organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Ethoxy-6-({2-[(3-ethoxy-2-hydroxybenzylidene)amino]benzyl}iminomethyl)phenol

K. U. Ambili,^a S. S. Sreejith,^a Jinsa Mary Jacob,^a M. Sithambaresan^{b*} and M. R. Prathapachandra Kurup^a

^aDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, and ^bDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka Correspondence e-mail: eesans@yahoo.com

Received 27 June 2012; accepted 10 July 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.038; wR factor = 0.112; data-to-parameter ratio = 13.2.

The title compound, $C_{25}H_{26}N_2O_4$, exists in an *E* conformation with respect to each azomethine link. The two phenol-substituted benzene rings are twisted away from the plane of the diimine benzene ring by dihedral angles of 27.25 (5) and 56.67 (5)°. The molecular structure is stabilized by intra-molecular O-H···N hydrogen bonds.

Related literature

For the applications of salen Schiff bases, see: Cozzi (2004); Hodnett & Dunn (1970). For the synthesis of Schiff bases, see: Tümer (2000). For a related structure, see: Aslantaş *et al.* (2007).

Experimental

Crystal data $C_{25}H_{26}N_2O_4$ $M_r = 418.48$ Monoclinic, $P2_1/c$ a = 4.8315 (4) Å

b = 17.5414 (14) Å c = 25.828 (2) Å $\beta = 94.356 (3)^{\circ}$ $V = 2182.6 (3) \text{ Å}^{3}$ Z = 4Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2004) $T_{\rm min} = 0.979, T_{\rm max} = 0.983$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.112$ S = 1.05 3833 reflections 291 parameters2 restraints $\begin{array}{l} T=296~\mathrm{K}\\ 0.40\,\times\,0.20\,\times\,0.20~\mathrm{mm} \end{array}$

32150 measured reflections 3833 independent reflections 2543 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.044$

> H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.13 \text{ e } \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.13 \text{ e } \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O2−H2O···N1 O3−H3O···N2	0.85(1) 0.85(1)	1.79 (1) 1.80 (1)	2.5711 (19) 2.5844 (19)	151 (2) 152 (2)

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2* and *SAINT* (Bruker, 2004); data reduction: *SAINT* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97* and *publCIF* (Westrip, 2010).

The authors are grateful to the Sophisticated Analytical Instruments Facility, Cochin University of Science and Technology, Kochi-22, India, for providing the single-crystal X-ray diffraction data. MRPK, KUA and SSS thank the Defence Research Development Organization, New Delhi, India, for financial support. JMJ thanks the Council of Scientific and Industrial Research, New Delhi, India, for a Senior Research Fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2580).

References

Aslantaş, M., Tümer, M., Şahin, E. & Tümer, F. (2007). Acta Cryst. E63, 0644–0645.

Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Cozzi, P. G. (2004). Chem. Soc. Rev. 33, 410-421.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Hodnett, E. M. & Dunn, W. J. (1970). J. Med. Chem. 13, 768-770.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Tümer, M. (2000). Synth. React. Inorg. Met. Org. Chem. 30, 1139–1158.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2012). E68, o2482 [https://doi.org/10.1107/S1600536812031479]

2-Ethoxy-6-({2-[(3-ethoxy-2-hydroxybenzylidene)amino]benzyl}iminomethyl)-phenol

K. U. Ambili, S. S. Sreejith, Jinsa Mary Jacob, M. Sithambaresan and M. R. Prathapachandra Kurup

S1. Comment

The chelating structure, moderate electron donation and easy tunable electronic and steric effects make dicompartmental salen type Schiff bases to act as versatile ligands. They are able to stabilize different metals in various oxidation states and control the performance of the metals in various catalytic transformations (Cozzi, 2004). Schiff bases are very selective in the sense that they provide geometrical cavity control for host guest interaction and modulate its lipophilicity to stabilize a specific metal ion. Moreover, it has been suggested that the azomethine linkage in Schiff bases is responsible for their biological activities such as antimicrobial, antifungal and antitumor and also to be used as herbicides (Hodnett & Dunn, 1970).

The *E* conformation of the compound is evidenced from the torsion angles, 176.94 (14)° and 179.38 (15)° made by the C10—N1—C9—C7 and C16—N2—C17—C18 linkages respectively. The bond lengths and bond angles are in normal ranges and agree with the related structure (Aslantaş, *et al.*, 2007). The crystal involves two intramolecular O—H···N hydrogen bonds and C—H··· π interactions which make the molecule stable.

