inorganic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dilithium disodium nickel(II) cyclohexaphosphate dodecahydrate, Li_2Na_2Ni - P_6O_{18} ·12H₂O

Sonia Abid,^a* Salem S. Al-Deyab^b and Mohamed Rzaigui^a

^aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and ^bPetrochemical Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia Correspondence e-mail: sonia.abid@fsb.rnu.tn

Received 14 June 2012; accepted 1 July 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (Ni–O) = 0.002 Å; R factor = 0.044; wR factor = 0.102; data-to-parameter ratio = 32.7.

The crystal structure of $\text{Li}_2\text{Na}_2\text{NiP}_6\text{O}_{18}$ ·12H₂O is characterized by the presence of six-membered $P_6O_{18}^{-6-}$ phosphate ring anions (internal symmetry $\overline{1}$) having a chair conformation and three different cations, *viz*. Li⁺, Na⁺ and Ni²⁺, to counterbalance the anionic charge. All atoms are in general positions except for nickel, which lies on a special position with site symmetry 2. Lithium has a tetrahedral environment (LiO₄), and sodium and nickel have octahedral environments [NaO₆ and Ni(H₂O)₆, respectively]. The P₆O₁₈ rings are linked *via* corner sharing by NaO₆ octahedra and LiO₄ tetrahedra to form a three-dimensional framework presenting tunnels running along [010] in which the six-coordinated Ni²⁺ cations are located. The structure is stabilized by a network of O– H···O hydrogen bonds.

Related literature

For the crystal chemistry of cyclic phosphates, see: Averbuch-Pouchot & Durif (1996). For related structures containing cyclohexaphosphate rings, see: Abid *et al.* (2011); Amri *et al.* (2009); Marouani *et al.* (2010). For hydrogen bonding, see: Blessing (1986). For the synthesis, see: Schülke & Kayser (1985).

Experimental

Crystal data Li₂Na₂NiP₆O₁₈·12H₂O $V = 2484.0 (18) Å^3$ $M_r = 808.58$ Z = 4 Monoclinic, C2/c Ag Ka radiation a = 17.728 (9) Å $\lambda = 0.56085 Å$ b = 10.213 (2) Å $\mu = 0.69 \text{ mm}^{-1}$ c = 14.801 (7) Å T = 298 K $\beta = 112.04 (4)^\circ$ $0.40 \times 0.35 \times 0.30 \text{ mm}$

6076 independent reflections

intensity decay: 2%

 $R_{\rm int} = 0.035$

4296 reflections with $I > 2\sigma(I)$

2 standard reflections every 120 min

Data collection

```
Nonius MACH-3 diffractometer
Absorption correction: part of the
refinement model (\Delta F)
(Walker & Stuart, 1983)
T_{min} = 0.769, T_{max} = 0.819
7168 measured reflections
```

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.044 & 2 \text{ restraints} \\ wR(F^2) &= 0.102 & H-\text{atom parameters constrained} \\ S &= 1.07 & \Delta\rho_{\text{max}} &= 0.80 \text{ e} \text{ Å}^{-3} \\ 6076 \text{ reflections} & \Delta\rho_{\text{min}} &= -0.61 \text{ e} \text{ Å}^{-3} \\ 186 \text{ parameters} \end{split}$$

Table 1

Selected bond lengths (Å).

Na1-O1 ⁱ	2.4205 (19)	Li-O8	1.930 (5)
Na1–O5 ⁱⁱ	2.384 (2)	Li-O10	1.964 (5)
Na1–O7 ⁱⁱⁱ	2.3737 (19)	Li-011	1.972 (5)
Na1–O10 ⁱⁱⁱ	2.556 (2)	Ni1-O13	2.0469 (16)
Na1-O11	2.546 (2)	Ni1-015	2.0572 (15)
Na1-O12	2.323 (2)	Ni1-O14	2.0693 (18)
Li–O2 ⁱ	1.927 (4)		
Symmetry codes: (i)	$-x + \frac{1}{2}, y - \frac{1}{2}, -$	$-z + \frac{1}{2};$ (ii)	$x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2};$ (iii)

