

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Methyl 2-(4a,8-Dimethyl-7-oxodecahydronaphthalen-2-yl)acrylate

Mohamed Tebbaa,^a Ahmed Benharref,^b Jean-Claude Daran,^c Latifa Barkaoui^a* and Moha Berraho^b

^aLaboratoire de Chimie Bioorganique et Analytique, URAC 22, BP 146, FSTM, Université Hassan II, Mohammedia-Casablanca 20810 Mohammedia, Morocco, ^bLaboratoire de Chimie Biomoleculaire, Substances Naturelles et Réactivite, URAC16, Université Cadi Ayyad, Faculté des Sciences Semlalia, BP 2390, Bd My Abdellah, 40000 Marrakech, Morocco, and ^cLaboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse Cedex 04, France Correspondence e-mail: mberraho@yahoo.fr

Received 13 June 2012; accepted 27 June 2012

Key indicators: single-crystal X-ray study; T = 180 K; mean σ (C–C) = 0.003 Å; R factor = 0.042; wR factor = 0.107; data-to-parameter ratio = 13.2.

The title compound, $C_{16}H_{24}O_3$, was isolated from the aerial part of *Inula Viscosa* (*L*) Aiton [or *Dittrichia Viscosa* (*L*) Greuter]. The molecule contains two fused (*trans*) sixmembered rings which both exibit a chair conformation. In the crystal, molecules are linked into chains along [100] by weak $C-H\cdots O$ hydrogen bonds involving the methyl and carbonyl groups.

Related literature

For the synthesis of the title compound, see: Barrero *et al.* (2009). For the medicinal interest in *Inula Viscosa* (*L*) Aiton [or *Dittrichia Viscosa* (*L*) Greuter], see: Shtacher & Kasshman (1970); Bohlmann *et al.* (1977); Chiappini *et al.* (1982). For the pharmacological interest, see: Azoulay *et al.* (1986); Bohlmann *et al.* (1977); Ceccherelli *et al.* (1988). For background to phytochemical studies of plants, see: Geissman & Toribio (1967). For conformational analysis, see: Cremer & Pople (1975).

Experimental

Crystal data

 $C_{16}H_{24}O_3$ Z = 8

 $M_r = 264.35$ Cu $K\alpha$ radiation

 Tetragonal, $P4_12_12$ $\mu = 0.64 \text{ mm}^{-1}$

 a = 7.3359 (1) Å
 T = 180 K

 c = 54.7419 (13) Å
 0.48 × 0.24 × 0.18 mm

 V = 2945.96 (9) Å³
 M

Data collection

Agilent Xcalibur Eos Gemini ultra	11562 measured reflections
diffractometer	2319 independent reflections
Absorption correction: multi-scan	2286 reflections with $I > 2\sigma(I)$
(CrysAlis PRO; Agilent, 2010)	$R_{\rm int} = 0.027$
$T_{\min} = 0.737, \ T_{\max} = 1.000$	$\theta_{\rm max} = 62.0^{\circ}$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	176 parameters
$wR(F^2) = 0.107$	H-atom parameters constrained
S = 1.22	$\Delta \rho_{\rm max} = 0.15 \text{ e } \text{\AA}^{-3}$
2319 reflections	$\Delta \rho_{\rm min} = -0.13 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C14-H14B\cdots O2^{i}$	0.96	2.54	3.113 (3)	118

Symmetry code: (i) y + 1, x, -z.

Data collection: *CrysAlis PRO* (Agilent, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997)and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2573).

References

- Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Azoulay, P., Reynier, J. P., Balansard, G., Gasquet, M. & Timon-David, P. (1986). Pharm. Acta Helv. 61, 345–352.
- Barrero, A. F., Herrador, M. M., Arteaga, J. & Catala' n, V. (2009). *Eur. J. Org. Chem.* pp. 3589–3594.
- Bohlmann, F., Czerson, H. & Schoneweib, S. (1977). Chem. Ber. 110, 1330–1334.
- Ceccherelli, P., Curini, M. & Marcotullio, M. C. (1988). J. Nat. Prod. 51, 1006–1009.
- Chiappini, I., Fardella, G., Menghini, A. & Rossi, C. (1982). *Planta Med.* 44, 159–161.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Geissman, T. A. & Toribio, F. P. (1967). Phytochemistry, 6, 1563-1567.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Shtacher, G. & Kasshman, Y. (1970). J. Med. Chem. 13, 1221-1223.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2012). E68, o2391 [https://doi.org/10.1107/S1600536812029303] Methyl 2-(4a,8-Dimethyl-7-oxodecahydronaphthalen-2-yl)acrylate