S2. Experimental

The title compound was prepared according to the reported procedure (Tümer, 2000) by the condensation of the ethanolic solution of 3-ethoxy-2-hydroxybenzaldehyde (1 mmol, 0.166 g) with an ethanolic solution of 2-aminobenzylamine (0.5 mmol, 0.061 g). The reaction mixture was heated to reflux for 6 h and kept for cooling at room temperature. The slow evaporation yielded orange-yellow crystals of N,N'-bis(3-ethoxy-2-hydroxybenzylidene)-2-aminobenzylamine.

S3. Refinement

All H atoms on C were placed in calculated positions, guided by difference maps, with C—H bond distances 0.93–0.97 Å. H atoms were assigned as U_{iso} =1.2Ueq (1.5 for Me). O(2)—H(2o) and O(3)—H(3o) H atoms were located from difference maps and restrained using *DFIX* instructions.

ORTEP view of the unique part of the compound, drawn with 50% probability displacement ellipsoids for the non-H atoms.

Packing diagram of the compound viewed along *a* axis.

2-Ethoxy-6-({2-[(3-ethoxy-2-hydroxybenzylidene)amino]benzyl}iminomethyl)phenol

F(000) = 888

 $\theta = 2.3 - 22.4^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$ T = 296 K

 $R_{\rm int} = 0.044$

 $h = -5 \rightarrow 5$

 $k = -20 \rightarrow 20$

 $l = -30 \rightarrow 30$

 $D_{\rm x} = 1.273 {\rm Mg} {\rm m}^{-3}$

Needle-like, orange

 $0.40 \times 0.20 \times 0.20$ mm

32150 measured reflections

 $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$

3833 independent reflections

2543 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 5446 reflections

Crystal data

 $C_{25}H_{26}N_2O_4$ $M_r = 418.48$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 4.8315 (4) Å b = 17.5414 (14) Å c = 25.828 (2) Å $\beta = 94.356$ (3)° V = 2182.6 (3) Å³ Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scan Absorption correction: multi-scan (*SADABS*; Bruker, 2004) $T_{\min} = 0.979, T_{\max} = 0.983$

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.038$ H atoms treated by a mixture of independent $wR(F^2) = 0.112$ and constrained refinement S = 1.05 $w = 1/[\sigma^2(F_0^2) + (0.0493P)^2 + 0.3451P]$ where $P = (F_0^2 + 2F_c^2)/3$ 3833 reflections 291 parameters $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.13 \text{ e} \text{ Å}^{-3}$ 2 restraints $\Delta \rho_{\rm min} = -0.13 \text{ e} \text{ Å}^{-3}$ Primary atom site location: structure-invariant Extinction correction: SHELXL97 (Sheldrick. direct methods Secondary atom site location: difference Fourier 2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0062 (9) map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	1.5523 (3)	1.08404 (8)	0.43051 (5)	0.0645 (4)	
O2	1.1570 (3)	1.09379 (8)	0.35604 (5)	0.0598 (4)	
O3	0.0532 (3)	0.93676 (8)	0.17006 (5)	0.0543 (4)	