 $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}.$

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
O10-H110···O15 ⁱⁱⁱ	0.85	1.96	2.795 (3)	165
$O10-H210\cdots O4^{iv}$	0.87	2.03	2.851 (3)	159
$O11-H111\cdots O14^{iii}$	0.82	2.01	2.811 (3)	164
O11−H211···O2	0.86	2.25	3.031 (3)	150
$O12 - H112 \cdot \cdot \cdot O12^{v}$	0.86	2.44	3.058 (4)	130
$O12-H212\cdots O3^{vi}$	0.86	2.48	3.304 (3)	161
$O12-H212\cdots O4^{vi}$	0.86	2.52	3.166 (3)	133
O15−H115····O4 ^{vii}	0.88	1.87	2.741 (3)	171
$O15-H215\cdots O5^{i}$	0.83	1.85	2.673 (3)	174
O14−H114···O8	0.85	1.94	2.758 (3)	163
$O14-H214\cdots O7^{viii}$	0.86	1.78	2.643 (3)	174
$O13-H113\cdots O2^{i}$	0.83	1.97	2.789 (3)	167
$O13-H213\cdots O1^{ii}$	0.84	1.84	2.677 (3)	174
Symmetry codes: (i $-x \pm \frac{1}{2}, y \pm \frac{1}{2}, -z \pm \frac{1}{2}$	$-x + \frac{1}{2}, y - \frac{1}{2}, y - \frac{1}{2}$	$-\frac{1}{2}, -z + \frac{1}{2};$ + 1 z + $\frac{1}{2};$	(ii) $x + \frac{1}{2}, -y + \frac{1}{$	$\frac{3}{2}, z + \frac{1}{2};$ (iii)
$-x + \frac{1}{2}, -y + \frac{3}{2}, -z;$ (vii)	$x + \frac{1}{2}, -y + \frac{1}{2}, z$	$x + \frac{1}{2}$; (viii) $-x$	$+\frac{1}{2}, -y + \frac{1}{2}, -z.$	4 + 2, (VI)

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS86* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This work was supported by the Tunisian Ministry of H. E. Sc. R. and the Deanship of Scientific Research at King Saud University (research group project No. RGP-VPP-089).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2073).

References

- Abid, S., Al-Deyab, S. S. & Rzaigui, M. (2011). Acta Cryst. E67, m1549-m1550. Amri, O., Abid, S. & Rzaigui, M. (2009). Acta Cryst. E65, 0654.
- Averbuch-Pouchot, M. T. & Durif, A. (1996). In Topics in Phosphate Chemistry. Singapore: World Scientific.
- Blessing, R. H. (1986). Acta Cryst. B42, 613-621.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Marouani, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o702.
- Schülke, U. & Kayser, R. (1985). Z. Anorg. Allg. Chem. **531**, 167–175. Sheldrick, G. M. (2008). Acta Cryst. A**64**, 112–122.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

supporting information

Acta Cryst. (2012). E68, i62–i63 [https://doi.org/10.1107/S1600536812029960] Dilithium disodium nickel(II) cyclohexaphosphate dodecahydrate, Li₂Na₂NiP₆O₁₈·12H₂O

Sonia Abid, Salem S. Al-Deyab and Mohamed Rzaigui

S1. Comment

Cyclophosphohates, corresponding to the anionic formula $[P_nO_{3n}]^{n-}$, constitute the second important family of condensed phosphates after the polyphosphates. The identified cyclic anions, built by n corner-sharing PO_4 tetrahedra, correspond to n = 3, 4, 5, 6, 8, 9, 10 and 12. The phosphoric ring anion corresponding to n = 6, called cyclohexaphosphate, has been associated to numerous organic and/or inorganic cations (Averbuch-Pouchot & Durif, 1996). But its association to three mixed cations is still very limited. In this work, we report the preparation and the structural investigation of a novel dilithium disodium nickel cyclohexaphosphate dodecahydrate, $Li_2Na_2NiP_6O_{18}$. 12H₂O (I). To our knowledge, there is no cyclohexaphosphate with a mixture of two alkalines and bivalent cations. The partial three-dimensional plot in Fig.1 illustrates the connection ion-oxygen polyhedra and the phosphoric ring in the crystal structure of the title compound. Among the 21 atoms included in the asymmetric unit of this structure, only the Ni atom is in a special position ((Wyckoff position 4 e, site symmetry 2)). The Li, Na and Ni atoms are coordinated to four, for the first one, and to six, for the last two, oxygen atoms. The NaO₆ and P_6O_{18} entities are linked in an alternating manner to generate a two-dimensional open framework, forming so layers parallel to the (a,b) plane (Fig. 2). Adjacent layers are connected by the LiO₄ tetrahedra to generate a three dimensional structure exhibiting channels running along the b axis (Fig. 3). Inside these channels, the Ni^{2+} cation is coordinated by six water molecules. The $[Ni(H_2O)_6]^{2+}$ octahedron is almost regular with Ni–O distances ranging from 2.0462 (16) to 2.0691 (18) Å. The smallest distance between two octahedral centers is 9.069 Å. The cyclic anion $(P_6O_{18})^6$ has a chair conformation with geometrical characteristics that show no significant difference deviation from those observed in other cyclohexaphosphates having the same internal symmetry -1 (Abid et al. 2011, Amri et al.2009; Marouani et al.2010). In addition to its interactions with the metallic cations, the phosphoric anion establish with the water molecules an important hydrogen-bonding scheme. The examination of this latter shows the existence of strong hydrogen bonds with distances O···O ranging from 2.643 (3) to 2.677 (3) Å and other weaker ones, with O···O distances falling from 2.741 (3) to 3.304 (3) Å (Blessing, 1986).

