-H28B	109.5
C11 - C12 - H12	120.8	H28A-C28-H28B	109.5
C12 - C13 - C14	122.9 (2)	S1-C28-H28C	109.5
C12 - C13 - F1	1122.3(2) 118.7(2)	$H_{28A} - C_{28} - H_{28C}$	109.5
C14-C13-F1	118.4 (2)	$H_{28B} - C_{28} - H_{28C}$	109.5
C13 - C14 - C15	118 3 (2)	Ω^2 C^29 H^29A	109.5
C13—C14—H14	120.9	Ω^2 C^29 H^29B	109.5
C15—C14—H14	120.9	H_{29A} C_{29} H_{29B}	109.5
C_{14} C_{15} C_{10}	120.9 121.2(2)	$\Omega^2 - C^2 - H^2 \Theta C$	109.5
C14-C15-H15	119.4	$H_{29A} - C_{29} - H_{29C}$	109.5
C10-C15-H15	119.1	H29B - C29 - H29C	109.5
$C_{1} = C_{1} = C_{1} = C_{1}$	119.4		109.5
021 010 017	110.1 (2)		
01 - C1 - C2 - C3	04(4)	C12—C13—C14—C15	-0.7(3)
C4-C1-C2-C3	179 6 (2)	$F_1 - C_{13} - C_{14} - C_{15}$	179 68 (18)
C1 - C2 - C3 - C22	-178.9(2)	C_{13} C_{14} C_{15} C_{10}	12(3)
01 - C1 - C4 - C9	53 5 (3)	C_{11} C_{10} C_{15} C_{14}	-0.7(3)
C_{2} C_{1} C_{4} C_{9}	-1257(2)	C7 - C10 - C15 - C14	176 28 (19)
01 - C1 - C4 - C5	-121.5(2)	$C_{8} = C_{10} = C_{15} = C_{14}$	-1400(2)
C_{2} C_{1} C_{4} C_{5}	59.3 (3)	C4 - C9 - C16 - C21	40.3(3)
$C_2 = C_1 = C_1 = C_2$	13.8(3)	$C_{10}^{-} = C_{10}^{-} = C_{$	397(3)
$C_{29} = 02 = C_{5} = C_{4}$	-169 76 (19)	C4-C9-C16-C17	-1400(2)
$C_{2} = C_{2} = C_{3} = C_{4}$	-179.93 (18)	$C_{1} = C_{16} = C_{17} = C_{18}$	-21(4)
$C_1 - C_4 - C_5 - O_2^2$	-47(3)	C9-C16-C17-C18	178 2 (2)
$C_1 - C_7 - C_5 - C_2$	$-3 \Lambda (3)$	$C_{16} = C_{17} = C_{18} = C_{10}$	1/0.2(2)
$C_{2} - C_{4} - C_{2} - C_{0}$	5.4 (5)	010-01/-010-019	0.1 (+)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	171.84 (19) $178.6 (2)$ $2.4 (3)$ $1.3 (3)$ $-174.82 (19)$ $-4.1 (3)$ $172.08 (19)$ $3.1 (3)$ $-176.63 (19)$ $0.7 (3)$ $-174.35 (19)$ $-179.65 (19)$ $5.3 (3)$ $43.8 (3)$ $-132.3 (2)$ $-139.4 (2)$	$\begin{array}{c} C17-C18-C19-C20\\ C17-C18-C19-F2\\ C18-C19-C20-C21\\ F2-C19-C20-C21\\ C17-C16-C21-C20\\ C9-C16-C21-C20\\ C19-C20-C21-C16\\ C2-C3-C22-C27\\ C2-C3-C22-C23\\ C27-C22-C23-C24\\ C3-C22-C23-C24\\ C22-C23-C24-C25\\ C23-C24-C25-C26\\ C23-C24-C25-S1\\ C28-S1-C25-C24\\ C28-S1-C25-C26\\ \end{array}$	$\begin{array}{c} 0.9 \ (4) \\ -177.8 \ (2) \\ 0.2 \ (4) \\ 178.9 \ (2) \\ 3.2 \ (4) \\ -177.2 \ (2) \\ -2.3 \ (4) \\ 171.7 \ (3) \\ -6.8 \ (4) \\ -0.5 \ (4) \\ 178.1 \ (2) \\ -0.2 \ (4) \\ 1.0 \ (4) \\ 179.5 \ (2) \\ 173.2 \ (2) \\ -8.4 \ (3) \end{array}$
$C_{3} - C_{4} - C_{9} - C_{8}$ $C_{1} - C_{4} - C_{9} - C_{16}$ $C_{1} - C_{4} - C_{9} - C_{16}$ $C_{6} - C_{7} - C_{10} - C_{15}$ $C_{6} - C_{7} - C_{10} - C_{11}$ $C_{8} - C_{7} - C_{10} - C_{11}$ $C_{15} - C_{10} - C_{11} - C_{12}$ $C_{7} - C_{10} - C_{11} - C_{12}$ $C_{10} - C_{11} - C_{12}$ $C_{13} - C_{14}$ $C_{11} - C_{12} - C_{13} - F_{1}$	$\begin{array}{c} 0.7 (3) \\ -174.35 (19) \\ -179.65 (19) \\ 5.3 (3) \\ 43.8 (3) \\ -132.3 (2) \\ -139.4 (2) \\ 44.6 (3) \\ -0.2 (3) \\ -177.2 (2) \\ 0.7 (3) \\ -0.2 (4) \\ 179.42 (19) \end{array}$	$\begin{array}{c} C27 - C22 - C23 - C24 \\ C3 - C22 - C23 - C24 \\ C22 - C23 - C24 - C25 \\ C23 - C24 - C25 - C26 \\ C23 - C24 - C25 - C26 \\ C23 - C24 - C25 - C24 \\ C28 - S1 - C25 - C26 \\ C24 - C25 - C26 - C27 \\ S1 - C25 - C26 - C27 \\ C23 - C22 - C27 - C26 \\ C3 - C22 - C27 - C26 \\ C25 - C26 - C27 - C22 \\ \end{array}$	$\begin{array}{c} -0.5 (4) \\ 178.1 (2) \\ -0.2 (4) \\ 1.0 (4) \\ 179.5 (2) \\ 173.2 (2) \\ -8.4 (3) \\ -1.1 (4) \\ -179.5 (2) \\ 0.4 (4) \\ -178.2 (3) \\ 0.4 (5) \end{array}$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H…A
C12—H12···O1 ⁱ	0.93	2.47	3.289 (3)	147

Symmetry code: (i) x, y-1, z.