O4	-0.3152 (3)	0.82995 (8)	0.15297 (5)	0.0659 (4)
N1	0.8660 (3)	1.03221 (9)	0.27970 (5)	0.0466 (4)
N2	0.4050 (3)	1.03122 (8)	0.13518 (5)	0.0445 (4)
C1	1.8136 (6)	1.16138 (15)	0.48999 (10)	0.0968 (9)
H1A	1.8577	1.1960	0.4630	0.145*
H1B	1.9602	1.1620	0.5172	0.145*
H1C	1.6429	1.1768	0.5037	0.145*
C2	1.7824 (4)	1.08294 (13)	0.46832 (8)	0.0634 (6)
H2A	1.9497	1.0679	0.4524	0.076*
H2B	1.7496	1.0469	0.4957	0.076*
C3	1.4950 (4)	1.01888 (11)	0.40288 (7)	0.0479 (5)
C4	1.6259 (4)	0.94994 (12)	0.41106 (8)	0.0589 (5)
H4	1.7682	0.9453	0.4372	0.071*
C5	1.5485 (5)	0.88751 (12)	0.38081 (8)	0.0669 (6)
Н5	1.6380	0.8411	0.3869	0.080*
C6	1.3413 (4)	0.89335 (12)	0.34193 (8)	0.0582 (5)
H6	1.2913	0.8510	0.3217	0.070*
C7	1.2044 (3)	0.96269 (10)	0.33256 (6)	0.0433 (4)
C8	1.2814 (3)	1.02555 (10)	0.36311(7)	0.0431 (4)
C9	0.9881 (4)	0.96941 (11)	0.29046 (7)	0.0464 (5)
H9	0.9376	0.9265	0.2708	0.056*
C10	0.6616 (3)	1.03497 (11)	0.23529 (6)	0.0471 (5)
H10A	0.4828	1.0494	0.2470	0.057*
H10B	0.6430	0.9847	0.2198	0.057*
C11	0 7426 (3)	1 09114 (10)	0.19477(7)	0.0413 (4)
C12	0.9465(4)	1 14566 (11)	0.19177(7) 0.20497(7)	0.0503 (5)
H12	1 0399	1 1475	0.2378	0.060*
C13	1 0149 (4)	1 19732 (11)	0.16787 (8)	0.0583 (5)
H13	1 1 5 2 9	1 2334	0.1756	0.070*
C14	0.8783(4)	1.19519 (11)	0.11950 (8)	0.0610 (6)
H14	0.9212	1 2305	0.0945	0.073*
C15	0.9212 0.6775 (4)	1.2505 1 14086 (11)	0.10774 (7)	0.0550 (5)
H15	0.5866	1.14000 (11)	0.10774 (7)	0.0550 (5)
C16	0.5800	1.08823 (10)	0.14499 (7)	0.000
C10 C17	0.3525(4)	1.00023(10) 1.00201(11)	0.1499(7) 0.09022(7)	0.0419(4)
H17	0.3525 (4)	1.00201 (11)	0.05022 (7)	0.056*
C18	0.4510	0.94344(10)	0.0029 0.08038 (7)	0.030
C10	0.1450(5) 0.0901(4)	0.94344(10) 0.91471(12)	0.03008(7)	0.0450(4)
H10	0.1824	0.91471(12) 0.9347	0.0008 (7)	0.0505 (5)
C20	-0.0087(4)	0.95754(13)	0.0028	0.0636 (6)
U20	-0.1324	0.83754 (15)	-0.0126	0.0030 (0)
C21	-0.2384(4)	0.8385	0.0120	0.0604 (6)
U21	-0.2534(4)	0.02791(12) 0.7801	0.00090 (9)	0.0004 (0)
C^{22}	-0.1005(4)	0.7071	0.0041 0.11067 (7)	0.072°
C22	0.1703(4)	$0.03 \pm 72 (11)$ 0.01222 (10)	0.11007(7)	0.0493(3)
C23	-0.4070(4)	0.91522(10) 0.76620(12)	0.12070(7) 0.14644(10)	0.0430(4)
U24	-0.2006	0.70020(12) 0.7224	0.14044 (10)	0.0709(0)
1124A 1124D	-0.5990	0.7224	0.1341	0.005.
1124D	-0.0313	0.//00	0.1213	0.083