Mohamed Tebbaa, Ahmed Benharref, Jean-Claude Daran, Latifa Barkaoui and Moha Berraho

S1. Comment

The Inula Viscosa (*L*) is widespread in Mediterranean area and extends to the Atlantic cost of Morocco. It is a well known medicinal plant (Shtacher & Kasshman, 1970; Chiappini *et al.*, 1982) and has some pharmacological activities (Azoulay *et al.*, 1986). This plant has been the subject of chemical investigation in terms of isolating sesquiterpene lactones (Bohlmann *et al.*, 1977), sesquiterpene acids (Ceccherelli *et al.*, 1988; Geissman & Toribio, 1967). The ilicic acid is one of the main components of the dichloromethane extract of the Inula Viscosa (*L*) Aiton or Dittrichia Viscosa (*L*) Greuter]. In order to prepare products with high added value, that can be used in the pharmacologycal industry, we have studied the reactivity of this acid. Thus, from this acid, we have prepared by the method of Barrero *et al.* (2009), 2-(4a,8-Dimethyl-1, 2,3,4,4a,5,6,7- octahydro naphthalen-2-yl)-acrylic acid methyl ester. The epoxidation of the latter compound by meta-chloroperbenzoic acid (mCPBA), followed by the opening of the epoxide obtained by Bi(OTf)3 leads to the title compound (I) with a yield of 70%. The cristal structure of (I) is determined herin. The molecule is built up from two fused six-membered rings. The molecular structure of (I),Fig.1, shows the two rings to adopt a perfect chair conformation as indicated by Cremer & Pople (1975) puckering parameters Q(T)= 0.580 (2) Å and spherical polar angle $\theta = 180.0$ (2)° with $\varphi = 120$ (9)° for the first ring (C1,C2… C8A) and Q(T)= 0.572 (2) Å with a spherical polar angle $\theta = 175.9$ (2)° and $\varphi = 139$ (3)° for the second ring (C4A, C5…C8A)(Cremer and Pople,1975). Molecules are linked by intermolecular C— H…O hydrogen bonds (Table 1) involving O2 and H14B atoms and propagating into three dimensional network.

S2. Experimental

To 2 g (8 mmol) of 2-(4a,8-Dimethyl-1,2,3,4,4a,5,6,7-octahydro-naphthalen-2-yl)- acrylic acid methyl ester dissolved in 50 ml of dichloromethane was added one equivalent of *m*-chloroperbenzoic acid at 70%. The reaction mixture was stirred at room temperature for 3 h, then treated three times with a solution of sodium bisulfite at 10%. The organic layer was then washed with distilled water three times until neutralization, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue obtained was chromatographed on silica gel eluting with hexane/ ethyl acetate (98/2) to give quantitatively the corresponding epoxide. 1 g (3.78 mmol) of this epoxyde is dissolved with 5% of boron trifluoride etherate (BF3.Et2O) in 20 ml of dichloromethane. The reaction mixture was left stirring for a period of half an hour and then treated with 20 ml of a solution of sodium bicarbonate to 10%. The organic layer was dried filtered and concentrated under reduced pressure. Chromatography on silica gel, eluting with hexane/ethyl acetate (98/2) of the residue obtained, allowed us to obtain 700 mg (2.64 mmol)of the title compound which was recrystallized in dichloromethane.

S3. Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å(aromatic), 0.96 Å (methyl), 0.97 Å (methylene), 0.98 Å (methine) with $U_{iso}(H) = 1.2U_{eq}$ (aromatic, methylene, methine) or $U_{iso}(H) = 1.5U_{eq}$ (methyl). In the

absence of significant anomalous scattering, the absolute configuration could not be reliably determined and any references to the Flack parameter were removed.

Figure 1

Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability. level. H atoms are represented as small spheres of arbitrary radii.