S2. Experimental

 $Li_2Na_2NiP_6O_{18}$.12 H_2O was prepared by mixing $Li_6P_6O_{18}$.6 H_2O (0.5 g, 5 mmol), NiCl₂.6 H_2O (0.71 g, 3 mmol), and NaNO₃ (0.03 g, 0.4 mmol) in 50 ml of distillated water and stirring for 30 min at temperature room. The obtained solution was allowed to stand in air until formation of good greenish single crystals of the title compound. Its chemical formula was determined by X-ray diffraction. The used $Li_6P_6O_{18}$.6 H_2O was prepared according to the procedure of Schülke and Kayser (Schülke & Kayser, 1985)

S3. Refinement

Hydrogen atoms were placed in geometrically idealized positions (O—H =0.85 Å) and treated as riding with $U_{iso}(H) = 1.2 U_{eq}$ of their parent atoms.

Figure 1

ORTEP-3 (Farrugia, 1997) view of (I) with atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. [Symmetry codes: (i) 0.5-x, 1.5-y, -z; (ii) 0.5-x, -0.5+y, 0.5-z; (iii) 1-x, y, 0.5-z; (iv) 0.5-x, 0.5+y, 0.5-z; (v) 0.5+x, 1.5-y, 0.5+z]

Figure 2

View of $[Na_2(P_6O_{18})]_n^{4n}$ developed along the *c* axis.

Figure 3

Projection of the structure of Li₂Na₂NiP₆O₁₈.12H₂O along the b axis

Dilithium disodium nickel(II) cyclohexaphosphate dodecahydrate

Crystal data

Li₂Na₂NiP₆O₁₈·12H₂O $M_r = 808.58$ Monoclinic, C2/c Hall symbol: -C 2yc a = 17.728 (9) Å b = 10.213 (2) Å c = 14.801 (7) Å $\beta = 112.04$ (4)° V = 2484.0 (18) Å³ Z = 4

Data collection

Nonius MACH-3 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator non-profiled ω scans Absorption correction: part of the refinement model (ΔF) (Walker & Stuart, 1983) $T_{\min} = 0.769, T_{\max} = 0.819$ 7168 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.102$ S = 1.07 F(000) = 1640 $D_x = 2.162 \text{ Mg m}^{-3}$ Ag *Ka* radiation, $\lambda = 0.56085 \text{ Å}$ Cell parameters from 25 reflections $\theta = 8.3-10.8^{\circ}$ $\mu = 0.69 \text{ mm}^{-1}$ T = 298 KPrism, green $0.40 \times 0.35 \times 0.30 \text{ mm}$

6076 independent reflections 4296 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$ $\theta_{max} = 28.0^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -29 \rightarrow 27$ $k = -1 \rightarrow 17$ $l = -1 \rightarrow 24$ 2 standard reflections every 120 min intensity decay: 2%