C25	-0.6032 (6)	0 74931 (17)	0 19800 (12)	0 1079 (10)
H25A	-0.4492	0.7407	0.2230	0.162*
H25B	-0.7181	0.7046	0.1954	0.162*
H25C	-0.7102	0.7918	0.2088	0.162*
H2O	1.031 (4)	1.0877 (14)	0.3316 (6)	0.090 (8)*
H3O	0.172 (4)	0.9724 (10)	0.1691 (10)	0.103 (9)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
01	0.0646 (9)	0.0605 (9)	0.0640 (9)	0.0055 (7)	-0.0227 (7)	-0.0080 (7)
O2	0.0650 (9)	0.0476 (9)	0.0632 (9)	0.0063 (7)	-0.0189 (7)	-0.0030 (7)
03	0.0597 (8)	0.0607 (9)	0.0431 (8)	-0.0100 (7)	0.0075 (6)	-0.0064 (7)
O4	0.0606 (8)	0.0640 (10)	0.0739 (10)	-0.0166 (7)	0.0109 (7)	-0.0022 (8)
N1	0.0454 (8)	0.0537 (10)	0.0400 (8)	-0.0027 (7)	-0.0006 (7)	0.0008 (7)
N2	0.0416 (8)	0.0480 (9)	0.0432 (9)	0.0004 (7)	-0.0005 (6)	0.0010 (7)
C1	0.115 (2)	0.0734 (18)	0.0933 (19)	-0.0083 (15)	-0.0501 (16)	-0.0043 (15)
C2	0.0626 (12)	0.0727 (16)	0.0519 (12)	-0.0012 (11)	-0.0152 (10)	0.0006 (11)
C3	0.0471 (10)	0.0514 (13)	0.0448 (11)	-0.0009 (9)	-0.0006 (8)	0.0009 (9)
C4	0.0594 (12)	0.0619 (14)	0.0536 (12)	0.0102 (10)	-0.0080 (10)	0.0044 (11)
C5	0.0766 (14)	0.0535 (14)	0.0691 (14)	0.0177 (11)	-0.0043 (12)	0.0057 (12)
C6	0.0705 (13)	0.0456 (12)	0.0576 (13)	0.0023 (10)	0.0004 (10)	-0.0035 (10)
C7	0.0465 (10)	0.0436 (11)	0.0400 (10)	-0.0036 (8)	0.0043 (8)	0.0056 (9)
C8	0.0451 (10)	0.0412 (11)	0.0428 (10)	0.0020 (8)	0.0031 (8)	0.0063 (9)
C9	0.0510 (10)	0.0495 (12)	0.0391 (10)	-0.0096 (9)	0.0060 (8)	-0.0006 (9)
C10	0.0421 (9)	0.0580 (12)	0.0405 (10)	-0.0053 (8)	-0.0009 (8)	0.0031 (9)
C11	0.0383 (9)	0.0430 (10)	0.0425 (10)	0.0024 (8)	0.0036 (7)	0.0001 (8)
C12	0.0482 (10)	0.0503 (12)	0.0517 (11)	-0.0047 (9)	0.0001 (9)	-0.0025 (10)
C13	0.0593 (12)	0.0485 (12)	0.0672 (14)	-0.0123 (10)	0.0059 (10)	-0.0003 (10)
C14	0.0736 (14)	0.0491 (13)	0.0609 (14)	-0.0082 (10)	0.0093 (11)	0.0105 (10)
C15	0.0641 (12)	0.0540 (13)	0.0463 (11)	-0.0020 (10)	-0.0005 (9)	0.0061 (10)
C16	0.0388 (9)	0.0429 (11)	0.0440 (10)	0.0007 (8)	0.0030 (8)	0.0002 (8)
C17	0.0482 (10)	0.0528 (12)	0.0394 (11)	0.0020 (9)	0.0032 (8)	0.0031 (9)
C18	0.0439 (9)	0.0472 (11)	0.0394 (10)	0.0044 (8)	-0.0025 (8)	-0.0033 (9)
C19	0.0628 (12)	0.0649 (14)	0.0411 (11)	0.0010 (11)	-0.0010 (9)	-0.0038 (10)
C20	0.0668 (13)	0.0709 (15)	0.0508 (13)	0.0024 (12)	-0.0115 (10)	-0.0182 (11)
C21	0.0501 (11)	0.0577 (13)	0.0712 (15)	-0.0023 (10)	-0.0094 (10)	-0.0147 (12)
C22	0.0408 (9)	0.0494 (12)	0.0573 (13)	0.0023 (9)	0.0011 (9)	-0.0023 (10)
C23	0.0402 (9)	0.0468 (11)	0.0414 (11)	0.0059 (8)	-0.0009 (8)	-0.0045 (9)
C24	0.0572 (12)	0.0480 (13)	0.1072 (19)	-0.0059 (10)	0.0038 (12)	0.0088 (12)
C25	0.099 (2)	0.093 (2)	0.134 (2)	-0.0265 (16)	0.0211 (18)	0.0369 (18)

Geometric parameters (Å, °)

01—C3	1.365 (2)	C10—H10A	0.9700
01—C2	1.423 (2)	С10—Н10В	0.9700
02—C8	1.346 (2)	C11—C12	1.384 (2)
O2—H2O	0.8502 (11)	C11—C16	1.393 (2)