Methyl 2-(4a,8-Dimethyl-7-oxodecahydronaphthalen-2-yl)acrylate

Crystal data

C₁₆H₂₄O₃ $M_r = 264.35$ Tetragonal, $P4_{1}2_{1}2$ Hall symbol: P 4abw 2nw a = 7.3359 (1) Å c = 54.7419 (13) Å V = 2945.96 (9) Å³ Z = 8F(000) = 1152

Data collection

Agilent Xcalibur Eos Gemini ultra diffractometer
Radiation source: Enhance Ultra (Cu) X-ray Source
Miror monochromator
Detector resolution: 16.1978 pixels mm⁻¹ ω scan
Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2010)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.107$ S = 1.222319 reflections $D_x = 1.192 \text{ Mg m}^{-3}$ Cu *Ka* radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 6272 reflections $\theta = 3.2-61.9^{\circ}$ $\mu = 0.64 \text{ mm}^{-1}$ T = 180 KBox, colorless $0.48 \times 0.24 \times 0.18 \text{ mm}$

 $T_{\min} = 0.737, T_{\max} = 1.000$ 11562 measured reflections
2319 independent reflections
2286 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.027$ $\theta_{\text{max}} = 62.0^\circ, \theta_{\text{min}} = 3.2^\circ$ $h = -8 \rightarrow 8$ $k = -7 \rightarrow 8$ $l = -61 \rightarrow 62$

176 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0378P)^2 + 1.4663P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$

Special details

$$\begin{split} &\Delta \rho_{\text{max}} = 0.15 \text{ e } \text{\AA}^{-3} \\ &\Delta \rho_{\text{min}} = -0.13 \text{ e } \text{\AA}^{-3} \\ &\text{Extinction correction: } SHELXL97 \text{ (Sheldrick,} \\ &2008\text{), } \text{Fc}^* = \text{kFc}[1 + 0.001 \text{xFc}^2 \lambda^3 / \sin(2\theta)]^{-1/4} \\ &\text{Extinction coefficient: } 0.0079 \text{ (4)} \end{split}$$

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlisPro (Agilent Technologies, 2010)