6076 reflections186 parameters2 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0389P)^2 + 4.028P]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} = 0.003$
neighbouring sites	$\Delta \rho_{\rm max} = 0.80 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	$\Delta \rho_{\rm min} = -0.60 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Na1	0.38942 (6)	0.74638 (9)	0.40089 (7)	0.02302 (18)	
Li	0.2602 (3)	0.4883 (4)	0.2527 (3)	0.0258 (8)	
08	0.28521 (9)	0.47433 (15)	0.13696 (11)	0.0182 (3)	
09	0.16879 (9)	0.61570 (15)	0.04655 (11)	0.0209 (3)	
O10	0.14882 (10)	0.42811 (17)	0.22717 (13)	0.0249 (3)	
H110	0.1134	0.4875	0.2021	0.030*	
H210	0.1389	0.4015	0.2772	0.030*	
011	0.25138 (10)	0.67633 (16)	0.27740 (13)	0.0260 (3)	
H111	0.2134	0.6824	0.2962	0.031*	
H211	0.2414	0.7291	0.2287	0.031*	
O12	0.42660 (15)	0.6531 (2)	0.28051 (17)	0.0437 (5)	
H112	0.4775	0.6725	0.3012	0.052*	
H212	0.4065	0.6762	0.2205	0.052*	
P1	0.15702 (3)	0.94221 (5)	0.03614 (4)	0.01251 (9)	
P3	0.21812 (3)	0.48781 (5)	0.04013 (4)	0.01248 (9)	
P2	0.09260 (3)	0.68397 (5)	-0.03712 (4)	0.01298 (9)	
O4	0.07807 (9)	0.62089 (15)	-0.13208 (11)	0.0196 (3)	
O2	0.16821 (9)	0.89346 (15)	0.13535 (10)	0.0177 (3)	
O7	0.16162 (10)	0.37702 (15)	0.00214 (12)	0.0216 (3)	
05	0.02574 (9)	0.69398 (17)	-0.00121 (12)	0.0227 (3)	
O6	0.24650 (8)	0.97174 (17)	0.04034 (11)	0.0208 (3)	
01	0.10493 (10)	1.05743 (15)	-0.00194 (12)	0.0243 (3)	
O3	0.12913 (10)	0.82657 (15)	-0.04140 (11)	0.0216 (3)	
Ni1	0.5000	0.24488 (3)	0.2500	0.01249 (7)	
015	0.48362 (9)	0.09969 (14)	0.33724 (11)	0.0172 (3)	
H115	0.5184	0.0349	0.3502	0.021*	
H215	0.4838	0.1271	0.3902	0.021*	
O14	0.37693 (8)	0.24893 (14)	0.16516 (11)	0.0172 (3)	
H114	0.3569	0.3256	0.1540	0.021*	
H214	0.3616	0.2121	0.1087	0.021*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

013	0.47785 (9)	0.38693 (15)	0.33445 (11)	0.0197 (3)
H113	0.4355	0.3760	0.3454	0.024*
H213	0.5162	0.4089	0.3860	0.024*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Na1	0.0231 (4)	0.0223 (4)	0.0243 (4)	-0.0004 (3)	0.0097 (3)	-0.0018 (4)
Li	0.0293 (19)	0.029 (2)	0.0183 (18)	0.0059 (17)	0.0085 (15)	0.0022 (16)
08	0.0169 (6)	0.0231 (7)	0.0128 (6)	0.0045 (5)	0.0036 (5)	0.0027 (5)
09	0.0216 (6)	0.0225 (7)	0.0143 (6)	0.0095 (5)	0.0019 (5)	-0.0022 (6)
O10	0.0241 (7)	0.0267 (8)	0.0248 (8)	0.0044 (6)	0.0104 (6)	0.0044 (7)
O11	0.0289 (8)	0.0247 (7)	0.0284 (9)	-0.0001 (6)	0.0155 (7)	0.0001 (7)
O12	0.0520 (13)	0.0494 (12)	0.0371 (11)	0.0085 (10)	0.0251 (10)	0.0033 (10)
P1	0.01273 (18)	0.01321 (18)	0.0114 (2)	-0.00086 (15)	0.00431 (15)	0.00013 (16)
Р3	0.01266 (18)	0.01344 (19)	0.0114 (2)	-0.00034 (15)	0.00457 (15)	0.00006 (16)
P2	0.01426 (19)	0.01291 (18)	0.0112 (2)	-0.00007 (15)	0.00409 (16)	-0.00088 (16)
O4	0.0237 (7)	0.0195 (6)	0.0145 (6)	-0.0021 (5)	0.0059 (5)	-0.0057 (5)
O2	0.0196 (6)	0.0219 (6)	0.0131 (6)	-0.0040 (5)	0.0078 (5)	0.0001 (5)
07	0.0271 (7)	0.0190 (6)	0.0192 (7)	-0.0097 (6)	0.0094 (6)	-0.0030 (6)
05	0.0182 (6)	0.0324 (8)	0.0196 (7)	0.0028 (6)	0.0096 (6)	0.0047 (6)
O6	0.0143 (5)	0.0354 (8)	0.0134 (6)	-0.0041 (6)	0.0061 (5)	0.0029 (6)
O1	0.0257 (7)	0.0206 (7)	0.0226 (8)	0.0085 (6)	0.0045 (6)	0.0000 (6)
O3	0.0344 (8)	0.0162 (6)	0.0148 (6)	-0.0090 (6)	0.0100 (6)	-0.0035 (5)
Ni1	0.01256 (13)	0.01290 (14)	0.01169 (14)	0.000	0.00419 (11)	0.000
015	0.0206 (6)	0.0162 (6)	0.0149 (6)	0.0014 (5)	0.0069 (5)	0.0012 (5)
O14	0.0160 (5)	0.0176 (6)	0.0159 (6)	0.0017 (5)	0.0035 (5)	-0.0010 (5)
013	0.0193 (6)	0.0220 (7)	0.0186 (7)	-0.0005 (5)	0.0080 (5)	-0.0051 (6)