O3—C23	1.343 (2)	C12—C13	1.377 (3)
O3—H3O	0.8501 (11)	C12—H12	0.9300
O4—C22	1.358 (2)	C13—C14	1.368 (3)
O4—C24	1.427 (2)	C13—H13	0.9300
N1—C9	1.270 (2)	C14—C15	1.377 (3)
N1—C10	1.456 (2)	C14—H14	0.9300
N2—C17	1.277 (2)	C15—C16	1.390 (2)
N2—C16	1.417 (2)	C15—H15	0.9300
C1—C2	1.489 (3)	C17—C18	1.443 (2)
C1—H1A	0.9600	C17—H17	0.9300
C1—H1B	0.9600	C18 - C23	1 390 (2)
C1—H1C	0.9600	C18 - C19	1.390(2) 1 400(2)
C_2 _H2A	0.9700	C19-C20	1.100(2) 1.364(3)
C2H2B	0.9700	C19_H19	0.9300
$C_2 = C_1$	1.374(3)	C_{20} C_{21}	1,370(3)
$C_3 = C_4$	1.374(3) 1.404(2)	C20—C21	1.379(3)
$C_3 = C_8$	1.404(2)	C20—1120	0.9300
C4—C3	1.580 (5)	C21—C22	1.572 (5)
C4—H4	0.9300	C21—H21	0.9300
C5—C6	1.367 (3)	C22—C23	1.407 (2)
C5—H5	0.9300	C24—C25	1.491 (4)
C6-C/	1.397 (3)	C24—H24A	0.9700
С6—Н6	0.9300	C24—H24B	0.9700
С7—С8	1.390 (2)	C25—H25A	0.9600
С7—С9	1.455 (2)	C25—H25B	0.9600
С9—Н9	0.9300	C25—H25C	0.9600
C10—C11	1.510 (2)		
C3—O1—C2	117.69 (15)	C13—C12—C11	121.82 (18)
C8—O2—H2O	106.0 (17)	C13—C12—H12	119.1
С23—О3—НЗО	105.4 (18)	C11—C12—H12	119.1
C22—O4—C24	117.63 (16)	C14—C13—C12	119.52 (18)
C9—N1—C10	118.48 (16)	C14—C13—H13	120.2
C17—N2—C16	122.26 (15)	C12—C13—H13	120.2
C2—C1—H1A	109.5	C13—C14—C15	120.20 (19)
C2—C1—H1B	109.5	C13—C14—H14	119.9
H1A—C1—H1B	109.5	C15—C14—H14	119.9
C2-C1-H1C	109.5	C14-C15-C16	120.34 (18)
H1A - C1 - H1C	109.5	C14-C15-H15	119.8
HIB-C1-HIC	109.5	C16—C15—H15	119.8
$01-C^2-C^1$	107.27 (18)	C_{15} C_{16} C_{11}	119.0
O1 C2 H2A	110.3	C15 $C16$ $N2$	122.85 (16)
C1 C2 H2A	110.3	C13 - C16 - N2	122.05(10) 117.21(15)
C1 - C2 - H2R	110.3	N2 C17 C18	117.21(15) 122.22(16)
$C_1 = C_2 = H_2 B$	110.3	N2 - C17 - U17	122.22 (10)
$C_1 - C_2 - \Pi_2 D$	110.5	$1N2 - C17 - \Pi17$	110.9
$\Pi \angle A = U \angle = \Pi \angle B$	108.3	C13 - C17 - H17	110.22 (17)
01 - 03 - 04	125./5(1/)	$C_{23} = C_{18} = C_{17}$	119.22 (17)
01-03-08	114.93 (16)	C23—C18—C17	120.68 (16)
C4—C3—C8	119.35 (18)	C19—C18—C17	120.07 (17)