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	1.0927 (3)	0.8703 (3)	0.07690 (4)	0.0245 (5)	
H1A	1.2083	0.8472	0.0849	0.029*	
H1B	1.0311	0.9671	0.0857	0.029*	
C2	1.1272 (3)	0.9311 (3)	0.05053 (4)	0.0261 (5)	
H2	1.1913	0.8313	0.0423	0.031*	
C3	0.9461 (3)	0.9583 (4)	0.03717 (4)	0.0342 (6)	
H3A	0.8808	1.0594	0.0445	0.041*	
H3B	0.9699	0.9887	0.0202	0.041*	
C4	0.8288 (3)	0.7880 (4)	0.03835 (4)	0.0368 (6)	
H4A	0.8897	0.6905	0.0296	0.044*	
H4B	0.7139	0.8118	0.0302	0.044*	
C4A	0.7903 (3)	0.7247 (3)	0.06465 (4)	0.0293 (5)	
C5	0.6931 (4)	0.5403 (4)	0.06370 (4)	0.0413 (6)	
H5A	0.7621	0.4583	0.0533	0.050*	
H5B	0.5739	0.5567	0.0564	0.050*	
C6	0.6696 (4)	0.4520 (4)	0.08907 (4)	0.0406 (6)	
H6A	0.5858	0.5240	0.0988	0.049*	
H6B	0.6188	0.3307	0.0873	0.049*	
C7	0.8502 (3)	0.4407 (3)	0.10176 (4)	0.0300 (5)	
C8	0.9541 (3)	0.6181 (3)	0.10379 (3)	0.0265 (5)	
H8	0.8789	0.7032	0.1132	0.032*	
C8A	0.9762 (3)	0.6979 (3)	0.07764 (4)	0.0234 (5)	
H8A	1.0423	0.6059	0.0682	0.028*	
C9	1.2453 (3)	1.0976 (3)	0.04836 (4)	0.0247 (5)	
C10	1.3641 (3)	1.1046 (3)	0.02623 (4)	0.0286 (5)	
C11	0.6688 (3)	0.8646 (4)	0.07742 (4)	0.0395 (6)	
H11A	0.5602	0.8834	0.0680	0.059*	
H11B	0.7334	0.9778	0.0790	0.059*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H11C	0.6364	0.8205	0.0933	0.059*
C12	1.1327 (3)	0.5938 (3)	0.11736 (4)	0.0354 (6)
H12A	1.1111	0.5291	0.1323	0.053*
H12B	1.1839	0.7112	0.1210	0.053*
H12C	1.2161	0.5257	0.1074	0.053*
C13	1.2460 (3)	1.2350 (3)	0.06410 (4)	0.0344 (6)
H13A	1.3205	1.3355	0.0613	0.041*
H13B	1.1721	1.2308	0.0779	0.041*
C14	1.5954 (4)	1.2590 (4)	0.00496 (4)	0.0429 (7)
H14A	1.6742	1.1545	0.0051	0.064*
H14B	1.6673	1.3680	0.0062	0.064*
H14C	1.5271	1.2611	-0.0100	0.064*
01	0.9105 (2)	0.2973 (2)	0.10919 (3)	0.0385 (4)
O2	1.3651 (3)	0.9897 (3)	0.01066 (3)	0.0601 (6)
O3	1.4716 (2)	1.2492 (2)	0.02541 (3)	0.0393 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0237 (12)	0.0234 (12)	0.0265 (10)	-0.0016 (9)	-0.0015 (9)	-0.0006 (9)
C2	0.0271 (13)	0.0245 (12)	0.0267 (10)	-0.0025 (9)	0.0026 (9)	-0.0036 (9)
C3	0.0344 (14)	0.0428 (15)	0.0254 (10)	-0.0081 (11)	-0.0019 (10)	0.0071 (10)
C4	0.0315 (14)	0.0503 (16)	0.0287 (11)	-0.0116 (12)	-0.0069 (10)	0.0017 (11)
C4A	0.0221 (12)	0.0352 (13)	0.0307 (11)	-0.0037 (10)	-0.0012 (9)	0.0018 (10)
C5	0.0332 (15)	0.0448 (16)	0.0459 (14)	-0.0175 (12)	-0.0064 (11)	0.0034 (12)
C6	0.0326 (15)	0.0385 (15)	0.0507 (14)	-0.0120 (12)	-0.0002 (11)	0.0078 (12)
C7	0.0321 (13)	0.0284 (13)	0.0297 (10)	-0.0008 (11)	0.0103 (9)	0.0010 (10)
C8	0.0272 (12)	0.0267 (12)	0.0256 (10)	0.0021 (10)	0.0031 (9)	0.0001 (9)
C8A	0.0225 (11)	0.0218 (12)	0.0257 (10)	0.0006 (9)	0.0022 (8)	-0.0025 (8)
C9	0.0242 (12)	0.0223 (12)	0.0275 (10)	0.0004 (10)	0.0007 (8)	0.0010 (9)
C10	0.0312 (13)	0.0230 (12)	0.0316 (11)	-0.0036 (10)	0.0012 (9)	-0.0016 (9)
C11	0.0239 (13)	0.0462 (16)	0.0483 (14)	0.0076 (12)	0.0026 (11)	0.0121 (12)
C12	0.0369 (14)	0.0326 (14)	0.0367 (12)	-0.0039 (11)	-0.0062 (10)	0.0078 (10)
C13	0.0333 (13)	0.0310 (13)	0.0389 (12)	-0.0066 (11)	0.0098 (10)	-0.0038 (11)
C14	0.0352 (14)	0.0504 (17)	0.0430 (14)	-0.0076 (13)	0.0161 (11)	0.0028 (12)
01	0.0422 (11)	0.0254 (10)	0.0479 (9)	-0.0015 (8)	0.0084 (8)	0.0057 (7)
O2	0.0819 (16)	0.0494 (12)	0.0490 (10)	-0.0310 (11)	0.0323 (10)	-0.0215 (10)
03	0.0392 (10)	0.0375 (10)	0.0411 (9)	-0.0152 (8)	0.0162 (7)	-0.0061 (7)

Geometric parameters (Å, °)

C1—C8A	1.527 (3)	C7—O1	1.211 (3)	
C1—C2	1.532 (3)	C7—C8	1.512 (3)	
C1—H1A	0.9700	C8—C12	1.517 (3)	
C1—H1B	0.9700	C8—C8A	1.555 (3)	
С2—С9	1.502 (3)	C8—H8	0.9800	
C2—C3	1.529 (3)	C8A—H8A	0.9800	
С2—Н2	0.9800	C9—C13	1.326 (3)	