Geometric parameters (Å, °)

Nal—Ol ⁱ	2.4205 (19)	Р3—О7	1.4754 (16)
Na1—O5 ⁱⁱ	2.384 (2)	P3—O6 ^{iv}	1.5948 (17)
Na1—O7 ⁱⁱⁱ	2.3737 (19)	P2—O5	1.4735 (17)
Na1—O10 ⁱⁱⁱ	2.556 (2)	P2—O4	1.4782 (17)
Na1—011	2.546 (2)	P2—O3	1.6047 (16)
Nal—O12	2.323 (2)	O2—Li ⁱⁱⁱ	1.927 (4)
Li—O2 ⁱ	1.927 (4)	O7—Na1 ⁱ	2.3737 (19)
Li—O8	1.930 (5)	O5—Na1 ^v	2.384 (2)
Li—O10	1.964 (5)	O6—P3 ^{iv}	1.5948 (17)
Li—011	1.972 (5)	O1—Na1 ⁱⁱⁱ	2.4205 (19)
O8—P3	1.4860 (17)	Ni1—O13	2.0469 (16)
O9—P3	1.5944 (16)	Ni1—O13 ^{vi}	2.0469 (16)
O9—P2	1.6088 (17)	Ni1—O15 ^{vi}	2.0572 (15)
P101	1.4712 (16)	Ni1-015	2.0572 (15)
P1—O2	1.4917 (17)	Ni1—O14 ^{vi}	2.0693 (18)
P1—O3	1.5908 (16)	Ni1-014	2.0693 (18)
P1—O6	1.5929 (17)		