GA GA GE		G2 0 G 10 G 10	100 00 (10)
$C_{3}-C_{4}-C_{5}$	120.62 (18)	C20—C19—C18	120.32 (19)
C3—C4—H4	119.7	C20—C19—H19	119.8
C5—C4—H4	119.7	C18—C19—H19	119.8
C6—C5—C4	120.56 (19)	C19—C20—C21	120.34 (19)
С6—С5—Н5	119.7	С19—С20—Н20	119.8
C4—C5—H5	119.7	С21—С20—Н20	119.8
C5—C6—C7	120.20 (19)	C22—C21—C20	121.08 (19)
С5—С6—Н6	119.9	C22—C21—H21	119.5
С7—С6—Н6	119.9	C20—C21—H21	119.5
C8—C7—C6	119.32 (16)	O4—C22—C21	126.19 (18)
C8—C7—C9	120.42 (16)	O4—C22—C23	114.74 (16)
C6—C7—C9	120.25 (17)	C21—C22—C23	119.07 (18)
O2—C8—C7	122.08 (15)	O3—C23—C18	122.37 (16)
02	117.98 (16)	03-C23-C22	117.65 (16)
C7 - C8 - C3	119.95 (17)	C18 - C23 - C22	119.97 (16)
N1 - C9 - C7	121 94 (17)	04-C24-C25	107.5(2)
N1H9	119.0	04-C24-H24A	110.2
C7 C0 H0	110.0	$C_{25} = C_{24} = H_{24A}$	110.2
$C_{1} = C_{2} = 115$	117.0	C_{23} C_{24} H_{24} H_{24}	110.2
	111.01 (14)	$C_{24} = C_{24} = H_{24} = H_{24}$	110.2
NI = CI0 = HI0A	109.5	U24—024—024B	110.2
CII—CIO—HIOA	109.3	H24A - C24 - H24B	108.5
	109.3	C24—C25—H25A	109.5
CII—CI0—HI0B	109.3	С24—С25—Н25В	109.5
H10A—C10—H10B	107.9	H25A—C25—H25B	109.5
C12—C11—C16	118.15 (16)	C24—C25—H25C	109.5
C12—C11—C10	122.49 (16)	H25A—C25—H25C	109.5
C16—C11—C10	119.36 (15)	H25B—C25—H25C	109.5
C3—O1—C2—C1	175.91 (19)	C14-C15-C16-C11	1.1 (3)
C2	5.6 (3)	C14—C15—C16—N2	179.84 (17)
C2-01-C3-C8	-174.61 (16)	C12—C11—C16—C15	-2.1 (2)
O1—C3—C4—C5	179.47 (19)	C10-C11-C16-C15	178.31 (17)
C8—C3—C4—C5	-0.4 (3)	C12—C11—C16—N2	179.06 (15)
C3—C4—C5—C6	0.5 (3)	C10-C11-C16-N2	-0.5 (2)
C4—C5—C6—C7	-0.3 (3)	C17—N2—C16—C15	30.6 (3)
C5—C6—C7—C8	0.1 (3)	C17—N2—C16—C11	-150.65 (17)
C_{5} C_{6} C_{7} C_{9}	178 64 (18)	C16 - N2 - C17 - C18	179 38 (15)
C6-C7-C8-O2	-179.86(16)	N_{2} C_{17} C_{18} C_{23}	-38(3)
$C_{0} = C_{1} = C_{0} = C_{0}$	16(3)	$N_2 = C_{17} = C_{18} = C_{19}$	$178\ 20\ (17)$
$C_{1}^{2} = C_{1}^{2} = C_{2}^{2} = C_{2}^{2}$	1.0(3)	$C_{23}^{23} C_{18}^{18} C_{10}^{10} C_{20}^{20}$	-0.2(3)
$C_0 = C_7 = C_8 = C_3$	179.52(15)	$C_{23} = C_{18} = C_{19} = C_{20}$	0.2(3)
$C_{2} = C_{1} = C_{2} = C_{3}$	-1/8.35(15)	C17 - C18 - C19 - C20	1/7.81(17)
01 - 03 - 03 - 02	0.2(2)	C18 - C19 - C20 - C21	0.5(3)
C4 - C3 - C8 - O2	1/9.99 (1/)	C19 - C20 - C21 - C22	-0.3(3)
01-03-08-07	-1/9.12(15)	C24—O4—C22—C21	5.1 (3)
C4—C3—C8—C7	0.1 (3)	C24—O4—C22—C23	-174.61 (16)
C10—N1—C9—C7	176.94 (14)	C20—C21—C22—O4	-179.98 (19)
C8—C7—C9—N1	1.0 (3)	C20—C21—C22—C23	-0.2 (3)
C6—C7—C9—N1	-177.52 (17)	C19—C18—C23—O3	178.33 (16)

C9—N1—C10—C11	-119.33 (18)	C17—C18—C23—O3	0.3 (3)
N1-C10-C11-C12	-14.9 (2)	C19—C18—C23—C22	-0.3 (3)
N1-C10-C11-C16	164.62 (15)	C17—C18—C23—C22	-178.31 (16)
C16-C11-C12-C13	1.6 (3)	O4—C22—C23—O3	1.6 (2)
C10-C11-C12-C13	-178.91 (17)	C21—C22—C23—O3	-178.17 (16)
C11—C12—C13—C14	0.1 (3)	O4—C22—C23—C18	-179.72 (16)
C12—C13—C14—C15	-1.2 (3)	C21—C22—C23—C18	0.5 (3)
C13—C14—C15—C16	0.6 (3)	C22—O4—C24—C25	178.99 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D····A	<i>D</i> —H··· <i>A</i>
O2—H2 <i>O</i> …N1	0.85 (1)	1.79 (1)	2.5711 (19)	151 (2)
O3—H3 <i>O</i> …N2	0.85 (1)	1.80 (1)	2.5844 (19)	152 (2)