C3—C4	1.519 (3)	C9—C10	1.493 (3)
С3—НЗА	0.9700	C10—O2	1.199 (3)
C3—H3B	0.9700	C10—O3	1.322 (3)
C4—C4A	1.539 (3)	C11—H11A	0.9600
C4—H4A	0.9700	C11—H11B	0.9600
C4—H4B	0.9700	C11—H11C	0.9600
C4A—C11	1.529 (3)	C12—H12A	0.9600
C4A—C5	1.530 (3)	C12—H12B	0.9600
C4A—C8A	1.551 (3)	C12—H12C	0.9600
C5—C6	1.542 (3)	C13—H13A	0.9300
С5—Н5А	0.9700	C13—H13B	0.9300
C5—H5B	0.9700	C14-O3	1443(3)
C6-C7	1 498 (3)	C14—H14A	0.9600
С6—Н6А	0.9700	C14 H14R C14 H14B	0.9600
C6—H6B	0.9700	C14 H14C	0.9600
C0—110D	0.9700		0.9000
C8A—C1—C2	111.03 (17)	O1—C7—C8	122.6 (2)
C8A—C1—H1A	109.4	C6—C7—C8	115.6 (2)
C2C1H1A	109.4	C7—C8—C12	111.72 (19)
C8A—C1—H1B	109.4	C7—C8—C8A	107.99 (17)
C2—C1—H1B	109.4	C12—C8—C8A	113.89 (18)
H1A—C1—H1B	108.0	С7—С8—Н8	107.7
C9—C2—C3	110.93 (19)	С12—С8—Н8	107.7
C9—C2—C1	114.00 (17)	C8A—C8—H8	107.7
$C_3 - C_2 - C_1$	110.20 (18)	C1—C8A—C4A	112.01 (17)
C9—C2—H2	107.1	C1 - C8A - C8	113.25 (17)
C3—C2—H2	107.1	C4A—C8A—C8	112.22 (17)
C1-C2-H2	107.1	C1—C8A—H8A	106.2
C4-C3-C2	111 4 (2)	C4A - C8A - H8A	106.2
C4—C3—H3A	109.4	C8 - C8A - H8A	106.2
$C^2 - C^3 - H^3 A$	109.4	C13 - C9 - C10	1199(2)
C4-C3-H3B	109.4	$C_{13} - C_{9} - C_{2}$	124.7(2)
C^2 — C^3 — H^3B	109.4	C10-C9-C2	121.7(2) 11542(18)
H_{3A} C_{3} H_{3B}	108.0	$0^{2}-0^{2}$	113.12(10) 1224(2)
$C_3 - C_4 - C_{4A}$	113.09(18)	02 - C10 - C9	122.4(2) 123.8(2)
$C_3 - C_4 - H_4 \Delta$	109.0	02 - 010 - 09	123.0(2) 113.80(18)
$C_{4} - C_{4} - H_{4}$	109.0	$C_{4A} = C_{11} = H_{11A}$	109.5
C_{3} C_{4} H_{4B}	109.0	C4A - C11 - H11B	109.5
$C_4 = C_4 = H_4 B$	109.0	H114_C11_H11B	109.5
	107.8	C_{4A} C11 H11C	109.5
$C_{11} C_{4A} C_{5}$	107.3 100.7 (2)		109.5
$C_{11} = C_{4A} = C_{3}$	109.7(2) 100.4(2)	HIIR CII HIIC	109.5
$C_{1} = C_{4} = C_{4}$	109.4(2) 108.70(10)	$C_{8} C_{12} H_{12}$	109.5
C_{1}	112.85 (18)	C_{0} C_{12} H_{12} H_{12}	109.5
$C_{11} = C_{TA} = C_{0A}$	112.03(10) 108.26(10)	$\begin{array}{c} \text{U}_{12} \text{U}_{12}$	107.5
$C_{4} = C_{4}A = C_{0}A$	100.20 (19)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
C_{+}	107.00(10) 112.1(2)	$U_0 - U_1 2 - \Pi_1 2 U_1 2 U_$	109.3
$C_{A} = C_{A} = C_{A}$	113.1(2)	$H_{12} P = C_{12} = H_{12} C$	109.3
UHA—UJ—ПJА	109.0	П12D—U12—П12U	109.3

supporting information

С6—С5—Н5А	109.0	C9—C13—H13A	120.0
C4A—C5—H5B	109.0	C9—C13—H13B	120.0
С6—С5—Н5В	109.0	H13A—C13—H13B	120.0
H5A—C5—H5B	107.8	O3—C14—H14A	109.5
C7—C6—C5	110.0 (2)	O3—C14—H14B	109.5
С7—С6—Н6А	109.7	H14A—C14—H14B	109.5
С5—С6—Н6А	109.7	O3—C14—H14C	109.5
С7—С6—Н6В	109.7	H14A—C14—H14C	109.5
С5—С6—Н6В	109.7	H14B—C14—H14C	109.5
H6A—C6—H6B	108.2	C10—O3—C14	116.22 (19)
O1—C7—C6	121.8 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C14—H14 <i>B</i> ···O2 ⁱ	0.96	2.54	3.113 (3)	118

Symmetry code: (i) y+1, x, -z.