O12—Na1—O7 ⁱⁱⁱ	167.54 (8)	O7—P3—O9	110.00 (10)
O12—Na1—O5 ⁱⁱ	93.23 (9)	O8—P3—O9	106.07 (9)
O7 ⁱⁱⁱ —Na1—O5 ⁱⁱ	91.05 (7)	O7—P3—O6 ^{iv}	108.36 (9)
O12—Na1—O1 ⁱ	100.91 (8)	O8—P3—O6 ^{iv}	110.34 (9)
O7 ⁱⁱⁱ —Na1—O1 ⁱ	90.64 (7)	O9—P3—O6 ^{iv}	102.15 (9)
O5 ⁱⁱ —Na1—O1 ⁱ	91.76 (7)	O5—P2—O4	119.77 (10)
O12—Na1—O11	78.89 (9)	O5—P2—O3	110.02 (10)
O7 ⁱⁱⁱ —Na1—O11	96.33 (7)	O4—P2—O3	106.67 (9)
O5 ⁱⁱ —Na1—O11	171.92 (7)	O5—P2—O9	108.00 (10)
O1 ⁱ —Na1—O11	91.45 (7)	O4—P2—O9	109.84 (9)
O12—Na1—O10 ⁱⁱⁱ	78.55 (8)	O3—P2—O9	100.90 (9)
O7 ⁱⁱⁱ —Na1—O10 ⁱⁱⁱ	89.14 (7)	P1—O2—Li ⁱⁱⁱ	118.66 (16)
O5 ⁱⁱ —Na1—O10 ⁱⁱⁱ	101.04 (7)	P3—O7—Na1 ⁱ	123.98 (10)
O1 ⁱ —Na1—O10 ⁱⁱⁱ	167.20 (7)	P2—O5—Na1 ^v	124.59 (10)
O11—Na1—O10 ⁱⁱⁱ	75.86 (7)	P1O6P3 ^{iv}	133.24 (10)
O2 ⁱ —Li—O8	115.4 (2)	P1—O1—Na1 ⁱⁱⁱ	121.77 (10)
O2 ⁱ —Li—O10	107.4 (2)	P1—O3—P2	131.77 (10)
O8—Li—O10	110.8 (2)	O13—Ni1—O13 ^{vi}	89.73 (9)
O2 ⁱ —Li—O11	113.7 (2)	O13—Ni1—O15 ^{vi}	177.22 (6)
08—Li—011	107.3 (2)	O13 ^{vi} —Ni1—O15 ^{vi}	91.32 (7)
O10—Li—O11	101.3 (2)	O13—Ni1—O15	91.32 (7)
P3—O8—Li	118.83 (15)	O13 ^{vi} —Ni1—O15	177.22 (6)
P3—O9—P2	129.04 (10)	O15 ^{vi} —Ni1—O15	87.76 (9)
Li—O10—Na1 ⁱ	109.74 (15)	O13—Ni1—O14 ^{vi}	90.89 (7)
Li—O11—Na1	106.55 (15)	O13 ^{vi} —Ni1—O14 ^{vi}	87.49 (7)
O1—P1—O2	118.46 (10)	O15 ^{vi} —Ni1—O14 ^{vi}	91.73 (6)
O1—P1—O3	109.69 (10)	O15—Ni1—O14 ^{vi}	89.92 (6)
O2—P1—O3	110.66 (9)	O13—Ni1—O14	87.49 (7)
O1—P1—O6	109.65 (10)	O13 ^{vi} —Ni1—O14	90.89 (7)
O2—P1—O6	105.21 (9)	O15 ^{vi} —Ni1—O14	89.92 (6)
O3—P1—O6	101.78 (9)	O15—Ni1—O14	91.73 (6)
O7—P3—O8	118.66 (10)	O14 ^{vi} —Ni1—O14	177.71 (8)

Symmetry codes: (i) -x+1/2, y-1/2, -z+1/2; (ii) x+1/2, -y+3/2, z+1/2; (iii) -x+1/2, y+1/2, -z+1/2; (iv) -x+1/2, -y+3/2, -z; (v) x-1/2, -y+3/2, z-1/2; (vi) -x+1/2, y-z+1/2.

Hydrogen-bond geometry	(Å,	9	
<i></i>	()	/	

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
010—H110…O15 ⁱⁱⁱ	0.85	1.96	2.795 (3)	165
O10—H210…O4 ^{vii}	0.87	2.03	2.851 (3)	159
O11—H111…O14 ⁱⁱⁱ	0.82	2.01	2.811 (3)	164
O11—H211···O2	0.86	2.25	3.031 (3)	150
O12—H112…O12 ^{vi}	0.86	2.44	3.058 (4)	130
O12—H212···O3 ^{iv}	0.86	2.48	3.304 (3)	161
O12—H212···O4 ^{iv}	0.86	2.52	3.166 (3)	133
O15—H115…O4 ^{viii}	0.88	1.87	2.741 (3)	171
O15—H215…O5 ⁱ	0.83	1.85	2.673 (3)	174

supporting information

O14—H114…O8	0.85	1.94	2.758 (3)	163	
O14—H214…O7 ^{ix}	0.86	1.78	2.643 (3)	174	
O13—H113…O2 ⁱ	0.83	1.97	2.789 (3)	167	
O13—H213…O1 ⁱⁱ	0.84	1.84	2.677 (3)	174	

Symmetry codes: (i) -*x*+1/2, *y*-1/2, -*z*+1/2; (ii) *x*+1/2, -*y*+3/2, *z*+1/2; (iii) -*x*+1/2, *y*+1/2, -*z*+1/2; (iv) -*x*+1/2, -*y*+3/2, -*z*; (vi) -*x*+1, *y*, -*z*+1/2; (vii) *x*, -*y*+1/2; (viii) *x*+1/2, -*y*+1/2, -*z*+1/2; (ix) -*x*+1/2, -*y*+1/2, -*z*.